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Abstract

Our aim is to introduce and study a new Partial Integro-Differential Equation (PIDE)
associated with the dynamics of some physical granular structure with arbitrary component
sizes, like sandpile or sea dyke. Our PIDE is closely related to the nonlocal evolution problem
introduced in [3] by studying the limit, as p→∞, of the nonlocal p−Laplacian equation. We
also show the connection between our PIDE and the stochastic model introduced by Evans
and Rezakhanlou in [25] for modeling sandpile problem.
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1 Introduction

Following Igor S. Aranson and Lev S. Tsimring (cf. [6]), we can define a granular material
as a collection of discrete macroscopic solid grains of large size so that Brownian motion is
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irrelevant. Activated by external forces (gravity, electric and magnetic fields) a granular system
may exhibit a transition from a granular solid to a liquid generating particulate flows which are
central to a large number of modern applications. The description of such flows still represents
a major challenge for the theory. In the last decade, several studies have been devoted to the
mathematical and numerical studies of granular system subjected to the gravity forces. Different
models have been proposed using kinetic approach [10, 11], cellular automata [20, 38, 25, 32] or
partial differential equations ([7, 37, 16, 30, 9, 21, 24, 22, 26, 19, 31].

Most of the popular approaches that have recently attracted a renewed interest from the
PDE community are based on partially fluidized granular flows (cf. [6]). In such flows some
grains pass each on the other while other grains maintain static contacts with their neighbors.
A typical example of granular system is the growing sandpile : the sand is poured on a flat
surface according to a nonnegative function f(t, x) (the source) and the pile grows in height.
Using essentially the repose angle α, that is the steepest angle that the surface of the structure
makes with the ground (depending on the physical properties of the granular matter), nonlinear
PDE have been used to describe the dynamics of the growing sandpile. For instance Bouchaud,
Cates, Ravi Prakash and Edwards introduced the so-called BCRE model (cf. [16] and [30]) ; a
two-phase description of granular flow, one phase corresponding to rolling grains and the other
phase to static ones ; that is the so-called BCRE model (cf. [16] and [30]). This model relies on
PDE coupling phenomenological equations of transport and eikonal type. Using again mainly
the repose angle, L. Prigozhin in [37] and independently G. Aronson L. Evans and Y. Wu in
[7] introduced a critical state model to describe the dynamics of the growing sandpile, that is
the so called ”evolution surfaces equation”. It corresponds to a nonlinear evolution equation of
p−Laplacian type with p =∞. For completeness let us give a brief description of this model. We
denote by u = u(t, x) the height of the pile at time t and at the position x ∈ IR2. The function
u(t) grows with a slope which is always lower than the characteristic value tan(α) ; i.e.

|∇u| ≤ tan(α).

Moreover, using the continuity equation, the steepest descent property of the flow and the fact
that the dynamics vanishes when the angle of the surface is less (strictly) than α, we obtain the
following dynamics equation for u (evolution surfaces equation) :

∂tu+∇ · Φ = f, Φ = −m∇u

m ≥ 0, m (|∇u| − tan(α)) = 0.
(1.1)

However, these approaches (BCRE model and evolution surface equation) seem to be re-
served to the case of very small components (fine grains). Indeed, the solutions are regular and
can not correspond to general situations of non small components for which the profile may
be discontinuous. For arbitrary components, the dynamics is generated by the fact that the
components (grains, blocks, ...) move both by rolling down the slope or jumping from position
to neighboring position if they are not supported by others. So, the state at any position is
changing according to the states of its neighboring including the position itself.
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A pioneering approach to describe such dynamics goes back to L. Evans and F. Rezakhanlou
in 1998. The authors use particle systems and gives a stochastic description of the dynamics (cf.
[25]). In this situation, even if the source is deterministic, the trajectories are randomly selected
by the blocks, so that the profile is a Markov process. However, the description here remains
random. The connection with the evolution surfaces equation appears when the blocks tend to
be very small and very numerous (see [25] and [32]). Furthermore, recently in [3] (see also [4])
the authors introduce a new deterministic approach using nonlocal interactions to describe the
dynamics of granular systems. It corresponds to a nonlocal evolution equation of p−Laplacian
type with p =∞. Moreover, by rescaling the problem in an appropriate way, they show that the
solution of their model converges to the solution of the evolution surfaces equation. Our aim
here is to consider the non local interactions in an appropriate way to construct a new Partial
Integro-Differential Equation (PIDE) to model the dynamics of granular structures. We prove
that our PIDE is well posed (existence and uniqueness of a solution) and we show its connection
with the stochastic model of Evans and Rezakhanlou as well as the nonlocal model of [3].

Partial Integro-Differential Equation have been used to model very different applied situa-
tions, for example in biology ([18], [36]), image processing ([29], [35]), particle systems ([15]),
coagulation models ([28]) nonlocal anisotropic model for phase transition ([1, 2]), mathematical
finance using optimal control theory ([14], [114]), etc. One of their main interest is the connec-
tion with the stochastic process. For instance in some situations, they give the distribution of the
density of a random variable (assuming the process has a density) for stochastic process with
discontinuous trajectories. For the connection between nonlocal partial differential equations
and probability see [5].

The paper is organized in three sections. The next section deals with the main results and
is organized into two parts. In the first part, we establish the PIDE to model the dynamics of
a granular structure and states the results of existence and uniqueness of the solution. In the
second part, we recall the stochastic model of Evans and Rezakhanlou and give its connection
with our PIDE. Section 3 is devoted to the study of the stationary equation associated with our
PIDE. Finally, in the last section we give the proofs of the main results.

2 Main results

2.1 The PIDE for granular matter

To introduce our model, we consider a granular matter with arbitrary components (grain, blocks,
...). We pour the matter on a flat surface according to a nonnegative function f(t, x) (the source)
and we focus on the growing of the pile height denoted by u = u(t, x) (at time t and on the
position x ∈ IR2). First, we claim that the evolution of u is given by the following integral
equation

∂u(t, x)

∂t
+

∫
IR2
F(t, x, y) dy = f(t, x) for any (t, x) ∈ (0, T )× IR2,(2.2)

where F(t, x, y) is an anti-symmetric function, defined on (0, T ) × IR2 × IR2, covering the ex-
changes between the position x and the nearby position y. Indeed, for a fixed position x ∈ IR2
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and a small time ∆t, the evolution of u is given by

u(t+ ∆t, x) ' u(t, x) + ∆t Q(t, x),

where Q(t, x) is the rate of materials arriving at the position x. Having in mind the external
source f, Q is given by

Q(t, x) = f(t, x) + In(t, x)−Out(t, x),

where In(t, x) records the blocks arriving to the position x from neighboring positions and
Out(t, x) records the blocks leaving the position x towards neighboring positions. Denoting by
j(t, x, y) the amount of cubes that moves from the position x to the position y, we have

In(t, x) =

∫
IR2

j(t, y, x) dy and Out(t, x) =

∫
IR2

j(t, x, y) dy.

