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Abstract. In this work we give some equivalent formulations for the optimization prob-

lem max

{∫
Ω

ξdµ+

∫
ΓN

ξdν ; ξ ∈W 1,∞ (Ω) s.t ξ/ΓD
= 0, |∇ξ (x)| ≤ 1 a.e. x ∈ Ω

}
, where

the boundary of Ω is Γ = ΓN ∪ ΓD.

1. Introduction and main result

Let Ω be a bounded open Lipschitz domain of RN with C1 smooth boundary Γ.We assume
that Γ is divided into two parts ΓN , ΓD such that ΓD ∩ ΓN = ∅ and the measure area of
ΓD is positive.
We set

W 1,∞
D (Ω) =

{
z ∈ W 1,∞ (Ω) ; z = 0 on ΓD

}
.

and
K =

{
z ∈ W 1,∞

D (Ω) ; |∇z (x)| ≤ 1 a.e.x ∈ Ω
}
.

We are interested in the study of the optimization problem

max

{∫
Ω

zdµ+

∫
ΓN

zdν ; z ∈ K
}
, (1.1)

where µ and ν are a bounded Radon measures concentrated respectively in and Ω and Γ.

If we put K̃ =
{
ξ ∈ W 1,1

0 (Ω); |∇z(x)| ≤ k (x) a.e. x ∈ Ω
}
where k ∈ C

(
Ω̄
)
and ΓN = ∅,

we get from (1.1) the following optimization problem

max

{∫
Ω

ξdµ ; ξ ∈ K̃
}
, (1.2)

which is the so-called dual equation of Monge-Kantorovich problem. It is of wide interest
for Monge optimal mass transport problem (see[1, 11] and the references therein). It was
used by Kantorovich for the study of existence of a solution for is relaxed formulation of
the original Monge problem.
In [14], the author showed the equivalence between problem (1.2) and the following three
formulations in divergence form{

−∇ · φ = µ in D′ (Ω)
kφ = |φ| ∇|φ|u,

(1.3)

Key words and phrases. Nonlinear PDE, Tangential gradient, RN -valued Radon measure flux, Opti-
mization problem.
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2 N. IGBIDA, S. OUARO AND U. TRAORE −∇ · φ = µ in D′ (Ω)∫
Ω

kd |φ| ≤
∫

Ω

udµ (1.4)

and 
∫

Ω

kd |φ| = min

{∫
Ω

kd |ν| ; −∇ · ν = µ in D′ (Ω)

}
=

∫
Ω

udµ,
(1.5)

where |φ| denotes the total variation measure of φ and∇|φ| denotes the tangential gradient
with respect to |φ| ([3, 4, 5, 6]).
The main interest in the formulation (1.2)-(1.4) is their connection with the Monge op-
timal mass transport problem (see [1, 11, 13, 17] and the references therein) as well as
mass optimization (see [3, 18]) and sandpile (see [8, 10, 11, 19]). The formulation (1.3)
is called in the litterature Monge-Kantorovich equation, it appears in the study of opti-
mal transport problem (see [5]). The relation between the formulation (1.5) (called dual
formulation of (1.2)) and (1.3) is given in [5] within the context of mass optimization
problem. The formulation (1.5) also appears in the context of optimal transport problem
(see [5, 18]). Concerning the formulation (1.4) , it appears in [5] and it is used in the study
of the evolution problem associated with the Monge-Kantorovich equation and sandpile
problem (see [2, 15]).
In this paper, we prove the equivalence between (1.1) and the following formulations :

φ ∈ (Mb (Ω))N , v ∈ K such that∫
Ω

∇ξ. φ
|φ|

d |φ| =
∫

Ω

ξdµ+

∫
ΓN

ξdν

|φ| (Ω) =

∫
Ω

vdµ+

∫
ΓN

vdν

(1.6)

and 
φ ∈ (Mb (Ω))N , v ∈ K such that∫

Ω

∇ξ. φ
|φ|
d |φ| =

∫
Ω

ξdµ+

∫
ΓN

ξdν

φ = |φ| ∇|φ|v

(1.7)

and 
φ ∈ (Mb (Ω))N , v ∈ K such ; that

|φ| (Ω) = min

{
|Φ| (Ω) :

∫
Ω

∇ξ. Φ

|Φ|
d |Φ| =

∫
Ω

ξdµ+

∫
ΓN

ξdν
}

=

∫
Ω

vdµ+

∫
ΓN

vdν,

(1.8)

where ξ ∈ C1 (Ω) ∩W 1,∞
D (Ω) .

