EQUIVALENT FORMULATIONS FOR NONHOMOGENEOUS
NEUMANN MONGE-KANTOROVICH EQUATION

N. IGBIDA, S. OUARO AND U. TRAORE

ABSTRACT. In this work we give some equivalent formulations for the optimization prob-

lemmax{/ §d,u—|—/ Eddv ; E€WH® (Q)st&r, =0,|VE(z)| < laexe Q} , where
Q T
the boundary of Q is I‘N: I'nUIp.

1. INTRODUCTION AND MAIN RESULT

Let Q be a bounded open Lipschitz domain of RY with C' smooth boundary I'. We assume
that I' is divided into two parts I'y, I'p such that I'p N T'y = () and the measure area of
I'p is positive.
We set
Wye(Q)={zeW"(Q); z=00nTp}.
and
K={2eWy*(Q); |[Vz(z)| < lae.xecQ}.

We are interested in the study of the optimization problem

max{/zdu—i—/ zdy;zeK}, (1.1)
Q I'n

where 1 and v are a bounded Radon measures concentrated respectively in and {2 and I'.
If we put K = {{ € Wyl (Q): |Vz(x)] < k(z) ae. z€ Q} where k € C(Q)and 'y = 0,

we get from (1.1) the following optimization problem

max{/ﬂfd,u; £e f{} (1.2)

which is the so-called dual equation of Monge-Kantorovich problem. It is of wide interest
for Monge optimal mass transport problem (see[l, 11| and the references therein). It was
used by Kantorovich for the study of existence of a solution for is relaxed formulation of
the original Monge problem.

In [14], the author showed the equivalence between problem (1.2) and the following three
formulations in divergence form

-V-¢ = pin D (Q)
{ ko = 16| Vi, (13)

Key words and phrases. Nonlinear PDE, Tangential gradient, R"V-valued Radon measure flux, Opti-
mization problem.
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-V-¢ = pinD(Q)

[t < s

/delcbl = min{/g’”'”'? ‘V'”:“inplm)} (1.5)

udyt,
Q

where |$| denotes the total variation measure of ¢ and V4 denotes the tangential gradient
with respect to |¢| ([3, 4, 5, 6]).

The main interest in the formulation (1.2)-(1.4) is their connection with the Monge op-
timal mass transport problem (see [1, 11, 13, 17| and the references therein) as well as
mass optimization (see [3, 18]) and sandpile (see [8, 10, 11, 19]). The formulation (1.3)
is called in the litterature Monge-Kantorovich equation, it appears in the study of opti-
mal transport problem (see [5]). The relation between the formulation (1.5) (called dual
formulation of (1.2)) and (1.3) is given in [5| within the context of mass optimization
problem. The formulation (1.5) also appears in the context of optimal transport problem
(see |5, 18]). Concerning the formulation (1.4), it appears in [5] and it is used in the study
of the evolution problem associated with the Monge-Kantorovich equation and sandpile
problem (see [2, 15]).

In this paper, we prove the equivalence between (1.1) and the following formulations :

and

¢ € (My(Q))" ,v € K such that

/RV5|¢V”¢' [ g | e (1.6)

9] (© )=/ﬂvdu+/r vy

and
¢ e (M, (Q)Y,v e K such that
¢
Vé —d = d d 1.7
/wa 9 /stmfu (1.7)
¢ = |¢| Vigv
and

¢ € (M, ()Y, v e K such; that
61(©) = min { 2] () /w@ﬂm [ews [ e} g

vdp + vd
Q 'y

where € € CH(Q) N W™ (Q).

Since K is bounded, the problem (1.1) admits at least one solution for all bounded Radon
measures p and v. Let’s recall that the question that we treat in this paper has already
been landed in other articles in which the authors use non trivial techniques (see [1, 3, 6]
). Here we look at a simple case with less complicated techniques (cf [14]). Our main
result is the following.
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Theorem 1.1. Let p € My (Q), v € My (') and v € K. Then v is solution of (1.1), i.e.

/(v—f)du+/ (v—=E&dv >0 forany £ € K
Q Iy

if and only if there exists ¢ € (M, (Q))N such that (v, @) satisfies (1.6). Moreover, the
formulations (1.6) — (1.8) are equivalent.