So, setting
F(t, x, y) = j(t, x, y)− j(t, y, x),(2.3)

we have F(t, x, y) = −F(t, y, x) and

u(t+ ∆t, x) ' u(t, x) + ∆t f(t, x)−∆t

∫
IR2
F(t, x, y) dy.

At last, letting ∆t→ 0, we obtain (2.2).
To close the problem, we need to give the connection between F and u. Our model is again

a critical state model. However, in contrast with the case of small component where the angle
of stability is the crucial factor, in our situation we use the non local constraint of stability

|u(x)− u(y)| ≤ δ for |x− y| ≤ ε,(2.4)

where δ > 0 and ε > 0 are given constants depending on the gravity, the contact between the
blocks and their geometry. The condition (2.4) measures the size of irregularities of the cells.
Recall that a similar constraint was already used in [3] with δ = ε. Indeed, this natural constraint
was obtained by letting p goes to infinity in the nonlocal p−Laplacian equation. Having in mind
(2.4) and since the blocks of the structure move only when the limiting condition is turning to
be exceeded, the dynamics in turn is concentrated on the set{

(t, x, y) ∈ (0, T )× IR2 × IR2 ; |u(t, x)− u(t, y)| = δ and |x− y| ≤ ε
}
.

So, for any t ∈ (0, T ), we have

Support(F(t)) ⊆
{

(x, y) ∈ IR2 × IR2 ; |u(t, x)− u(t, y)| = δ and |x− y| ≤ ε
}
.(2.5)

Moreover, since the blocks moves by falling from high positions to lower positions, then the
quantities F(t, x, y) and u(x) − u(y) have the same sign. So, combining (2.5) and (2.3), we
obtain

F(t, x, y) = |F(t, x, y)|u(x)− u(y)

δ
.
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Setting

µ(t, x, y) =
1

δ
| F(t, x, y)|

leads immediately to the fact that u satisfies the following PIDE :

∂u(t, x)

∂t
+

∫
IR2

(u(t, x)− u(t, y)) µ(t, x, y) dy = f(t, x), for any (t, x) ∈ Q

|u(t, x)− u(t, y)| ≤ δ for any |x− y| ≤ ε and t ∈ (0, T )

µ(t) ≥ 0, µ(t) is symmetric, for any t ∈ (0, T )

Support(µ(t)) ⊆
{

(x, y) ∈ IR2 × IR2 ; |u(t, x)− u(t, y)| = δ and |x− y| ≤ ε
}
,

where Q := (0, T ) × IR2. Here, it is clear that the evolution of u at a point x and at time t
does not only depend on u(t, x), but on all the values of u on its neighborhood, making the
equation nonlocal. Recall that in standard PIDE the kernel µ is known and is ”smooth”. Here,
our PIDE is non standard, since the computation of u is related to the unknown kernel µ
which is a Radon measure in general (see Theorem 1). So the first (resp. second) term of the

integral operator reads

∫
IR2

u(t, y)µ(x, dy) (resp.

∫
IR2

u(t, x)µ(t, x, dy)) and records the amount

of material arriving to the position u(t, x) from all other places (resp. leaving location u(t, x)
to travel to all other sites).

To simplify the notation, let us introduce the set of admissible profiles

Kδ
ε =

{
z ∈ L2(IR2) ; |z(x)− z(y)| ≤ δ for |x− y| ≤ ε

}
and, for any z ∈ Kδ

ε , we denote by

Rδε(z) =
{

(x, y) ∈ IR2 × IR2 ; |z(x)− z(y)| = δ and |x− y| ≤ ε
}
.

Taking u0 as an initial value at t = 0, our PIDE reads

(P δε )



∂u(t, x)

∂t
+

∫
IR2

(u(t, x)− u(t, y)) µ(t, x, dy) = f(t, x) for (t, x) ∈ Q

u(t) ∈ Kδ
ε , µ(t) ≥ 0, µ(t) Rδε(u(t)) for t ∈ [0, T )

u(0) = u0,

where we assume that, for any t ∈ (0, T ), µ(t) is a Radon measure, u(t) ∈ C0(IR2) and we use
the notation µ(t) Rδε(u(t)) to denote that Support(µ(t)) ⊆ Rδε(u(t)).
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To set our results of existence and uniqueness of a solution for (P δε ), we consider

Ms
b(IR

2 × IR2)+ :=

{
µ ∈Mb(IR

2 × IR2)+ ;

∫ ∫
ξ(x, y) µ(dx, dy) =

∫ ∫
ξ(y, x) µ(dx, dy)

for any ξ ∈ Cc(IR2 × IR2)
}
.

Theorem 1 Assume that f ∈ BV (0, T ;L2(IR2))∩L1(0, T ; C0(IR2)) and there exists α ∈ L1(0, T )
such that, for any h ∈ IRN , we have

sup
x∈IR2

|f(t, x+ h)− f(t, x)| ≤ α(t), a.e. t ∈ (0, T ).(2.6)

Then, for any u0 ∈ Kδ
ε ∩ C0(IR2), (P δε ) has a unique solution u in the sense that : u ∈

W 1,∞(0, T ;L2(Ω)) ∩ L∞(0, T ; C0(IR2)), u(0) = u0, for any t ∈ (0, T ), u(t) ∈ Kδ
ε and there

exists µ(t) ∈Ms
b(IR

2 × IR2)+ such that

µ(t) Rδε(u(t))

and ∫
IR2

∫
IR2

ξ(x) (u(t, x)− u(t, y)) µ(t, dx, dy) =

∫
IR2

(
f(t, x)− ∂u(t, x)

∂t

)
ξ(x) dx,

for a.e. t ∈ (0, T ) and for any ξ ∈ C0(IR2)∩L2(IR2). Moreover, if for i = 1, 2, ui is the solution
corresponding to fi, then, for any 1 ≤ q ≤ ∞, we have

d

dt
‖u1 − u2‖Lq(IR2) ≤ ‖f1 − f2‖Lq(IR2), in D′(0, T )

and
d

dt
‖(u1 − u2)+‖L1(IR2) ≤ ‖(f1 − f2)+‖L1(IR2), in D′(0, T ).

Now, let us denote by IIKδ
ε

the convex indicator function of Kδ
ε defined by

IIKδ
ε
(z) =

 0 if z ∈ Kδ
ε

+∞ otherwise.

The subdifferential of IIKδ
ε

in L2(Ω) is given by v ∈ ∂IIKδ
ε
(g) if and only if v ∈ Kδ

ε , g ∈ L2(IR2)
and ∫

Ω
g(z − v) ≤ 0 for any z ∈ Kδ

ε .