Since K is bounded, the problem (1.1) admits at least one solution for all bounded Radon
measures µ and ν. Let’s recall that the question that we treat in this paper has already
been landed in other articles in which the authors use non trivial techniques (see [1, 3, 6]
). Here we look at a simple case with less complicated techniques (cf [14]). Our main
result is the following.
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Theorem 1.1. Let µ ∈Mb (Ω) , ν ∈Mb (Γ) and v ∈ K. Then v is solution of (1.1) , i.e.∫
Ω

(v − ξ) dµ+

∫
ΓN

(v − ξ) dν ≥ 0 for any ξ ∈ K

if and only if there exists φ ∈ (Mb (Ω))N such that (v, φ) satisfies (1.6) . Moreover, the
formulations (1.6)− (1.8) are equivalent.

Notice also that the main interest in the study of (1.1) and the equivalent formulation
(1.6) − (1.8) besides their connection with mass transport problem as well as mass op-
timization is their connection with sand dunes problems. Indeed, in the dynamic of the
formulation of sand dunes, we need a nonhomogeneous Neumann boundary condition on
the part of the boundary exposed upon the arrival of grains of sand.
The rest of paper is organized as follows : in the next section we give some preliminar-
ies and we recall some technical lemmas. Section 3 is devoted to the proof of the main
theorem.

2. Preliminary

In this section we introduce some notations and lemmas that will be useful later on. Let
Ω be a bounded open subset of RN (N ≥ 2) equipped with the N -dimensional Lebesgue
measure. The space of Radon measure and the set of continuous functions with compact
support in Ω will be denoted byM(Ω) and Cc(Ω) respectively. We recall that each Radon
measure µ can be interpreted as an element of the dual of the space Cc(Ω). This result can
be extended to the space C

(
Ω
)
ieM(Ω) =

(
C
(
Ω
))∗ in the sense that, every µ ∈ M(Ω)

is equal to µ̃ ∈
(
C
(
Ω
))∗ with µ̃(∂Ω) = 0. So, for any µ ∈ M(Ω) and ξ ∈ C

(
Ω
)
, the

notation
∫

Ω

ξdµ is equivalent to 〈µ̃, ξ〉.

M+(Ω) denote the space of all nonnegative Radon measure on Ω. The variation measure
|µ| associated with µ ∈M(Ω) is defined by

|µ| (B) := sup

{
∞∑
i=1

|µ (Bi)| ; B = ∪∞i=1Bi, Bi a Borelean set

}
.

For µ ∈ M (Ω) , µ+ =
1

2
(|µ|+ µ) and µ− =

1

2
(|µ| − µ) are positives and bounded mea-

sures. We say that µ+, µ− is the positive, negative variation of µ respectively.
The space of Radon measures with bounded total variation |µ| (Ω) will be denoted by
Mb(Ω). Recall thatMb(Ω) equipped with the norm |µ| (Ω) is a Banach space.
Let (M(Ω))N the space of RN -valued Radon measures of Ω. Then µ ∈ (M(Ω))N if and
only if µ = (µ1, · · · , µn) with µi ∈M(Ω).We recall that the total variation measure asso-
ciated with µ ∈ (M(Ω))N is denoted again by |µ| and the subspace (Mb(Ω))N equipped
with the norm ‖µ‖ = |µ| (Ω) is a Banach space. The space (M(Ω))N endowed with the
norm ‖.‖ is isometric to the dual space of (Cc(Ω))N .
For any µ ∈ (Mb(Ω))N and ν ∈ (Mb(Ω))+, the density of µ with respect to ν is the
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unique bounded RN− valued Radon measure denoted by Dνµ such that

µ (A) =

∫
A

Dνµdν for any A ⊆ Ω.

We have Dνµ ∈Mb (Ω) and

ν (A) = 0⇒ |µ| (A) = 0.

For any µ ∈ (Mb(Ω))N and ν ∈ (Mb(Ω))+, µ is absolutely continuous with respect to ν;
denoted by µ << ν, provided

ν (A) = 0⇒ |µ| (A) = 0, for anyA ∈ Ω.

Let’s recall that for µ ∈ (Mb(Ω))N and ν ∈ (Mb(Ω))+ such that µ << ν, the previous
splitting up of µ according to ν is always possible by using Radon-Nikodym Decomposition
Theorem. Since |µ (A)| ≤ |µ| (A), for all µ ∈ (M(Ω))N , then we have µ << |µ|, and∣∣D|µ|µ∣∣ = 1, |µ|-a.e. in Ω. In the litterature D|µ|µ is denoted by

µ

|µ|
. So, for any µ ∈

(M (Ω))N we have

µ (A) =

∫
A

µ

|µ|
dµ for any borel set A ⊆ Ω.