Notice also that the main interest in the study of (1.1) and the equivalent formulation
(1.6) — (1.8) besides their connection with mass transport problem as well as mass op-
timization is their connection with sand dunes problems. Indeed, in the dynamic of the
formulation of sand dunes, we need a nonhomogeneous Neumann boundary condition on
the part of the boundary exposed upon the arrival of grains of sand.

The rest of paper is organized as follows : in the next section we give some preliminar-
ies and we recall some technical lemmas. Section 3 is devoted to the proof of the main
theorem.

2. PRELIMINARY

In this section we introduce some notations and lemmas that will be useful later on. Let
Q be a bounded open subset of RY (N > 2) equipped with the N-dimensional Lebesgue
measure. The space of Radon measure and the set of continuous functions with compact
support in £ will be denoted by M(Q2) and C.(£2) respectively. We recall that each Radon
measure £ can be interpreted as an element of the dual of the space C.(€2). This result can
be extended to the space C (©2) ie M(Q) = (C (ﬁ))* in the sense that, every u € M()

is equal to 1 € (C (ﬁ))* with 2(9Q) = 0. So, for any p € M(2) and £ € C(Q), the
notation / £dp is equivalent to (fi, ).

Q
M™(Q) denote the space of all nonnegative Radon measure on €. The variation measure
|| associated with p € M(Q) is defined by

|p| (B) := sup {Z \w(B;)]; B=U2,B;, B;a Borelean set} .
i=1

1 1
For p € M(Q), u* = 5 (|p) +p) and p= = 5 (|| — p) are positives and bounded mea-

sures. We say that u™, i~ is the positive, negative variation of y respectively.

The space of Radon measures with bounded total variation |u|(£2) will be denoted by
M,(Q). Recall that M, (€2) equipped with the norm |u| (€2) is a Banach space.

Let (M(Q))" the space of RV-valued Radon measures of Q. Then p € (M(Q))" if and
only if g = (p1,- -+, pn) with p; € M(Q). We recall that the total variation measure asso-
ciated with p € (M(2))" is denoted again by || and the subspace (M,(Q))" equipped
with the norm ||| = || () is a Banach space. The space (M(Q2))" endowed with the
norm |.|| is isometric to the dual space of (Co(€2))".

For any 1 € (My(Q)" and v € (M,(Q))", the density of p with respect to v is the
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unique bounded RY — valued Radon measure denoted by D, such that
p(A) = / D,udv  for any A C Q.
A

We have D,p € M, (2) and
v(A)=0= |u|(A) =0.

For any p € (My(Q))Y and v € (M,(Q))*F, 1 is absolutely continuous with respect to v;
denoted by p << v, provided

v(A)=0= |u|(A) =0, for any A € Q.

Let’s recall that for g € (My(Q))" and v € (M,(Q))T such that p << v, the previous
splitting up of p according to v is always possible by using Radon-Nikodym Decomposition
Theorem. Since |u (A)] < |p|(A), for all p € (M(Q))", then we have u << |u|, and
}D|H|,u| = 1, |p|-a.e. in Q. In the litterature D), u is denoted by L So, for any u €

|
(M ()" we have

w(A) = ﬁdu for any borel set A C ().
A K

Hence, every pu € (M(2))" can be identified with the linear application

£ e (C) o /Q L.

For any ® € (M, (Q))" and v € M, (), we say that —V - & = v in D’ ()
provided that

P
/Qvg.@déz/gfdy forany ¢ €D ().

In particular, this remains true for any ¢ € Cj (), where Cj (€2) is the subset of C' function

in 2, such that £ and V¢ are null on the boundary of €. In other words, —V - ® = v in
)

D' (Q) is equivalent to —V - 5] \<I>|> = v in D' (Q).

We recall the following sets used in the definition of tangential gradient with respect to

v e My ()7 (see [4]).

v [ EEUEEO)Y B0 € CNQ), w50 in C(Q) and
"I =g o (L@, 2U@)")

and
Nt = {77 € (L},(Q))N : /n.{du =0,Y¢ € NV}.
Q
For v-a.e. x € , we define the tangent space T}, (x) to measure v, as the subspace of RY:

T,(x) ={AeRY; 3¢ e N;;,A=¢(2)} .