Thanks to [17], we know that for any u0 ∈ Kδ
ε and f ∈ BV (0, T ;L2(IR2)), the evolution

problem 
ut + ∂IIKδ

ε
(u) 3 f in (0, T )

u(0) = u0,

(2.7)
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has a unique solution, in the sense that u ∈ W 1,∞(0, T ;L2(IR2)), u(0) = u0 and, for any
t ∈ (0, T ), u(t) ∈ Kδ

ε and∫
IR2

(
f(t)− ∂u(t)

∂t

) (
u(t)− z

)
≥ 0, for any z ∈ Kδ

ε .

The connexion between the model (P δε ) and the nonlinear dynamic (2.7) is given in the
following theorem.

Theorem 2 Under the assumptions of Theorem 1, u is a solution of (P δε ) if and only if u is a
solution of (2.7).

Remark 1 1. Recall that if δ = ε → 0, it is proven in [3] that the solution uδε of (2.7)
converges to the solution of the local sandpile problem

∂tu+ ∂IIK(u) 3 f in (0, T )

u(0) = u0,
(2.8)

where
K =

{
z ∈W 1,2

0 (Ω) ∩W 1,∞(Ω) ; ‖∇z‖L∞(Ω) ≤ 1
}
.

2. In the case of Euclidean distance, it is known that the problem (2.8) is equivalent to the
evolution surface model (1.1), where one needs to handle the problem in an appropriate
way by taking into account the fact that m is a measure (see for instance [33] and the
references theiren). So, by Theorem 2 and the previous remark, as ε = δ → 0, the solution
uδε of P δε converges to u the unique solution of the evolution surface model (1.1). As to the
kernel µεε, it is not difficult to see that, by taking a subsequence εk → 0, µεk converges in
Mb(IR

2)−weak∗ to some nonnegative Radon measure µ. However, the characterization of
µ is an open problem ; it should be the density m but the proof is not clear yet for us.

3. On sees that (P δε ) is a non-local coupled equation between u and a kernel µ. Thanks to
Theorem 2, the uniqueness of the solution u of (P δε ) is connected to the uniqueness of the
solution of an evolution problem governed by a subdifferential operator. As to the unknown
Kernel µ, we see that it has no equation but only a restriction on its support. We do not
know if µ is unique or not, even if it is a regular function.

2.2 Evans-Rezakhanlou stochastic model for sandpile

The aim of this section is to give the connection between the PIDE (P δε ) and the Evans-
Rezakhanlou stochastic model introduced in [25]. Let us recall briefly the model. The objective
is to study the evolution of a stack of unit cubes resting on the plane when new cubes are being
added to the pile, either placed upon an unoccupied square in the plane or upon the top of a
current column.
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Figure 1: Growing pile of cubes

Consider a set of sites labeled by a couple of integers i = (i1, i2) ∈ ZZ2. The source term is
a deterministic function f̂ : (0, T ) × ZZ2 → IR assigning cubes per unit of time on the sites
i ∈ ZZ2. The evolution of the stack is specified by two rules for the added cubes :

• The cube is assigned on a position connected to several downhill ”staircases” along which
it can move, and the cube will randomly select among the available downhill paths.

• The assigned cube has no ”staircases” derived from the position it was put on and remains
in place.

A staircase is a chain of adjacent positions with a height difference equal to one cube. Here, we
assume that a cube moves by falling in one of the four directions (forward, back, left or right) in
order to get a stable configuration, which means that the heights of any two adjacent columns
of cubes can differ by at most one.

Even if the source is deterministic, it is clear here that one needs to use stochastic approach
to describe the evolution of the height of the pile. We consider the lattice O := ZZ2 equipped
with the norm

|i| = |i1|+ |i2|,

and we write i = (i1, i2) ∈ ZZ2 to denote a typical site in ZZ2. We say i, j ∈ ZZ2 are adjacent,
written i ∼ j, provided

|i− j| ≤ 1.

Then, we consider the Hilbert space

H := l2(ZZ2) =
{
η : ZZ2 → IR ; ‖η‖ :=

∑
i∈ZZ2

η(i)2 <∞
}
.

A (stable) configuration is a mapping η : ZZ2 → ZZ such that
|η(i)− η(j)| ≤ 1 if i ∼ j

and η has bounded support.
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The state space is the subspace of H given by

S :=
{
η : ZZ2 → ZZ ; η is a configuration

}
.

To simplify the presentation, we assume throughout this section that f̂ , the function con-
trolling the rate new cubes are added to the pile (or removed from it if f has negative part), is
nonnegative.

By depositing the cubes with a rate f̂ , we generate a stochastic process (η(t), t ≥ 0) in the
state space S. It is clear that the probability that η(t) be situated (at time t) in a given set Γ
of S under the condition that the movement of the system up to time s (s < t) is completely
known and depends only on the state of the system at time s. In other words (η(t), t ≥ 0) is a
Markov process. To study the process (η(t), t ≥ 0), we need to know its infinitesimal generator
A. To this aim, the authors of [25] consider p(i, j, ξ) the probability that a cube placed on a
given configuration ξ ∈ S at the position i will end up at j after it has fallen downward over the
stack ξ. So, for any i, j ∈ ZZ2 we have

0 ≤ p(i, j, ξ) ≤ 1 and
∑
j∈ZZ2

p(i, j, ξ) = 1.

Furthermore, they introduce the factor c(j, η, τ) (a highly nonlocal factor) recording the rate at
which, at time τ, new cubes come to rest at the site j after falling downhill. The parameter c is
given by

c(j, η(t), t) =
∑
i∈ZZ2

p(i, j, η(t)) f̂(t, i), for any (t, j) ∈ ZZ2 × [0,∞),(2.9)

and satisfies ∑
j∈ZZ2

c(j, η(t), t) =
∑
i∈ZZ2

f̂(t, i).(2.10)

Let us denote by B(S) the set of bounded functions defined on S. Thanks to [25], the infinitesimal
generator of the Markov process (η(t), t ≥ 0) is given by Lt : F ∈ B(S) → LtF ∈ B(S) the
linear time dependent operator defined by

(Lt F )(ξ) :=
∑
j∈ZZN

c(j, ξ, t)(F (Tj(ξ))− F (ξ)),(2.11)

for any t > 0 and ξ ∈ S, and

Tj : ξ ∈ S → Tj(ξ) ∈ S with Tj(ξ)(i) =

{
ξ(i) + 1 if i ∼ j
ξ(i) otherwise .

To give the connection between the PIDE (P δε ) and the Markov process (η(t), t ≥ 0), we
assume that

H1 : u0 ≡ 0.
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H2 : f ∈ BV (0, T ;L2(IR2)) is such that f(t) is nonnegative and compactly supported, for any
t ∈ [0, T ).