Hence, every µ ∈ (M(Ω))N can be identified with the linear application

ξ ∈ (Cc(Ω))N 7→
∫

Ω

µ

|µ|
.ξd |µ| .

For any Φ ∈ (Mb (Ω))N and ν ∈Mb (Ω), we say that −∇ · Φ = ν in D′ (Ω)
provided that ∫

Ω

∇ξ. Φ

|Φ|
dΦ =

∫
Ω

ξdν for any ξ ∈ D (Ω) .

In particular, this remains true for any ξ ∈ C1
0 (Ω) , where C1

0 (Ω) is the subset of C1 function
in Ω, such that ξ and ∇ξ are null on the boundary of Ω. In other words, −∇ · Φ = ν in

D′ (Ω) is equivalent to −∇ ·
(

Φ

|Φ|
|Φ|
)

= ν in D′ (Ω).

We recall the following sets used in the definition of tangential gradient with respect to
ν ∈Mb (Ω)+ (see [4]).

Nν :=

{
ξ ∈ (L∞ν (Ω))N ; ∃un ∈ C∞(Ω), un → 0 in C(Ω) and
Dun → ξ inσ

(
(L∞ν (Ω))N , (L1

ν(Ω))
N
) }

and

N⊥ν :=

{
η ∈

(
L1
ν(Ω)

)N
;

∫
Ω

η.ξdν = 0,∀ξ ∈ N ν

}
.

For ν-a.e. x ∈ Ω, we define the tangent space Tν (x) to measure ν, as the subspace of RN :

Tν(x) =
{
A ∈ RN ;∃ ξ ∈ N⊥ν , A = ξ(x)

}
.
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Then (cf. Proposition 3.2 of [6]) the operator ∇ν : Lip(Ω)→ (L∞ν (Ω))N is the continuous
operator such that for any u ∈ C1 (Ω),

∇νu(x) = PTν(x)
∇u(x) ν − p.p. x ∈ Ω,

where PTν(x)
is the orthogonal projection on Tν (x) , Lip (Ω) is the set of Lipchitz continuous

function equipped with the uniform convergence and L∞ν (Ω) is equipped with the weak
star topology. A RN -valued Radon measure φ is said to be tangential measure on Ω
provided there exist ν ∈ Mb (Ω)+ and σ ∈ L1

ν (Ω)N , such that σ (x) ∈ Tν (x) , ν-a.e.
x ∈ Ω and φ = σν. Thanks to Proposition 3.5 of [6], we know that for any tangential
measure φ = σν on Ω, such that −∇ ·φ = µ ∈Mb (Ω) , we have the following integration
by parts ∫

Ω

udµ =

∫
Ω

σ.∇νudν,

for any u ∈ Lip (Ω) null on the boundary of Ω.
In the sequel, we need the following two lemmas.

Lemma 2.1. For any z ∈ K, there exists (zε)ε>0 a sequence in C1(Ω) ∩K such that

zε → z uniformly in Ω.

Proof. Let z ∈ K and (dε)ε>0 be a subsequence defined in Ω by

dε (x) =

{
0 if |z (x)| ≤ ε

z (x)− ε otherwise.

We have dε ∈ K and converges uniformly to z in Ω.
For any ε > 0, we have

supp dε ⊂ {x ∈ Ω ; |z (x)| ≥ ε} (2.1)
and we set

Ωε = {x ∈ Ω ; |z (x)| ≥ ε}.
Since Ω is bounded, dε is compactly supported in Ωε.
Now we introduce the sequences (z̃ε)ε>0 by

z̃ε (x) =

{
dε (x) if x ∈ Ωε

0 if x ∈ RN\Ωε.
(2.2)

For any ε > 0, we have

|z̃ε (x)| ≤ |z (x)| and |∇z̃ε(x)| ≤ |∇z (x)| ≤ 1 for any x ∈ Ω. (2.3)

Thus, z̃ε ∈ K and z̃ε is compactly supported in Ωε.
Moreover,

sup
x∈Ω

|z̃ε (x)− z (x)| ≤ ε, (2.4)

which implies that z̃ε converges uniformly to z in Ω.
Let (ρn)n>0 be the standard sequence of mollifiers such that