5

Then (cf. Proposition 3.2 of [6]) the operator V,, : Lip(€2) — (L2(Q))Y is the continuous
operator such that for any u € C' (Q),

Vu(z) v—pp. x€Q,

where Pr, . is the orthogonal projection on T, (x) , Lip (€2) is the set of Lipchitz continuous
function equipped with the uniform convergence and LS° (£2) is equipped with the weak
star topology. A R"-valued Radon measure ¢ is said to be tangential measure on {2
provided there exist v € M, (Q)" and o € L. (Q)", such that o (z) € T, (z), v-ae.
x € Q and ¢ = ov. Thanks to Proposition 3.5 of [6], we know that for any tangential
measure ¢ = ov on {2, such that =V - ¢ = u € M, (), we have the following integration

by parts
/udu—/o.vuudu,
Q Q

for any u € Lip (2) null on the boundary of €.
In the sequel, we need the following two lemmas.

Lemma 2.1. For any z € K, there exists (2.).., a sequence in C*(Q) N K such that
2. — z uniformly in Q.
Proof. Let z € K and (d.).., be a subsequence defined in €2 by

B 0 if |z (z)| < e
dz (z) = { z(x) — e otherwise.
We have d. € K and converges uniformly to z in 2.
For any € > 0, we have

supp d. C {z € Q; |z (x)| > ¢} (2.1)
and we set

0. =T e @ = .
Since 2 is bounded, d. is compactly supported in €2..

Now we introduce the sequences (%)_., by

- d.(x) if x€,
% (@) = { R RM\Q.. 22)
For any ¢ > 0, we have
|Z: (2)|] < |z (x)] and |VZ.(z)| < |Vz(2)] <1 for any = € Q. (2.3)
Thus, z. € K and Z. is compactly supported in €2..
Moreover,
sup |Z: () — z (z)| < e, (2.4)
zeQ

which implies that Z. converges uniformly to z in Q.
Let (py),~o be the standard sequence of mollifiers such that

1
pn € CF (]RN) , Suppp, C B (0, —) , / pn =1, and p, > 0. (2.5)
n RN
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Thanks to the propositions IV.20 and V.21 in [7] we have
2= % p, € C1(Q) (2.6)
and
Z. % pp, — Z.uniformly in Qasn — +oo. (2.7)

Since Z. converges uniformly to z in €, it follows that z. converges uniformly to z in Q.
At last, we use Hoelder inequality to obtain

N

IV (@)P =)

k=1

0Zc

2

0z,

8$k

()

(. —y) pn (y) dy

RN al'k-

sfj (/ (5 (y)pn<xy>5)2dy)% (] (oe=0) 1)

< (/RN2—2@)2%@—@@)(Aan<x—y>dy)
<[ S|ZEw[ e

g/Ran(m—y)dygla.e.xGQ (2.8)

O
Then, similarly as in [14], the following result can be prouved.

Lemma 2.2. For anyv € K and v € M, ()", we have
IV,u| <1v-a.e.in.

3. PROOF OF THEOREM 1.1

To get the proof of the Theorem 1.1 , we introduce a set of lemmas

Lemma 3.1. Let ¢ € (M, ()" and v € K. If (v,$) satisfies (1.6) then, v is solution of
(1.1).

Proof. Let ¢ € K, thanks to Lemma 2.1, there exists £&. € C'(Q) N K such that & — &,
uniformly in 2. Taking £ as a test function in (1.6), we have

¢
g d — gd gd .
/Qv£ [ i /Qg a rf Y



Using the fact that & € K, we get

/ ve. L a1l < 16l (@)
o =T

Thus,
/Q R /Q et [ gav
: ¢
_ 24
ti [ Ve Lo
< 1ol (3.1)
i.e.
Jewus [ cav<pol@. (3:2)
Q I'n
Since
6] () = /Q vdp + /F KX (3.3)
then
/de,u—i-/FNvdz/Z/Qfd,ujL FNgdz/ for all ¢ € K.
O

Lemma 3.2. Let ¢ € (M, ()" and v € K. Then (v, ¢) satisfies (1.6) if and only if
(v, ¢) satisfies the formulations (1.7) and (1.8)

Proof. Assume that (v, ¢) satisfies (1.6) and taking v. € C* () N K the approximation
of v given by Lemma 2.1; we have

6/ (Q) = /dequ/FNvdy

= lim (/ vsdu+/ vgdu>
e—0 Q Ty

: ¢ ¢
= g%/ngg.mdw =/§2V|¢|U~md|¢\-

/Q (1 - vw.%) d|é| = 0. (3.4)

V|¢|v.%‘ < |Vigv| <1 |¢l-ace. in Q, then by (3.4), we

Since by Lemma 2.2, we have

deduce that

¢
Vigv.— =
||V 9|

Vigv = L || -a.e. in €.