H3 : f̂ : (0, T )× ZZ2 → IR is given by

f̂(t, i) = δ−1 f(t,
i

N
) for any (t, i) ∈ [0,∞)× ZZ2.(2.12)

We introduce the stochastic process
(
ηδ,N (t), t ≥ 0

)
given by

ηδ,N (t, x) = δ η(t, [N x]) for any t ≥ 0 and x ∈ IR2,

where
(
η(., t), t ≥ 0

)
is the Markov process generated by f̂ . Notice that ηδ,N describes the

random evolution of the eight of the structure of blocks whose base is a square of side length
ε = 1/N and height length δ.

Theorem 3 Under the assumption (H1-H3), let u be the solution of (2.7) where ε = 1/N, δ > 0
and IR2 is equipped with the norm

|(x1, x2)| = |x1|+ |x2|, for any (x1, x2) ∈ IR2.(2.13)

For any t ∈ (0, T ), we have

(
IE

[∫
IR2
|u(t, x)− ηδ,N (t, x)|2

]) 1
2

≤ δ
1
2

(∫ t

0

∫
IR2

f

(
s,

[Nx]

N

)
dxds

) 1
2

+

(∫ t

0

∫
IR2

∣∣∣∣f(t, x)− f
(
s,

[Nx]

N

)∣∣∣∣2 dxds
) 1

2

,

(2.14)

where
[x] = ([x1], [x2]), for any x = (x1, x2) ∈ IR2,

and, for i = 1, 2, [xi] denotes the integer part of the real number xi.

A typical situation for Theorem 3 corresponds to the case where f(t) is constant on each set

Ii :=
{
x ∈ IR2 ; [Nx] = i

}
, with i ∈ ZZ2 ; i.e.

f(t, x) = f

(
t,

[Nx]

N

)
, for any (t, x) ∈ (0,∞)× IR2.(2.15)

In such situation, we imagine that the source is assigning, on the sites Ii, blocks whose base is
a square of side length ε = 1/N and height length δ. In particular, we have
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Corollary 1 Under the assumptions of Theorem 3, we assume moreover that there exists N ∈
IN∗, such that (2.15) is fulfilled. Then, for any t ∈ (0, T ), we have

IE

[∫
IR2
|u(t, x)− ηδ,N (t, x)|2

]
≤ δ

∫ t

0

∫
IR2
|f(s, x)| dxdt.(2.16)

Remark 2 1. In general, the norm of IR2 is taken arbitrary in the formulation of (P δε ).
However, in Theorem 3, IR2 is equipped with the norm (2.13) according to the l1-norm of
ZZ2. This is related to the movements we assign for the cubes (forward, back, left or right).
Now, if we enable the cubes to move in the eight directions by adding the displacements
on the diagonal, then the results of the theorem remains to be true by equipping ZZ2 with
the norm |(i1, i2)|∞ = max(|i1|, |i2|) and IR2 with the corresponding norm |(x1, x2)|∞ =
max(|x1|, |x2|), for any (x1, x2) ∈ IR2.

2. Theorem 3 implies that the solution of the PIDE is a deterministic approximation of the
random height η(t), for any t ∈ (0, T ). Indeed, letting (ε, δ) → (0, 0), we see that u and
ηδ,N coincides. In particular, in the case where ε = δ → 0, thanks to [3] and [25], u and
ηδ,N coincides with the solution of the local sandpile problem (2.8).

3. For simplification, we take here the initial data equal to η(0) ≡ 0 and u0 ≡ 0. Similar
results may be proven for general initial data by rescaling it and using the same technics
here.

4. By using the fact that η : ZZ2 → ZZ and u(t, .) : IR2 → IR the solution of (2.8) are
Lipschitz continuous, it is proven in [25] that the convergence of ηδ,N to u holds to be true
in C(IR2), as ε = δ = 1/N → 0.

3 Stationary PIDE

To study (P δε ), we use nonlinear semigroup theory associated with an evolution equation in a
Hilbert space. This approach connects the study of the evolution equation with the stationary
equation associated with the Euler implicit disrectisation in time. For any σ > 0, we say

that
(
ti, fi

)
i=1,...n

is a σ− discretization of (P δε ), if t0 = 0 < t1 < ... < tn−1 < T = tn with

ti − ti−1 = σ, f1, ...f ∈ C0(IR2), such that

n∑
i=1

∫ ti

ti−1

‖f(t)− fi‖L2(IR2) ≤ σ.

Moreover, we say that uσ is a σ−approximate solution of (P δε ), if there exists
(
ti, fi

)
i=1,...n

a

σ− discretization such that

uσ(t) =


u0 for t ∈ ]0, t1],

ui for t ∈ ]ti−1, ti], i = 1, ...n
(3.17)
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and ui solves the Euler implicit time discretization
ui(x) + σ

∫
IR2

(ui(x)− ui(y)) µi(x, dy) = σ fi(x) + ui−1 for x ∈ IR2,

ui ∈ Kδ
ε , µi ∈Ms

b(IR
2 × IR2)+, µi Rδε(ui),

(3.18)

for any i = 1, ...n. We see that problem (3.18) is a particular case of the generic stationary
problem 

u(x) +

∫
IR2

(u(x)− u(y)) µ(x, dy) = f(x) for x ∈ IR2,

u ∈ Kδ
ε , µ ∈Ms

b(IR
2 × IR2)+, µ Rδε(u),

(3.19)

where we assume without lost of generality that σ = 1. Here, f is a given function in L2(IR2)
and the couple (u, µ) is unknown. To prove existence and uniqueness of a solution for (P δε ), we
begin by to study the stationary problem (3.19).

Theorem 4 For any f ∈ C0(IR2) ∩ L2(IR2), (3.19) has a unique solution u in the following
sense : 

u ∈ Kδ
ε ∩ C0(IR2), ∃ µ ∈Ms

b(IR
2 × IR2)+, µ Rδε(u) and∫

IR2
u(x)ξ(x) dx+

∫
IR2

∫
IR2

(u(x)− u(y)) ξ(x) µ(dx, dy) =

∫
IR2

f(x) ξ(x) dx,
(3.20)

for any ξ ∈ C0(IR2) ∩ L2(IR2). Moreover, u is a solution of (3.20) if and only if

u = IPKδ
ε
(f),(3.21)

where IPKδ
ε

is the projection with respect to the L2(IR2) norm on the convex Kδ
ε .

The proof of Theorem 4 follows as a consequence of the following lemmas.

Lemma 1 Assume f ∈ L2(IR2). If u is a solution of (3.19) then u = IPKδ
ε
(f).

