IA and ME
Coming soon ...

A nonlocal model with adaptive constraints based on the transport metric of cartoon and texture decomposition (with F. Karami, D. Meskine and O. Oubbih)
Byond obstacle Hamilton-Jacobi equation : variational and quasi-variational problem (with H. Ennaji)
Singular Incompresssible limit of Porous Medium Equation with linear Drift
Evolution Problem for the $1$-Laplacian with Mixed  Boundary Conditions (with J. Mazon and J. Toledo)
Density-Informed Velocity Field Correction in a mathematical model for Crowd Motion (with E. Erraji, F. Karami and D. Meskine)
Publications (international peer reviewed journals)
[Ig65] BV-Estimates for Nonlinear Diffusion Equation with Linear Drift and Mixed Boundary Conditions (with F. Karami, D. Meskine)
          Preprint, 35 pages 2025.  
[Ig64] Congested Crossing Pedestrian Traffic flow : Dispersion vs Transport in Crowded Areas (with M. AL Khatib, S. Gounane, G. Jradi)
          To appear in
Math. Models & Methods Appl. Sci. (M3AS), 39 pages 2025.  
[Ig63] Cross-diffusion Theory for Overcrowding Dispersal in Interacting Species
          Preprint
, 33 pages 2024.
 
[Ig62] A granular Model for Crowd Motion and Pedestrian Flow (With M. Urbano)
          Preprint
, 26 pages 2024.
 
[Ig61] Minimum Flow Steepest Descent Approach for Nonlinear PDE
          Preprint
, 45 pages 2024.
 
[Ig60] Mathematical Study of Reaction-Diffusion in Congested Crowd Motion (With F. Karami and D. Meskine)
          Preprint
, 16 pages 2025.
 
[Ig59] Prediction-Correction Pedestrian Flow by Means of Minimum Flow Problem (With H. Ennaji and G. Jradi)
       
Math. Models & Methods Appl. Sci. (M3AS), Vo. 34, No 03, 385-416, 2024.  
[Ig58] L^1-Theory for Incompresssible limit of Porous Medium Equation with linear Drift
          J. Differential Equations, Vo 416, Part 2, 1015-1051, 2025
.
 
[Ig57] Quasi-convex Hamilton-Jacobi equations via  Finsler p-Laplace  Type  Operator (with H. Ennaji and  V. Th. Nguyen)
         
SIAM J. Math. Analysis, Vo. 54(4),
2022.  
[Ig56] L^1-Theory for Hele-Shaw flow  with linear drift
       Math. Models & Methods Appl. Sci. (M3AS), Vo. 33(07), 1545-1576, 2023.  
[Ig55] Beckmann-Type Problem for degenerate Hamilton-Jacobi equations (with H. Ennaji and  V. Th. Nguyen)
        Quart. Appl. Math, 80 (2022), 201-220. 
[Ig54] Continuous Lambertian Shape From Shading: A primal-dual algorithm (with H. Ennaji and  V. Th. Nguyen)
     
ESAIM: M2AN, 56(2), 2022, 485-504.
[Ig53] Augmented Lagrangian method for Hamilton-Jacobi equations (with H. Ennaji and  V. Th. Nguyen)
        Calculus of Variations and PDE, Vol. 60(23), 2021. Online Version 
[Ig52] Hamilton-Jacobi and Least-Worst Strategy in the Morphology of Lakes and Obstacle Sandpile
        
Preprint, 14 pages.
[Ig51] Stochastic Interacting Particle System for Optimal Mass Transport Problem
       
Preprint, 28 pages.
[Ig50] Optimal Partial Transport Problem with Lagrangian costs (with Th. Nguyen)
         ESAIM: M2AN Vol 52(5), 2018.

[Ig49] On a Mathematical Model for Travelling Sand Dune(with F. Karami and D. Meskine)
        
Nonlinear Anal. Real World Applications, Vo 62, December 2021, 103356.     
[Ig48] On the Uniqueness and Numerical Approximations for a Matching Problem (with Th. Nguyen and J. Toledo)
        
 
SIAM J. Optimization, 27(4), 2459-2480, 2017. 
[Ig47] On the minimizing movement with the 1-Wasserstein distance (with M. Agueh and G. Carlier)
        
Control, optimization and Calculus of Variation  (ESSAIM: COCV), 24 No2, 1415-1427, 2018.  
[Ig46] Elliptic Problem involving non-local Boundary Conditions  (with S. Safimba)
       
Nonlinear Anal. TMA 181 (2019), 87–100.
[Ig45] Augmented Lagrangian Method for Optimal Partial Transport (with Th. Nguyen)
        
IMA J. Numerical Analysis, 38(1), 156-183, 2018.
[Ig44] Sub-gradient Di ffusion Operator (with N. Ta Thi)
       
J. Differentiel Equations, 262(7) 3837-3863, 2017.
[Ig43] Optimal Partial Mass Transportation and Obstacle  Monge-Kantorovich Equation (with Th. Nguyen)
         