9]

1 |¢|-a.e. in €.

This implies that
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Therefore,
¢ :
¢ = 9| ol = |p| Vigjv |¢]-a.e. in Q. (3.5)

Moreover if & € (M, (Q))" such that ® satisfies the first equality of (1.6) , we have

lo| (2) = /vdu+/ vdr
Q I'y
= lim vgdu—l—/ v.dv

e—0

Q Ty
o

= lim/VUa.—d P

AR

e—0

/Q d|®| (3.6)

hence (1.6) implies (1.8). It’s clear that (1.8) implies (1.6), now suppose that (v, ¢)
satisfies (1.7), we have

IN

@ = [ V|¢|v-%d\¢l

| 5
= 1 -.—d
eli%/gw 91417

= lim 'Usd,u+/ v.dv
e—0 Q Ty

= /vd,u—l—/ vdv. (3.7)
Q Iy

6] (Q):/dem/m vdv.

[0 As a consequence of lemmas 3.1 and 3.2, we have (1.6) implies (1.1) and (1.6) <
(1.7) <= (1.8).
To prove that (1.1) implies (1.6), we consider the following system.
—V.¢:(Vv.) = p in Q
(S:) v. = 0 on I'p
¢ (Vve).mp = v on Ty,

Thus,

where 7 is the unit outward normal vecteur on 9, for any € > 0 and z € Q, ¢, : RY — RV
is given by

1 _

6.(r) = = ((|r] = )*)®Y |7"—| forall 7eRY and €9,
£ r

with p > N fixed.

It is not difficult to see that ¢. satisfies the following properties.

(1) For any 1,75 € RY and x € Q, (¢-(r1) — ¢=(r3)) .(r1 —13) > 0.

(i1) There exist £9 > 0 and Cy > 1 such that ¢.(r).r > |r|’ for any |r| > Cj and € < &.



(ii1) For any ¢ > 0, 7 € RN and x € Q, |¢.(r)| < ¢ (r).r.
We define the following separable and reflexive Banach space for W*'? (€)-norm
Wlllf Q) = {Z c WP (Q); 2y = 0} )

Lemma 3.3. For any 0 < € < &g, the problem (S;) has a unique solution v. in the sense
that v. € WP (Q) and

/Qqﬁe (VU5)~VZd36=/QZdM+/F zdv (3.8)

for all z € WP ().

Proof We define the operator A, : erjf (Q) — (W;;’ (Q))/ by,
(Acv, z) = / ¢ (Vv) . Vzdz. (3.9)
0

A, is monotone, coercive, hemicontinous and bounded. Indeed, the property (i) of ¢.
gives the monotonicity.
For any v,z € Wi¥ (Q), we have

(A(v),2)] < / (V0] = 1) V2] da
< /| |Vou| — pi |Vz| dz
< g/\VMp 1|Vz\dx (3.10)
1 7 ,
< - (/ |Vv]pdx>p </ |Vz|pdx>
€ \Ja Q
< g HUH{Z/Lp(Q) HZ”WLP(Q) )
which implies that
1 £
< = P . .
HAE(U>H<W1},£(Q)) = ¢ H/U”WLP(Q) (3 11)

Let B be a bounded set of eré’ (), there exists M > 0 such that

1 »
r < = P’ . .
| Ac(v )H( W) _5M ,VveB (3.12)
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Hence, A. is a bounded operator. Moreover, using the properties (i7) and (iii) of ¢., we
obtain

(Ac(v),v) = /QCI)E(VU).VUCL'E

= / @E(Vv).Vvda:—l—/ ¢ (Vv).Vodz
[[Vv|<Co] (Vo] >Co]
> [ ot [ vePas
[[Vv|<Co] [[Vv|=Co]
> / Vol? da. (3.13)
[[Vv|>Co]
Consequently,
(A (v),v) —i—/ Vol dz > / |Vol|P de. (3.14)
(Vo] <Co] Q
Thus,
(Ac(v),v) > —/ |Vv|pd:13+/ |Vo|’ dzx
[IVv]<Co] Q
> —/ C’gdx+/|VU|pdx
[IVv]<Co] Q
> —Clmeas ([|[Vv| < Co)) —i—/ |Vol? da
> —Cgmeas (Q) + [[v[|f1(0) - (3.15)
Hence,

(Ac(v),v) - ~ Cgmeas (Q)