Proof : Let u be a solution of (3.20). Let us prove that∫
IR2

(f(x)− u(x)) (u(x)− z(x)) dx ≥ 0 for any z ∈ Kδ
ε .(3.22)

For any λ > 0, let us denote by ρλ the standard mollifiers in IR2 and zλ = z ∗ ρλ, the usual
regularizing of z by convolution. Using u−zλ as a test function in the integral equation satisfied
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by u in (3.20), we get∫
IR2

(f(x)− u(x)) (u(x)− z(x)) dx = lim
λ→0

∫
IR2

(f(x)− u(x)) (u(x)− zλ(x)) dx

= lim
λ→0

∫
IR2

∫
IR2

(u(x)− u(y)) (u(x)− zλ(x)) µ(dx, dy)

=: lim
λ→0

Iλ.

It is not difficult to see that zλ ∈ Kδ
ε , so that, by using the fact that µ is symmetric, we have

Iλ =

∫
IR2

∫
IR2

(u(x)− u(y))2 µ(dx, dy) +

∫
IR2

∫
IR2

(u(x)− u(y)) (u(y)− zλ(y)) µ(dx, dy)

+

∫
IR2

∫
IR2

(u(x)− u(y)) (zλ(y)− zλ(x)) µ(dx, dy)

=

∫
IR2

∫
IR2

(u(x)− u(y))2 µ(dx, dy)− Iλ +

∫
IR2

∫
IR2

(u(x)− u(y)) (zλ(y)− zλ(x)) µ(dx, dy).

This implies that

2 Iλ =

∫
IR2

∫
IR2

(u(x)− u(y))2 µ(dx, dy)

+

∫
IR2

∫
IR2

(u(x)− u(y)) (zλ(y)− zλ(x)) µ(dx, dy)

≥
∫
IR2

∫
IR2

(u(x)− u(y))2
(

1− |zλ(y)− zλ(x)|
|u(x)− u(y)|

)
µ(dx, dy).

Using the fact that µ is supported on the set
{

(x, y) ∈ IR2×IR2 ; |u(x)−v(y)| = δ for |x−y| ≤ ε
}
,

we obtain

2 Iλ ≥
∫
IR2

∫
IR2

(u(x)− u(y))2
(

1− |zλ(y)− zλ(x)|
δ

)
µ(dx, dy).

At last, since zλ ∈ Kδ
ε and Support(µ(t)) ⊂

{
(x, y) ∈ IR2 × IR2 ; |x − y| ≤ ε

}
, we deduce that

2 Iλ ≥ 0 and the proof is finished.

To prove the existence of a solution for (3.20), we use the nonlocal p−Laplacian equation

up(x) +

∫
IR2

J(x− y)

∣∣∣∣up(x)− up(y)

δ

∣∣∣∣p−2

(up(x)− up(y)) dy = f(x) for x ∈ IR2,(3.23)
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where J ∈ C(IR2) is a nonnegative continuous radial function in IR2 such that support(J) =

B(0, ε), J(0) > 0 and

∫
IR2

J(x)dx = 1. Thanks to [3], we know that for any f ∈ L2(IR2)∩L∞(IR2),

(3.23) has a unique solution up. Moreover, for any 1 ≤ q ≤ ∞, we have

‖up‖Lq(IR2) ≤ ‖f‖Lq(IR2),(3.24)

and, if ui is the solution corresponding to fi ∈ L2(IR2) ∩ L∞(IR2), for i = 1, 2, then

‖u1 − u2‖Lq(IR2) ≤ ‖f1 − f2‖Lq(IR2)(3.25)

and
‖(u1 − u2)+‖L1(IR2) ≤ ‖(f1 − f2)+‖L1(IR2).(3.26)

Our aim is to prove that passing to the limit in (3.23), we obtain the solution of (3.20).

First, let us give some estimates that will be useful in the sequel.

Lemma 2 Assume f ∈ L2(IR2) ∩ L∞(IR2) and let up be the solution of (3.23). Then

1

δp−2

∫
IR2

∫
IR2

J(x− y) |up(x)− up(y)|p dxdy = 2

∫
IR2

(f(x)− up(x)) up(x) dx,(3.27)

and
1

δp−2

∫
IR2

∫
IR2

J(x− y) |up(x)− up(y)|p dxdy ≤ 2

∫
IR2
|f(x)|2dx.(3.28)

Moreover, for any 1 ≤ q ≤ ∞, we have

‖up(.+ h)− up(.)‖Lq(IR2) ≤ ‖f(.+ h)− f(.)‖Lq(IR2), for any h ∈ IR2,(3.29)

and, for any 1 ≤ q ≤ p <∞, we have∫
IR2

∫
IR2

J(x− y) |up(x)− up(y)|q dxdy ≤
(∫

IR2

∫
IR2

J(x− y) |up(x)− up(y)|p dxdy
) q
p

.(3.30)

Proof : First, it is not difficult to see that∫
IR2

∫
IR2

J(x−y)|up(x)−up(y)|pdxdy = 2

∫
IR2

∫
IR2

J(x−y)|up(x)−up(y)|p−2(up(x)−up(y))up(x)dxdy,

so that, multiplying (3.23) by up and integrating over IR2, we obtain (3.27). Then, (3.28) follows
by using (3.24). The estimate (3.29) follows from the contraction principle (3.25) and the fact
that up(. + h) is a solution corresponding to f(. + h), for any h ∈ IR2. As to (3.30), it follows
by Holder inequality. Indeed, setting

I =

∫
IR2

∫
IR2

J(x− y) |up(x)− up(y)|q dxdy,
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we have

I =

∫
IR2

∫
IR2

J
q
p (x− y) |up(x)− up(y)|q J

p−q
p (x− y) dxdy

≤
(∫

IR2

∫
IR2

J(x− y) |up(x)− up(y)|p dxdy
) q
p
(∫

IR2

∫
IR2

J(x− y) dxdy

) p−q
p

≤
(∫

IR2

∫
IR2

J(x− y) |up(x)− up(y)|p dxdy
) q
p

,

where we use the fact that

∫
IR2

J(x) dx = 1.

Lemma 3 If f ∈ L2(IR2) ∩ L∞(IR2) is compactly supported and up → u a.e. in IR2, then u is
compactly supported.

Proof : To prove the lemma, we assume without loose of generality that support(f) ⊆ B(0, R),
for a given R > 0 and let us prove that there exists R′ > 0, such that

support(u) ⊆ B(0, R′).(3.31)

It is not difficult to see that, for any λ > 0,

|f(x)| ≤ dR(x) := (‖f‖L∞(IR2) + λ (R− |x|))+, a.e. x ∈ IR2.(3.32)

So, using (3.23), we see that

up(x)− dR(x) +
1

δp−2

∫
IR2

J(x− y) Φp(Up(x, y))dy ≤ 0, a.e. x ∈ IR2,(3.33)

and

up(x) + dR(x) +
1

δp−2

∫
IR2

J(x− y) Φp(Up(x, y))dy ≥ 0, a.e. x ∈ IR2,(3.34)

where we denote Φp(r) = |r|p−2r for any r ∈ IR and Up(x, y) = up(x) − up(y), a.e. x, y ∈ IR2.
Multiplying (3.33) by (up(x)− dR(x))+ and integrating over IR2, we get

I :=

∫ ∫
IR2×IR2

(up(x)− dR(x))+2dx

≤ − 1

δp−2

∫ ∫
IR2×IR2

J(x− y) Φp(Up(x, y))(up(x)− dR(x))+ dxdy.