ρn ∈ C∞c
(
RN
)
, Suppρn ⊂ B

(
0,

1

n

)
,

∫
RN
ρn = 1, and ρn ≥ 0. (2.5)
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Thanks to the propositions IV.20 and IV.21 in [7] we have

zε := z̃ε ∗ ρn ∈ C1 (Ω) (2.6)

and
z̃ε ∗ ρn → z̃ε uniformly inΩ asn→ +∞. (2.7)

Since z̃ε converges uniformly to z in Ω, it follows that zε converges uniformly to z in Ω.
At last, we use Höelder inequality to obtain

|∇zε (x)|2 =
N∑
k=1

∣∣∣∣ ∂zε∂xk
(x)

∣∣∣∣2
=

N∑
k=1

∣∣∣∣∫
RN

∂z̃ε
∂xk

(x− y) ρn (y) dy

∣∣∣∣2

≤
N∑
k=1

∣∣∣∣∣∣
(∫

RN

(
∂z̃ε
∂xk

(y) ρn (x− y)
1
2

)2

dy

) 1
2 (∫

RN

(
ρn (x− y)

1
2

)2

dy

) 1
2

∣∣∣∣∣∣
2

≤
N∑
k=1

(∫
RN

∣∣∣∣ ∂z̃ε∂xk
(y)

∣∣∣∣2 ρn (x− y) dy

)(∫
RN
ρn (x− y) dy

)

≤
∫
RN

N∑
k=1

∣∣∣∣ ∂z̃ε∂xk
(y)

∣∣∣∣2 ρn (x− y) dy

≤
∫
RN
|∇z̃ε (y)|2 ρn (x− y) dy

≤
∫
RN
ρn (x− y) dy ≤ 1 a.e. x ∈ Ω (2.8)

�
Then, similarly as in [14], the following result can be prouved.

Lemma 2.2. For any v ∈ K and ν ∈Mb (Ω)+ , we have

|∇νv| ≤ 1 ν-a.e.in Ω.

3. Proof of Theorem 1.1

To get the proof of the Theorem 1.1 , we introduce a set of lemmas

Lemma 3.1. Let φ ∈ (Mb (Ω))N and v ∈ K. If (v, φ) satisfies (1.6) then, v is solution of
(1.1) .

Proof. Let ξ ∈ K, thanks to Lemma 2.1, there exists ξε ∈ C1(Ω) ∩K such that ξε → ξ,
uniformly in Ω. Taking ξε as a test function in (1.6) , we have∫

Ω

∇ξε.
φ

|φ|
d |φ| =

∫
Ω

ξεdµ+

∫
ΓN

ξεdν.
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Using the fact that ξε ∈ K, we get∫
Ω

∇ξε.
φ

|φ|
d |φ| ≤ |φ| (Ω)

Thus, ∫
Ω

ξdµ+

∫
ΓN

ξdν = lim
ε→0

∫
Ω

ξεdµ+

∫
ΓN

ξεdν

= lim
ε→0

∫
Ω

∇ξε.
φ

|φ|
d |φ|

≤ |φ| (Ω) (3.1)

i.e. ∫
Ω

ξdµ+

∫
ΓN

ξdν ≤ |φ| (Ω) . (3.2)

Since
|φ| (Ω) =

∫
Ω

vdµ+

∫
ΓN

vdν, (3.3)

then ∫
Ω

vdµ+

∫
ΓN

vdν ≥
∫

Ω

ξdµ+

∫
ΓN

ξdν for all ξ ∈ K.

�

Lemma 3.2. Let φ ∈ (Mb (Ω))N and v ∈ K. Then (v, φ) satisfies (1.6) if and only if
(v, φ) satisfies the formulations (1.7) and (1.8)

Proof. Assume that (v, φ) satisfies (1.6) and taking vε ∈ C1 (Ω) ∩K the approximation
of v given by Lemma 2.1; we have

|φ| (Ω) =

∫
Ω

vdµ+

∫
ΓN

vdν

= lim
ε→0

(∫
Ω

vεdµ+

∫
ΓN

vεdν
)

= lim
ε→0

∫
Ω

∇|φ|vε.
φ

|φ|
d |φ| =

∫
Ω

∇|φ|v.
φ

|φ|
d |φ| .

So ∫
Ω

(
1−∇|φ|v.

φ

|φ|

)
d |φ| = 0. (3.4)

Since by Lemma 2.2, we have
∣∣∣∣∇|φ|v. φ|φ|

∣∣∣∣ ≤ ∣∣∇|φ|v∣∣ ≤ 1 |φ|-a.e. in Ω, then by (3.4) , we

deduce that
∇|φ|v.

φ

|φ|
= 1 |φ| -a.e. in Ω.