+ (o5 . (3.16)
||U||W1,p(s2) ||U||W1,p(§2) WIP(Q)
Since p > 1, letting [[v|[y15(q) — 400 in (3.16), it follows that A. is coercive. Now

consider the map F': R — R defined by

F () = (A(u+ o), / 6. (Vi + A\Vo) Vuwds, (3.17)

with u,v,w in Wpllf (). We will prove that F' is continuous. The functions z
¢e (Vu+ AVv) Vw, A — ¢. (Vu+ A\Vv).Vw are respectively mesurable a.e. in © and
continuous in R. Let ()\,) be such that A, — A, so that there exists a constant ¢ > 0
with |\, | < ec.

Therefore,

neN

|6 (Vu+ A\, Vv) .V

IA

|pe (Vu+ A\, V)| [Vuw|
1 _
g(|Vu|+|>\n||Vv]+1)p 'Vl

IN

IN

1
— (IVul +¢|Vol + 1P [Vl . (3.18)
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Letting n — +o00 in (3.18) and using the fact that the function A — |¢. (Vu + AVv) . V|
is continuous we obtain

6. (Vu 4 AVv) . V| < = (|Vu]—|—c]Vv|+1)p ' Vw| e LY (Q). (3.19)

Therefore thanks to the Lebesgue theorem, we can say that F' is continuous, hence the
operator A is hemicontinuous.
Since p > N, we have Wﬁ}f (Q) € C (Q) and the linear form G : Wlp () — R define by

(G,v) /vd,u—i—/ vdv (3.20)
I'n

belongs to the dual space of Wr}f (Q) . So (see for instance [16]), for any 0 < € < &g, and
p > N there exists v, € eré’ () such that A (v.) =G, i.e

/ ¢ (Vv.) .Vzdr = / zdp +/ zdv for all z € W;L’: (Q). (3.21)
Q Q N

Now, suppose that v. and 0. are two solutions of (S.). For v. and v., we take z = v. — 0.
in (3.21) to get

/Q (¢6 (VUE) - ¢5 (Vﬁe)) . (Vve - vﬁe) dx = 0. (3'22)

It follows that there exists a constant ¢ such that v. — v. = ¢ a.e. in Q. Using the fact
that v. = 9. =0 on I'p, we get ¢ = 0. Thus v. = 7. a.e. in €.
O

Lemma 3.4. Let (v.),...., be the sequence of solutions of (S:). Then

(1) (v2)geccs, i bounded in W#Jf (Q).

N

(2) (¢ (VVe))geece, is bounded in (L' (Q))

(3) For any Borel set B C (),

_1
lim inf (/ |Vve|p_1dx>p < ]B|ﬁ
e—0 B

Proof. (1) Taking v. as test function in (3.22) and using the fact that W"* (Q) c C (Q) ,
we get following estimate.

1
—/ (Vo] = DT |V |de = / ¢ (V) .Vu.drx
0 0

€
= /vgdu—i—/ v.dyr
Q Iy

(Il () + [ (Tw)) [lvel o

<
< C(lul () + w[Tx) vellwrog - (3:23)
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Combining (3.23) and property (ii) of ¢, for any 0 < & < &g, we get

[werae < [ wepder [ vara
[[Vve| <Co] [[Vve|>Co)

1 _
< / |Vv5|pdx+—/(|Vv€|—1)+(p Y |V, | dz
[[Vve|<Co) € Ja

< / |Vu|" dz
[[Vve | <Co]

+C (|l () + [ (Tw)) 1V el

< o9+ C ([l () + [ (Tn) Vel oy - (3.24)
Thus, according to Young inequality, we deduce that
IVVelTog) < P'CT IR+ [C (el () + | (Tw))] (3.25)

is bounded in (L? (22))" . Hence (v.) is bounded in

which implies that (Vu.)
WP (Q).