It is not difficult to see that∫ ∫
IR2×IR2

J(x− y) Φp(Up(x, y))(up(x)− dR(x))+ dxdy

=
1

2

∫ ∫
IR2×IR2

J(x− y) Φp(Up(x, y))
(
(up(x)− dR(x))+ − (up(y)− dR(y))+) dxdy.

(3.35)
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Moreover, since(
Φp(Up(x, y))−Φp(D(x, y))

)(
(up(x)−dR(x))+− (up(y)−dR(y))+) ≥ 0, a.e. (x, y) ∈ IR2× IR2,

where D(x, y) = dR(x)− dR(y), for any x, y ∈ IR2, we deduce from (3.35) that∫ ∫
IR2×IR2

J(x− y) Φp(Up(x, y))(up(x)− dR(x))+ dxdy

≥ 1

2

∫ ∫
IR2×IR2

J(x− y) Φp(D(x, y))
(
(up(x)− dR(x))+ − (up(y)− dR(y))+) dxdy

≥
∫ ∫

IR2×IR2
J(x− y) Φp(D(x, y))(up(x)− dR(x))+ dxdy.

This implies that

I ≤ − 1

δp−2

∫ ∫
IR2×IR2

J(x− y) Φp(D(x, y))(up(x)− dR(x))+ dxdy

≤ δ ‖f‖L∞(IR2)

∫ ∫
IR2×IR2

J(x− y)

∣∣∣∣dR(x)− dR(y)

δ

∣∣∣∣p−1

dxdy,(3.36)

where we use the fact that ‖up‖L∞(IR2) ≤ ‖f‖L∞(IR2). Since |∇dR(x)| ≤ λ, a.e. x ∈ IR2, we have

|dR(x)− dR(y)| ≤ λε for any |x− y| ≤ ε,

and (3.36) implies that∫ ∫
IR2×IR2

(up(x)− dR(x))+2dx ≤ δ ‖f‖L∞(IR2)

(
λε

δ

)p−1 ∫ ∫
IR2×IR2

J(x− y) dxdy.

Now, we assume that
λε

δ
< 1 and we let p→∞, we obtain

lim inf
p→∞

∫ ∫
IR2×IR2

(up(x)− dR(x))+2dx = 0.

Thanks to Fatou Lemma, we deduce that∫ ∫
IR2×IR2

(u(x)− dR(x))+2dx = 0,

thus
u ≤ dR, a.e. in IR2.

In the same way, multiplying (3.34) by (−up(x) − dR(x))+ and using the same arguments we
can prove that

u(x) ≥ −dR(x), a.e. in IR2.
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This implies that, for any 0 < λ < δ/ε,

Support(u) ⊆ B(0, R′λ) where R′λ = R+
1

λ
‖f‖L∞(IR2).

Letting λ→ δ/ε, we deduce (3.31) with

R′ = R+
ε

δ
‖f‖L∞(IR2)

and the proof is complete.

Lemma 4 If f ∈ C0(IR2) ∩ L2(IR2), then

up → u in C(IR2) and in L2(IR2),(3.37)

u ∈ C0(IR2) and u = IPKδ
ε
(f).

Proof : First let us assume that f ∈ Cc(IR2). By using (3.29) with q =∞ and Ascoli Theorem,
we deduce the existence of u ∈ C(IR2) and a subsequence that we denote again by p such that
(3.37) is fullfield. Moreoever, thanks to (3.25) with q = 2, we see that up → u in L2(IR2)-
weak. Thus, the convergence holds to be true in L2(IR2). Thanks to Lemma 3, we deduce that
u ∈ Cc(IR2). Let us prove that u ∈ Kδ

ε . Thanks to (3.28) and (3.30), we see that

Ip :=

∫
IR2

∫
IR2

J(x− y) |up(x)− up(y)|q dxdy

≤
(∫

IR2

∫
IR2

J(x− y) | |up(x)− up(y)|p dxdy
) q
p

≤
(

2δ
q (p−2)

p

∫
IR2
|f(x)|2dx

) q
p

.

Keeping q ≥ 1 fixed, letting p→∞ and using (3.37), we deduce that∫
IR2

∫
IR2

J(x− y)

∣∣∣∣u(x)− u(y)

δ

∣∣∣∣q dxdy ≤ 1.

Since q ≥ 1 is arbitrary, then we deduce that |u(x)−u(y)| ≤ δ for (x−y) ∈ Support(J) = B(0, ε).
This implies that u ∈ Kδ

ε . Now, for any ξ ∈ Kδ
ε , let us prove that∫

IR2
(f(x)− u(x)) (u(x)− ξ(x)) dx ≤ 0.(3.38)
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For any ξ ∈ Kδ
ε , it is clear that

n

n+ 1
ξ ∈ Kδ

ε , for any n ≥ 1. Taking u− n

n+ 1
ξ as a test function

in (3.23), we see that∫
IR2

(up(x)− f(x)) (up(x)− n

n+ 1
ξ(x)) dx

≥ −
∫
IR2

∫
IR2

J(x− y)

∣∣∣∣ ξ(x)− ξ(y)

δ (n+ 1)/n

∣∣∣∣p−2 (
up(x)− n

n+ 1
ξ(x)

)
dxdy.

(3.39)

Since

∣∣∣∣ ξ(x)− ξ(y)

δ (n+ 1)/n

∣∣∣∣ ≤ n

n+ 1
< 1 for |x − y| ≤ ε, support(J) = B(0, ε) and ‖up‖L∞(IR2 ≤

‖f‖L∞(IR2 ,

lim
p→∞

∫
IR2

∫
IR2

J(x− y)

∣∣∣∣ξ(x)− ξ(y)

δ (n+ 1)

∣∣∣∣p−2 (
up(x)− n

n+ 1
ξ(x)

)
dxdy = 0.

So, letting p→∞ in (3.39) and using the first part of the proof, we deduce that∫
IR2

u(x)(u(x)− n

n+ 1
ξ(x)) ≥

∫
IR2

f(x)(u(x)− n

n+ 1
ξ(x)).

Then, letting n→∞, we deduce (3.38).
Now, for any f ∈ C0(IR2), we consider a sequence fn ∈ Cc(IR2), such that

fn → f, in C(IR2).