J. Differential Equations,, 264(10), 6380-6417, 2018. 
[Ig42] On a Dual Formulation for Growing Sandpile Problem with Mixed Boundary Conditions (with F. Karami, S. Ouaro and U. Traoré)
         Applied Mathematics and Optimization, 23 pages, to appear 2017.
[Ig41] Optimal Mass Transportation for a Finsler Distance Cost via p-Laplacian Approximation (with J. Mazon, J. Toledo and J. Rossi)
       
Advances in Calculus of Variations, Adv. Calc. Var. 11(1): 1-28, 2018.
[Ig40] Metric Character for the Sub-Hamilton-Jacobi Obstacle Equation
       
SIAM J. Math. Analysis
, 49(4), 3143-3160, 2017.
[Ig39] Equivalent formulations for nonhomogeneous Neumann-Monge-Kantorovich equation (with S. Ouaro and U. Traoré)
        
Topological Method in nonlinear Analysis, 47(1), 109-123, 2016.
[Ig38] Discrete Collapsing Sandpile Model (with F. Karami and N. Ta Thi)
        
Nonlinear Analysis TMA,  Volume 99, 177-189, 2014.
[Ig37] Evolution Monge-Kantorovich Equation
       
J. Differential Equations, Vo. 255, Issue 7, 1383-1407,
2013.
[Ig36] Elliptic Problem Involving Diffuse Measure Data (with S. Ouaro et S. Safimba)
        
J. Differential Equations, 253(12) 3159-3183, 2012.
[Ig35] A Partial Integro-Differential  Equation in Granular Matter and Its Connection with Stochastic Model.
        
SIAM J. Math. Anal. 44, pp. 1950-1975, 2012. 
[Ig34] Uniqueness techniques for degnenerate convection-diffusion problems (with  B. Andreianov)
        
  Int. J. of Dynamical Systems and Differential Equations, 2012 - Vol. 4, No.1/2  pp. 3 - 34. 
[Ig33] A  Monge-Kantorovich mass transport problem for a discrete distance  (with J. Mazon, J. Rossi et J. Toledo)
        
J. Functional Analysis,  Volume 260, Issue 12, 3494-3534, 2011. 
[Ig32] On the collapsing sandpile problem (with S. Dumont).
        
Communications on Pure and Applied Analysis
(CPAA), Vo 10 (2), 625-638, 2011. 
[Ig31] Elliptic-Parabolic equation with absorption of obstacle type (with F. Karami).
        
Advanced Nonlinear Studies, Vol. 11, No. 1, p. 179-200, 2011. 
[Ig30] Renormalized Solutions for Stefan Type Problems : Existence and UNI-queness (with K. Sbihi et P. Wittbold).
        
Nonlinear Differential Equations Appl.  (1) Vol. 17, 2010, 69-93
[Ig29] Degenerate Elliptic Equations with Nonlinear Boundary Conditions and Measures Data (with F. Andreu, J. Mazon et J. Toledo).
        
  Ann. Scuola Normale Sup. Pisa, Cl. Sci. (5) Vol. VIII (2009), 1-37  
[Ig28] A Generalized Collapsing Sandpile Model.
       
Archiv Der Mathematik, Volume 94, Number 2, 2009, 193-200
[Ig27] From Fast to Very Fast Diffusion in the Nonlinear Heat Equation.
       
Transaction of the  AMS,  Vo. 361, No. 10 (2009) 5089–5109
[Ig26] Equivalent Formulations for Monge-Kantorovich Equation.
       
Nonlinear Analysis TMA, 71 (2009), 3805-3813. 
[Ig25] Back on Stochastic Model for Sandpile.
       
Recent developments in Nonlinear Analysis, Proceedings of the conference in Mathematics and Mathematical Physics, Morocco 28-30 October 2008.  
[Ig24] On a Dual Formulation for the Growing Sandpile Problem, (with S. Dumont).
        
European Journal of Applied Mathematics, vol. 20, (2008) pp. 169–185. 
[Ig23] Localized  large reaction for a non linear Reaction-Diffusion system, (with F. Karami).
       
Advances Differential Equations, 13  (2008),  no. 9-10, 907--933. 
[Ig22] Obstacle problems for degenerate elliptic equations with nonlinear boundary conditions (with F. Andreu, J. Mazon et J. Toledo).
        
Mathematical Models and Methods in Applied Sciences, Vol. 18, No. 11 (2008) 1869–1893
[Ig21] Renormalized Solutions for Degenerate Elliptic-Parabolic Problems with Nonlinear Dynamical Boundary Conditions (with F. Andreu, J. Mazon et J. Toledo).
        
J. Differential Equations,  Vo. 244, 11(2008), 2764-2803. 
[Ig20] Hele Shaw Problem with Dynamical Boundary Conditions.
       
Jour. Math. Anal.  Applications,  Vo. 335, No. 2, 1061-1078, 2007. 
[Ig19] Uniqueness for the Inhomogeneous Dirichlet Problem for Elliptic-Parabolic Equations, (with B. Andreianov).
        