(2) Using (3.23) and the property (iii) of ¢. we deduce that

/ |9 (Vv.)[dz < / ¢- (Vv.) .Vo.dz
Q Q

0<e<eg 0<e<eo

IN

1/ (V0. = 1)7 Y [V, | da
€ Ja
< Ol Q) + [T VUl 1oq) - (3.26)

So by (3.25) we deduce that ¢. (Vv.) is bounded in (L' (Q))N
(3) Now, let B C Q2 be a fixed Borel set. We have

Vel o1y < H V. —1) +1HLI’1

< (Vo —1)" +|B!P%1 (3.27)

HLP*l(B)

</ (Vo. — 1) Wy, dx) T |B|ﬁ
B

1

< [C (@) + W] (T0)) V0l oy +1BIFT. (3.28)

IN

Letting € — 0 and using the fact that v, is bounded in W'? (Q), we obtain

hmmf (/ AN 1da:> < |B|p T, (3.29)
0J

Lemma 3.5. Under the assumptions of Lemma 3.4, there exists a subsequence that we
denote again by v., such that, as e — 0,

v. — D uniformly in Q and in W5 (Q) — weak, (3.30)
b (Vo) = ¢ in (My ()Y — weak”, (3.31)
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and
[t (Ve do = ol ). (3.32)
Moreover, v € K and (0, ¢) satisfies (1.6).

Proof. Thanks to the Lemma 3.4, there exist 0 € Wll]f (Q), o € M, () and a subse-
quence denoted again by vg, such that (3.30) and (3.31) are fulfilled.
For any ¢ € C*(Q2) N W5™(Q2), we have

/ 6. (Vu.) Vedr = / cdy+ / cdv.

Thus, letting € — 0, we deduce that

/ |¢|d|¢| /ﬁdu—i— FNgdu (3.33)

To prove that © € K, let us consider A5 = [|[V0]| > 1+ §], with arbitrary ¢ > 0. Since as
e—0, Vv, = Vo in (L' (Q))N—Weak then,

(+8)14 < [ |Vilde

< hmmf/ V.| dz

1
< liminf ( / \valp_lda:>p ERi=a (3.34)
As

e—0
So that, by using the third part of Lemma 3.4, we deduce that
(1+0) |As] < [As],

which implies that |As| = 0. Since § is arbitrary, we deduce that Vo] <1 a.e. in €.
Therefore,

v e K.
To prove (3.32), we see that according to the property (iii) of ¢. and (3.30), we have

limsup/ |pe (Vo) dz < limsup/ ¢ (Vu.) - Vodz
Q Q

e—0 e—0

< limsup </ vgd,u—l—/ Uedu>
e—0

< /vd,u—i—/ odv. (3.35)
I'n

In addition, we have

/6du+/ odv = lim/¢(Vv€)-V17dx
Q Ty e—0 Q

iy [ 16 (V)] dz (3:36)

IN
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So, (3.35) and (3.36) implies that

lim / 6. (V)| dz — / iy + / oy (3.37)
e—0 Q Q Tn
and by (3.31) we get

|o] () :/Qd|gb| §ligiglf/ﬂ|gba (VUE)|dx:/Qf)d,u+/F odv. (3.38)

Using ., the approximation of v given by Lemma 2.1, we see that

/Qz”}du—i—/Fijdu = lim VUE ‘¢|d\¢|
< [dpl=1o1@. (3.30)

Combining the above inequality with (3.38) we obtain

6] (2 / ddp + / idv (3.40)

tim [ 0(Ves)|dz = Jo] (@). (3.41)

and

O

Lemma 3.6. Let v € K, be a solution of (1.1), then there exists ¢ € (M, ()" such
that (v, @) satisfies (1.6) .

Proof. Let v = lir% e, where 7, is the solution of (S.). According to Lemma 3.5, there
e—

exists ¢ in (M, (Q ))N such that

/ Wd\qﬁ] /gdwr/ gdv for all € € CH(Q) NWE™(Q) (3.42)

6] (2 / dp + /F i (3.43)

Let v. € C' (Q) N K be the approximation of v given by the Lemma 2.1, we have

/vdu—i—/ vdy = lim vadu—i—/ v.dv
Q Tn =0 Jgo Ty

. o)
- g%/ﬂws il
/ 416 = 6] (). (3.44)

and

IN

Since v is solution of ( , we have

/vd,u +/ vdy > / zdp +/ zdv for all z € K. (3.45)
FN FN
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In particular, taking z = v, we deduce that

/vdu—i—/FNvdu>/vd,u+/FNvdy—|gb|( ). (3.46)

Consequently, (3.44) and (3.46) implies that

o] (€2 /vdu+/F
. N

Proof of Theorem 1.1. Thanks to lemma 3.1 we have (1.6) implies (1.1). As a conse-
quence of lemmas 3.6, we have that (1.1) implies (1.6) . The equivalence between (1.6),
(1.7) and (1.8)is given by Lemma 3.2 [J
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