This implies that

∇|φ|v =
φ

|φ|
|φ| -a.e. in Ω.
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Therefore,

φ = |φ| φ
|φ|

= |φ| ∇|φ|v |φ| -a.e. in Ω. (3.5)

Moreover if Φ ∈ (Mb (Ω))N such that Φ satisfies the first equality of (1.6) , we have

|φ| (Ω) =

∫
Ω

vdµ+

∫
ΓN

vdν

= lim
ε→0

∫
Ω

vεdµ+

∫
ΓN

vεdν

= lim
ε→0

∫
Ω

∇vε.
Φ

|Φ|
d |Φ|

≤
∫

Ω

d |Φ| (3.6)

hence (1.6) implies (1.8) . It’s clear that (1.8) implies (1.6) , now suppose that (v, φ)
satisfies (1.7) , we have

|φ| (Ω) =

∫
Ω

∇|φ|v.
φ

|φ|
d |φ|

= lim
ε→0

∫
Ω

∇vε.
φ

|φ|
d |φ|

= lim
ε→0

∫
Ω

vεdµ+

∫
ΓN

vεdν

=

∫
Ω

vdµ+

∫
ΓN

vdν. (3.7)

Thus,

|φ| (Ω) =

∫
Ω

vdµ+

∫
ΓN

vdν.

� As a consequence of lemmas 3.1 and 3.2, we have (1.6) implies (1.1) and (1.6) ⇐⇒
(1.7)⇐⇒ (1.8) .
To prove that (1.1) implies (1.6) , we consider the following system.

(Sε)

 −∇.φε (∇vε) = µ in Ω
vε = 0 on ΓD

φε (∇vε) .η = ν on ΓN ,

where η is the unit outward normal vecteur on ∂Ω, for any ε > 0 and x ∈ Ω, φε : RN → RN

is given by

φε(r) =
1

ε

(
(|r| − 1)+

)(p−1) r

|r|
for all r ∈ RN and x ∈ Ω,

with p > N fixed.
It is not difficult to see that φε satisfies the following properties.
(i) For any r1, r2 ∈ RN and x ∈ Ω, (φε(r1)− φε(r2)) .(r1 − r2) ≥ 0.
(ii) There exist ε0 > 0 and C0 > 1 such that φε(r).r ≥ |r|p for any |r| ≥ C0 and ε < ε0.
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(iii) For any ε > 0, r ∈ RN and x ∈ Ω, |φε(r)| ≤ φε(r).r.

We define the following separable and reflexive Banach space for W 1,p (Ω)-norm

W 1,p
ΓD

(Ω) =
{
z ∈ W 1,p (Ω) ; z/ΓD = 0

}
.

Lemma 3.3. For any 0 < ε < ε0, the problem (Sε) has a unique solution vε in the sense
that vε ∈ W 1,p

ΓD
(Ω) and ∫

Ω

φε (∇vε) .∇zdx =

∫
Ω

zdµ+

∫
ΓN

zdν (3.8)

for all z ∈ W 1,p
ΓD

(Ω) .

Proof We define the operator Aε : W 1,p
ΓD

(Ω)→
(
W 1,p

ΓD
(Ω)
)′

by,

〈Aεv, z〉 =

∫
Ω

φε (∇v) .∇zdx. (3.9)

Aε is monotone, coercive, hemicontinous and bounded. Indeed, the property (i) of φε
gives the monotonicity.
For any v, z ∈ W 1,p

ΓD
(Ω) , we have

|〈Aε(v), z〉| ≤ 1

ε

∫
Ω

∣∣(|∇v| − 1)+
∣∣p−1 |∇z| dx

≤ 1

ε

∫
Ω

∣∣(|∇v| − 1)+
∣∣p−1 |∇z| dx

≤ 1

ε

∫
Ω

|∇v|p−1 |∇z| dx (3.10)

≤ 1

ε

(∫
Ω

|∇v|p dx
) 1

p′
(∫

Ω

|∇z|p dx
) 1

p

≤ 1

ε
‖v‖

p
p′

W 1,p(Ω) ‖z‖W 1,p(Ω) ,

which implies that

‖Aε(v)‖(
W 1,p

ΓD
(Ω)

)′ ≤ 1

ε
‖v‖

p
p′

W 1,p(Ω) . (3.11)

Let B be a bounded set of W 1,p
ΓD

(Ω), there exists M > 0 such that

‖Aε(v)‖(
W 1,p

ΓD
(Ω)

)′ ≤ 1

ε
M

p
p′ ,∀ v ∈ B. (3.12)
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Hence, Aε is a bounded operator. Moreover, using the properties (ii) and (iii) of φε, we
obtain