Let us denote by upn the solution of (3.23) corresponding to fn. Thanks to the L∞-contraction
property of IPKδ

ε
and of the solution of (3.23), we have

|IPKδ
ε
f(x)− up(x)| ≤ ‖IPKδ

ε
f − IPKδ

ε
fn‖L∞(IR2) + ‖IPKδ

ε
fn − upn‖L∞(IR2)

+‖upn(x)− up(x)‖L∞(IR2)

≤ 2 ‖f − fn‖L∞(IR2) + ‖IPKδ
ε
fn − upn‖L∞(IR2).

Thanks to the first part of the proof, it follows that

lim sup
p→∞

sup
x∈IR2

|IPKδ
ε
f(x)− up(x)| ≤ 2 ‖f − fn‖L∞(IR2),

and, by letting n→∞, we deduce again that (3.37) is fulfilled.

Lemma 5 If f ∈ C0(IR2) ∩ L2(IR2) and u = IPKδ
ε
(f), then u is the solution of (3.20).
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Proof : Recall that u ∈ C0(IR2) and

up → u, in C(IR2),(3.40)

where up is the solution of (3.23). Let us prove that u is the solution of (P δε ). To that aim, we
set

µp := J(x− y)

∣∣∣∣up(x)− up(y)

δ

∣∣∣∣p−2

,

and we prove that a weak∗ limit of µp inMb(IR
2× IR2)+ is a kernel for the integral equation of

(P δε ). Thanks to (3.28) and (3.30) with q = p− 2, we see that∫∫
IR2×IR2

µp(x, y) dxdy ≤
(

2

δ2

∫
IR2
|f(x)|2 dx

) p−2
p

.

So, µp is bounded in L1(IR2 × IR2), and there exists µ ∈Mb(IR
2 × IR2)+ such that

µp → µ in Mb(IR
2 × IR2)+ − weak∗.(3.41)

In addition, since µp is symmetric, then µ ∈Ms
b(IR

2×IR2)+. Now, let us prove that the measure

µ is supported in
[
|u(x) − u(y)| = δ and |x − y| ≤ ε

]
. It is clear that µ

[
|x − y| ≤ ε

]
. Let

0 < λ < δ and A be an open set such that A ⊆
[
|u(x)− u(y) < δ − λ and |x− y| ≤ ε

]
. Thanks

to (3.40), there exists p0 > 1, such that for any p > p0, we have

sup
(x,y)∈A

|up(x)− up(y)| < δ − λ,

so that

µ(A) ≤ lim
p→∞

∫∫
A
J(x− y)

∣∣∣∣up(x)− up(y)

δ

∣∣∣∣p−2

dxdy = 0.

This implies that

µ
[
|u(x)− u(y)| ≥ δ − λ and |x− y| ≤ ε

]
.

Since 0 < λ < δ is arbitrary, then

Support(µ) ⊆ ∩0<λ<δ

[
|u(x)− u(y)| ≥ δ − λ and |x− y| ≤ ε

]
⊆

[
|u(x)− u(y)| = δ and |x− y| ≤ ε

]
.

Now, multiplying (3.23) by a test function ξ ∈ Cc(IR2) and integrating over IR2, we obtain∫
IR2

up(x) ξ(x) dx+

∫
IR2

∫
IR2

J(x− y)

∣∣∣∣up(x)− up(y)

δ

∣∣∣∣p−2

(up(x)− up(y)) ξ(x) dxdy

=

∫
IR2

f(x) ξ(x) dx.

(3.42)



Nonlocal Equation in Granular Matter N. Igbida 20

Thanks to (3.40), the first term of (3.42) converges to

∫
IR2

u(x) ξ(x) dx and

(up(x)− up(y)) ξ(x)→ (u(x)− u(y)) ξ(x) uniformly for (x, y) ∈ IR2.

Thus

lim
p→∞

∫
IR2

∫
IR2

J(x− y)

∣∣∣∣up(x)− up(y)

δ

∣∣∣∣p−2

(up(y)− up(x) ξ(x) dxdy

=

∫
IR2

∫
IR2

(u(y)− u(x) ξ(x) µ(dx, dy).

This implies that u satisfies the integral equation of (3.20) for any ξ ∈ Cc(IR2). By density, we
deduce that this holds to be true for any ξ ∈ C0(IR2) ∩ L2(IR2). Thus u is a solution of (3.20).

Remark 3 Assuming f ∈ C0(IR2) guaranties that u ∈ C0(IR2) and the integral formulation in
(3.20) makes sense. Otherwise, u is not continuous and µ is a Radon measure in general. So,
one needs to see how to handle the integral formulation of the solution. This will not be treated
in the present paper, and maybe discussed in forthcoming papers.

4 Proof of the main results

4.1 Existence and uniqueness of a solution for the PIDE

Thanks to Theorem 4 the proof of Theorem 1 and Theorem 2 follows by using some arguments
from nonlinear semigroup theory. First, recall that

IPKδ
ε

= (I + λ ∂IIKδ
ε
)−1, for any λ > 0;

so that the stationary problem (3.19) is equivalent to

u+ ∂IIKδ
ε
(u) 3 f.(4.43)

In particular, Theorem 4 gives the characterization of ∂IIKδ
ε

in terms of an integral equation.
This is the aim of the following Corollary.

Corollary 2 Let f ∈ C0(IR2) ∩ L2(IR2) and u ∈ C0(IR2) ∩Kδ
ε . Then, f ∈ ∂IIKδ

ε
(u) if and only

if there exists µ ∈Ms
b(IR

2 × IR2)+ such that

µ Rδε(u)

and ∫
IR2

∫
IR2

(u(x)− u(y)) ξ(x) µ(dx, dy) =

∫
IR2

f(x) ξ(x) dx,

for any ξ ∈ C0(IR2) ∩ L2(IR2).
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Proof : It is clear that f ∈ ∂IIKδ
ε
(u) if and only if

u = IPKδ
ε
(f + u).

Then, using Theorem 4 the result follows.

Corollary 2 suggets to connect the problem (P δε ) to the evolution problem (2.7). Thanks to
(cf. [17]), we know that ∂IIKδ

ε
is a maximal monotone graph in L2(IR2) and thanks to [12], for

any 1 ≤ q ≤ ∞, if ui is the solution corresponding to fi ∈ Lq(IR2) for i = 1, 2, then

‖u1 − u2‖Lq(IR2) ≤ ‖f1 − f2‖Lq(IR2)(4.44)

and
‖(u1 − u2)+‖L1(IR2) ≤ ‖(f1 − f2)+‖L1(IR2).(4.45)

In particular this gives the concept of variational solutions for (P δε ). It corresponds to the
solution of the evolution equation (2.7). More precisely, for a given f ∈ L2

loc(0, T ;L2(IR2)) and
u0 ∈ Kδ

ε , we say that u (resp. uσ) is a variational solution (resp. σ−approximate variational
solution) of (P δε ) if u ∈W 1,1(0, T ;L2(IR2)), u(0) = u0 and, for any t ∈ (0, T ), u(t) ∈ Kδ

ε and∫
IR2

(
f(t)− ∂u(t)

∂t

) (
u(t)− z

)
≥ 0, for any z ∈ Kδ

ε ,

(resp. uσ is given by (3.17) and ui = IPKδ
ε
(ui−1 + σ f i)).