Proc. Edinburgh Math. Society, 137A, 1119-1133, 2007. 
[Ig18] Some competition phenomena in evolution equations (with F. Karami).
       
Adv. Math. Sci. Appli., vo. 7, No. 2, 1-30,  2007. 
[Ig17] L^1 Existence and UNI-queness Results for Quasi-linear Elliptic Equations with Nonlinear Boundary Conditions (with F. Andreu, J. Mazon et J. Toledo).
        
Annales de l'IHP (C) : Non Linear Analysis, Vo. 24, No 1, 61-89, 2007. 
[Ig16] A Degenerate Elliptic-Parabolic Problem with Nonlinear Dynamical Boundary Conditions (with F. Andreu, J. Mazon et J. Toledo).
        
Interfaces Free Bound. 8 (2006), no. 4, 447--479. 
[Ig15] Revising Uniqueness for a Nonlinear Diffusion Convection Equation, (with B. Andreianov).
        
J. Differential Equations , Vo. 227 (2006), no-1 69-79.   
[Ig14] Existence and Uniqueness Results for quasi-lnear Elliptic and Parabolic Equations with Nonlinear Dynamical Boundary Conditions, (with F. Andreu, J. M. Mazon et J. Toledo).
        
  Int. Series Numerical Math., Vo. 154,  2006, 11-21. 
[Ig13] [A Nonlinear Diffusion Problem With Localized Large Diffusion.
        
Comm. Partiel Differentiel Eq. 29 (2004), no. 5-6, 647--670. 
[Ig12] The Mesa Problem for the Neumann Boundary Value Problem (with Ph. Bénilan).
        
J. Differential Equations 196 (2004), no. 2, 301--315. 
[Ig11] Uniqueness for Nonlinear Degenerate Problems (with M. Urbano).
        
Nonlinear Differential Equations Appl. (NoDEA), 10 (2003), no.3, 287--307. 
[Ig10] Stabilization Results for Degenerate Parabolic Equations with Absorption.
        
Nonlinear Analysis TMA 54, 2003, no. 1, 93--107. 
[Ig9] Singular Limit of the Changing Sign Solutions of the Porous Medium Equation (with Ph. Bénilan).
        
J. Evol. Equations. 3 (2003), no. 2, 215--224. 
[Ig8] A Degenerate Diffusion Problem with Dynamical Boundary Conditions,(with M. Kirane).
        
Mathematische Annalen 323 (2002), no. 2, 377--396. 
[Ig7] Blow up for a Completely  Coupled Fujita Type  Reaction-Diffusion System,(with M. Kirane),
       
Colloquium Mathematicum, 92 (2002), no. 1, 87--96. 
[Ig6] The Mesa-Limit of the Porous Medium-Equation and the Hele-Shaw Problem,
       
Differential Integral Equations 15 (2002), no. 2, 129--146. 
[Ig5] On the Large Time Behavior of Solutions to Some Degenerate Parabolic Equations,
       
Comm. Partial Differential Equations 26 (2001), no. 7-8, 1385--1408. 
[Ig4] Limite de u_t=Delta u^m + div(F(u)), Lorsque m-> \infty, (with Ph. Bénilan).
        
Rev. Mat. Complut. 13 (2000), no. 1, 195--205. 
[Ig3]  Singular Limit of Perturbed Nonlinear Semigroups,  (with Ph. Bénilan).
        
Comm. Appl. Nonlinear Anal. 3 (1996), no. 4, 23--42.
[Ig2]  Solutions Auto-Similaires pour une Equation de Barenblatt.
       
Revista de Matematicas Aplicadas. 17 (1996), no. 1, 21--36.
[Ig1] La Limite de u_t=Delta_p u^m  Lorsque m-> \infty, (with Ph. Bénilan).
        
C. R. Acad. Sci. Paris Sér. I Math. 321 (1995).
Not published
[Ig04] A Nonlocal Monge-Kantorovich Problem (with J. Mazon, J. Rossi et J. Toledo),  55 pages.
[Ig03] Travelling Sand Dune Model, 17 pages.
[Ig02] On Monge-Kantorovich equation,  15 pages.
[Ig01] LargeTime Behavior of the Stefan Problem and Singular Limit of the PME, 7 pages.
Thesis
[Ig-hdr] Analyse de quelques problèmes elliptiques et paraboliques non linéaires dégénérés : existence, unicité, limite  dingulière et comportement asymptotique. Thése d'habilitation à diriger des recherches,  Université de Picardie Jules Verne, 2005.
[Ig-phd] Limites singulière de problèmes d'évolution.
Thèse de Doctorat de l'Université de Franche-Comté, 1997. 
[Ig-dea] Sur l'Equation de Barenblatt Non Linéaire.
Mémoire de DEA, Université de Franche-Comté, 1992
Page d'accueil