〈Aε(v), v〉 =

∫
Ω

Φε(∇v).∇vdx

=

∫
[|∇v|<C0]

Φε(∇v).∇vdx+

∫
[|∇v|≥C0]

Φε(∇v).∇vdx

≥
∫

[|∇v|<C0]

|Φε(∇v)| dx+

∫
[|∇v|≥C0]

|∇v|p dx

≥
∫

[|∇v|≥C0]

|∇v|p dx. (3.13)

Consequently,

〈Aε(v), v〉+

∫
[|∇v|<C0]

|∇v|p dx ≥
∫

Ω

|∇v|p dx. (3.14)

Thus,

〈Aε(v), v〉 ≥ −
∫

[|∇v|<C0]

|∇v|p dx+

∫
Ω

|∇v|p dx

≥ −
∫

[|∇v|<C0]

Cp
0dx+

∫
Ω

|∇v|p dx

≥ −Cp
0meas ([|∇v| < C0]) +

∫
Ω

|∇v|p dx

≥ −Cp
0meas (Ω) + ‖v‖pW 1,p(Ω) . (3.15)

Hence,
〈Aε(v), v〉
‖v‖W 1,p(Ω)

≥ −C
p
0meas (Ω)

‖v‖W 1,p(Ω)

+ ‖v‖p−1
W 1,p(Ω) . (3.16)

Since p > 1, letting ‖v‖W 1,p(Ω) → +∞ in (3.16) , it follows that Aε is coercive. Now
consider the map F : R→ R defined by

F (λ) = 〈A(u+ λv), w〉 =

∫
Ω

φε (∇u+ λ∇v) .∇wdx, (3.17)

with u, v, w in W 1,p
ΓD

(Ω) . We will prove that F is continuous. The functions x 7→
φε (∇u+ λ∇v) .∇w, λ 7→ φε (∇u+ λ∇v) .∇w are respectively mesurable a.e. in Ω and
continuous in R. Let (λn)n∈N be such that λn → λ, so that there exists a constant c > 0
with |λn| ≤ c.
Therefore,

|φε (∇u+ λn∇v) .∇w| ≤ |φε (∇u+ λn∇v)| |∇w|

≤ 1

ε
(|∇u|+ |λn| |∇v|+ 1)p−1 |∇w|

≤ 1

ε
(|∇u|+ c |∇v|+ 1)p−1 |∇w| . (3.18)
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Letting n→ +∞ in (3.18) and using the fact that the function λ 7→ |φε (∇u+ λ∇v) .∇w|
is continuous we obtain

|φε (∇u+ λ∇v) .∇w| ≤ 1

ε
(|∇u|+ c |∇v|+ 1)p−1 |∇w| ∈ L1 (Ω) . (3.19)

Therefore thanks to the Lebesgue theorem, we can say that F is continuous, hence the
operator A is hemicontinuous.
Since p > N, we have W 1,p

ΓD
(Ω) ⊂ C

(
Ω
)
and the linear form G : W 1,p

ΓD
(Ω)→ R define by

〈G, v〉 =

∫
Ω

vdµ+

∫
ΓN

vdν (3.20)

belongs to the dual space of W 1,p
ΓD

(Ω) . So (see for instance [16]), for any 0 < ε < ε0, and
p > N there exists vε ∈ W 1,p

ΓD
(Ω) such that A (vε) = G, i.e∫

Ω

φε (∇vε) .∇zdx =

∫
Ω

zdµ+

∫
ΓN

zdν for all z ∈ W 1,p
ΓD

(Ω) . (3.21)

Now, suppose that vε and ṽε are two solutions of (Sε) . For vε and ṽε, we take z = vε− ṽε
in (3.21) to get ∫

Ω

(φε (∇vε)− φε (∇ṽε)) . (∇vε −∇ṽε) dx = 0. (3.22)

It follows that there exists a constant c̃ such that vε − ṽε = c̃ a.e. in Ω. Using the fact
that vε = ṽε = 0 on ΓD, we get c̃ = 0. Thus vε = ṽε a.e. in Ω.
�

Lemma 3.4. Let (vε)0<ε<ε0
be the sequence of solutions of (Sε) . Then

(1) (vε)0<ε<ε0
is bounded in W 1,p

ΓD
(Ω) .

(2) (φε (∇vε))0<ε<ε0
is bounded in (L1 (Ω))

N
.

(3) For any Borel set B ⊆ Ω,

lim inf
ε→0

(∫
B

|∇vε|p−1 dx

) 1
p−1

≤ |B|
1
p−1 .

Proof. (1) Taking vε as test function in (3.22) and using the fact that W 1,p (Ω) ⊂ C
(
Ω
)
,

we get following estimate.

1

ε

∫
Ω

(|∇vε| − 1)+(p−1) |∇vε| dx =

∫
Ω

φε (∇vε) .∇vεdxx

=

∫
Ω

vεdµ+

∫
ΓN

vεdν

≤ (|µ| (Ω) + |ν| (ΓN)) ‖vε‖∞
≤ C (|µ| (Ω) + |ν| (ΓN)) ‖vε‖W 1,p(Ω) . (3.23)
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Combining (3.23) and property (ii) of φε, for any 0 < ε < ε0, we get∫
Ω

|∇vε|p dx ≤
∫

[|∇vε|≤C0]

|∇vε|p dx+

∫
[|∇vε|>C0]

|∇vε|p dx

≤
∫

[|∇vε|≤C0]

|∇vε|p dx+
1

ε

∫
Ω

(|∇vε| − 1)+(p−1) |∇vε| dx

≤
∫

[|∇vε|≤C0]

|∇vε|p dx

+C (|µ| (Ω) + |ν| (ΓN)) ‖∇vε‖Lp(Ω)

≤ Cp
0 |Ω|+ C (|µ| (Ω) + |ν| (ΓN)) ‖∇vε‖Lp(Ω) . (3.24)

Thus, according to Young inequality, we deduce that

‖∇vε‖pLp(Ω) ≤ p′Cp
0 |Ω|+ [C (|µ| (Ω) + |ν| (ΓN))]p

′
, (3.25)

which implies that (∇vε)0<ε<ε0
is bounded in (Lp (Ω))N . Hence (vε)0<ε<ε0

is bounded in
W 1,p

ΓD
(Ω) .

(2) Using (3.23) and the property (iii) of φε we deduce that∫
Ω

|φε (∇vε)| dx ≤
∫

Ω

φε (∇vε) .∇vεdx

≤ 1

ε

∫
Ω

(|∇vε| − 1)(p−1) |∇vε| dx

≤ C (|µ| (Ω) + |ν| (ΓN)) ‖∇vε‖Lp(Ω) . (3.26)

So by (3.25) we deduce that φε (∇vε) is bounded in
(
L1 (Ω)

)N
.

(3) Now, let B ⊆ Ω be a fixed Borel set. We have

‖∇vε‖Lp−1(B) ≤
∥∥(∇vε − 1)+ + 1

∥∥
Lp−1(B)

≤
∥∥(∇vε − 1)+

∥∥
Lp−1(B)

+ |B|
1
p−1 (3.27)

≤
(∫

B

(∇vε − 1)+(p−1) |∇vε| dx
) 1

p−1

+ |B|
1
p−1

≤
[
εC (|µ| (Ω) + |ν| (ΓN)) ‖∇vε‖Lp(Ω)

] 1
p−1

+ |B|
1
p−1 . (3.28)

Letting ε→ 0 and using the fact that vε is bounded in W 1,p (Ω) , we obtain

lim inf
ε→0

(∫
Ω

|∇vε|p−1 dx
) 1

p−1

≤ |B|
1
p−1 . (3.29)

�

Lemma 3.5. Under the assumptions of Lemma 3.4, there exists a subsequence that we
denote again by vε, such that, as ε→ 0,

vε → ṽ uniformly in Ω and in W 1,∞ (Ω)− weak, (3.30)

φε (∇vε)→ φ in (Mb (Ω))N − weak∗, (3.31)
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and ∫
Ω

|φε (∇vε)| dx→ |φ| (Ω) . (3.32)

Moreover, ṽ ∈ K and (ṽ, φ) satisfies (1.6) .

Proof. Thanks to the Lemma 3.4, there exist ṽ ∈ W 1,p
ΓD

(Ω) , φ ∈ Mb (Ω) and a subse-
quence denoted again by vε, such that (3.30) and (3.31) are fulfilled.
For any ξ ∈ C1(Ω) ∩W 1,∞

D (Ω), we have∫
Ω

φε (∇vε) .∇ξdx =

∫
Ω

ξdµ+

∫
ΓN

ξdν.

Thus, letting ε→ 0, we deduce that∫
Ω

∇ξ. φ
|φ|

d |φ| =
∫

Ω

ξdµ+

∫
ΓN

ξdν. (3.33)

To prove that ṽ ∈ K, let us consider Aδ = [|∇ṽ| ≥ 1 + δ] , with arbitrary δ > 0. Since as
ε→ 0, ∇vε → ∇ṽ in

(
L1 (Ω)

)N -weak then,

(1 + δ) |Aδ| ≤
∫
Aδ

|∇ṽ| dx

≤ lim inf
ε→0

∫
Aδ

|∇vε| dx

≤ lim inf
ε→0

(∫
Aδ

|∇vε|p−1 dx
) 1

p−1

|Aδ|
p−2
p−1 . (3.34)

So that, by using the third part of Lemma 3.4, we deduce that

(1 + δ) |Aδ| ≤ |Aδ| ,
which implies that |Aδ| = 0. Since δ is arbitrary, we deduce that |∇ṽ| ≤ 1 a.e. in Ω.
Therefore,

ṽ ∈ K.
To prove (3.32) , we see that according to the property (iii) of φε and (3.30) , we have

lim sup
ε→0

∫
Ω

|φε (∇vε)| dx ≤ lim sup
ε→0

∫
Ω

φε (∇vε) · ∇vεdx

≤ lim sup
ε→0

(∫
Ω

vεdµ+

∫
ΓN

vεdν
)

≤
∫

Ω

ṽdµ+

∫
ΓN

ṽdν. (3.35)

In addition, we have ∫
Ω

ṽdµ+

∫
ΓN

ṽdν = lim
ε→0

∫
Ω

φ (∇vε) · ∇ṽdx

≤ lim
ε→0

∫
Ω

|φε (∇vε)| dx. (3.36)
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So, (3.35) and (3.36) implies that

lim
ε→0

∫
Ω

|φε (∇vε)| dx =

∫
Ω

ṽdµ+

∫
ΓN

ṽdν (3.37)

and by (3.31) we get

|φ| (Ω) =

∫
Ω

d |φ| ≤ lim inf
ε→0

∫
Ω

|φε (∇vε)| dx =

∫
Ω

ṽdµ+

∫
ΓN

ṽdν. (3.38)

Using ṽε, the approximation of ṽ given by Lemma 2.1, we see that∫
Ω

ṽdµ+

∫
ΓN

ṽdν = lim
ε→0

∫
Ω

∇ṽε.
φ

|φ|
d |φ|

≤
∫

Ω

d |φ| = |φ| (Ω) . (3.39)

Combining the above inequality with (3.38) we obtain

|φ| (Ω) =

∫
Ω

ṽdµ+

∫
ΓN

ṽdν (3.40)

and
lim
ε→0

∫
Ω

|φ (∇vε)| dx = |φ| (Ω) . (3.41)

�

Lemma 3.6. Let v ∈ K, be a solution of (1.1) , then there exists φ ∈ (Mb (Ω))N such
that (v, φ) satisfies (1.6) .

Proof. Let ṽ = lim
ε→0

ṽε, where ṽε is the solution of (Sε) . According to Lemma 3.5, there

exists φ in (Mb (Ω))N such that∫
Ω

∇ξ · φ
|φ|

d |φ| =
∫

Ω

ξdµ+

∫
ΓN

ξdν for all ξ ∈ C1 (Ω) ∩W 1,∞
D (Ω) (3.42)

and
|φ| (Ω) =

∫
Ω

ṽdµ+

∫
ΓN

ṽdν. (3.43)

Let vε ∈ C1 (Ω) ∩K be the approximation of v given by the Lemma 2.1, we have∫
Ω

vdµ+

∫
ΓN

vdν = lim
ε→0

∫
Ω

vεdµ+

∫
ΓN

vεdν

= lim
ε→0

∫
Ω

∇vε ·
φ

|φ|
d |φ|

≤
∫

Ω

d |φ| = |φ| (Ω) . (3.44)

Since v is solution of (1.1) , we have∫
Ω

vdµ+

∫
ΓN

vdν ≥
∫

Ω

zdµ+

∫
ΓN

zdν for all z ∈ K. (3.45)
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In particular, taking z = ṽ, we deduce that∫
Ω

vdµ+

∫
ΓN

vdν ≥
∫

Ω

ṽdµ+

∫
ΓN

ṽdν = |φ| (Ω) . (3.46)

Consequently, (3.44) and (3.46) implies that

|φ| (Ω) =

∫
Ω

vdµ+

∫
ΓN

vdν.

�
Proof of Theorem 1.1. Thanks to lemma 3.1 we have (1.6) implies (1.1). As a conse-
quence of lemmas 3.6, we have that (1.1) implies (1.6) . The equivalence between (1.6) ,
(1.7) and (1.8)is given by Lemma 3.2 �
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