By using nonlinear semigroup theory in Hilbert space for evolution problems governed by a
sub-differential operator (cf. [17, 13, 39]), we have the following result.

Theorem 5 Let u0 ∈ Kδ
ε , T > 0 and f ∈ L2([0, T );L2(IR2). Then,

1. For any σ > 0 and σ−discretization of (P δε ), there exists a unique σ−approximate varia-
tional solution of (P δε ).

2. There exists a unique u ∈ C([0, T );L2(IR2)) such that u(0) = u0, and, as σ → 0,

uσ → u in C([0, T );L2(IR2)).

3. If f ∈ BV (0, T ;L2(IR2)), then the function u given by 2. is the unique solution of (2.7),
that we call the variational solution of (P δε ).

4. If for i = 1, 2, ui is the solution (given by 2.) corresponding to fi, then, for any 1 ≤ q ≤ ∞,

d

dt
‖u1 − u2‖Lq(IR2) ≤ ‖f1 − f2‖Lq(IR2), in D′(0, T )

and
d

dt
‖(u1 − u2)+‖L1(IR2) ≤ ‖(f1 − f2)+‖L1(IR2), in D′(0, T ).
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5. In particular, if f ≥ 0, then u ≥ 0 a.e. in Q.

Proof : The first part of the theorem is a simple consequence of the fact that the variational
solution ui of (3.18) is equal to IPK(ui−1 + ε fi). Since ∂IIk is a maximal monotone graph in
L2(IR2), the second part of the proposition is a consequence of the classical nonlinear semigroup
theory (cf. [17], see also [13] and [39]). The third part of the proposition follows from regularity
results for semigroup solutions of evolution equations governed by sub-differential operators
(cf. Theorem 3.6 of [17]). Part 4. and Part 5. of the theorem follow from (4.44) and (4.45)
respectively.

At last, using the characterization of the operator ∂IIKδ
ε

(cf. Corollary 2) and Theorem 5,

we prove the existence and uniqueness of a solution for (P δε ). To this aim, we prove first the
following lemma.

Lemma 6 Under the assumption of Theorem 1, let u be the solution of (2.7). Then, for any
t ≥ 0, u(t) ∈ C0(IR2) ∩ L2(IR2).

Proof : Coming back to the Euler implicit discretization in time of (2.7), let us consider again

ui = IPKδ
ε
(ui−1 + σ f i), for i = 1, ...n,

where
(
ti, fi

)
i=1,...n

is a σ− discretization of (2.7). We can assume without loose of generality

that fi ∈ C0(IR2). Thanks to Lemma 3, we deduce that ui ∈ C0(IR2), for any i = 0, 1, ...n, so
that uσ(t) ∈ C0(IR2), for any t ∈ (0, T ). Moreover, for any h ∈ IR2, we know that

|ui(x+ h)− ui(x)| ≤ ‖u0(.+ h)− u0(.)‖L∞(IR2) +
n∑
i=1

‖fi(.+ h)− fi(.)‖L∞(IR2),

so that, for any t ∈ [0, T ), we have

|uσ(t, x+ h)− uσ(t, x)| ≤ ‖u0(.+ h)− u0(.)‖L∞(IR2)

+

∫ T

0
‖fσ(t, .+ h)− fσ(t, .)‖L∞(IR2) dt, for a.e. x ∈ IR2.

Thanks to the assumption of Theorem 1, we deduce that

lim
h→0

max
x∈IR2

|uσ(t, x+ h)− uσ(t, x)| = 0.(4.46)

Recall that uσ → u in C(0, T ;L2(IR2). Using (4.46) and Ascoli theorem we deduce that
u(t) ∈ C0(IR2), for any t ∈ [0, T ).
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Lemma 7 Under the assumption of Theorem 1, the solution of (2.7) given by Theorem 5 is the
unique solution of (P δε ).

Proof : First, using Corollary 2, it is not difficult to see that a solution of (P δε ) is solution of (2.7),
thus it is unique. Now, let u be the variational solution of (P δε ). Then, u ∈ W 1,∞(0, T ;L2(Ω)),

u(0) = u0 and f(t)− ∂u(t)

∂t
∈ ∂IIKδ

ε
(u(t)), a.e. t ∈ (0, T ). Thanks to Lemma 6, we know that

u(t) ∈ C0(IR2), for any t ∈ [0, T ). Then, by using Corollary 2, for any fixed t ∈ (0, T ), there
exists µ(t) ∈Ms

b(IR
2), such that µ(t) Rδε(u(t)) and∫

IR2

∫
IR2

(u(t, x)− u(t, y)) ξ(x) µ(t, x, dy) =

∫
IR2

(
f(t, x)− ∂u(t, x)

∂t

)
ξ(x) dx,(4.47)

for any ξ ∈ C0(IR2). This ends up the proof of the lemma.

Proof of Theorem 1 and Theorem 1 : The proof follows directly by Theorem 5 and Lemma
7.

4.2 The connection with the stochastic model

Thanks to [25], we know that the connection between the stochastic model and the evolution
surface model for sandpile is given through the following nonlinear dynamics in H :

∂tû+ ∂IIK̂(û) 3 f̂ for t ≥ 0

û(0) = 0,

(4.48)

where H = l2(ZZ2), ∂IIK̂ denotes the sub-differential of IIK̂ in H and

K̂ :=
{
η ∈ H ; |η(i)− η(j)| ≤ 1 if i ∼ j

}
.

In other words, ĝ ∈ ∂IIK̂(û) if and only if û ∈ K̂, g ∈ H and∑
i∈ZZ2

ĝ(i)(v̂(i)− ξ̂(i)) ≥ 0, for any ξ̂ ∈ H.

Since K̂ is a closed and convex subset of H, for a given f̂ ∈ BV (0, T ;H), the evolution
problem (4.48) has a unique solution (cf. [17]) in the sense that

û ∈W 1,∞(0, T ;H), û(t) ∈ K̂ a.e. t ∈ [0, T ),

∑
i∈ZZ2

(
f̂(t, i)− ∂tû(t, i)

) (
û(t, i)− ξ̂(i)

)
≥ 0, a.e. t ∈ [0, T ), ∀ ξ̂ ∈ K̂.
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This is a discrete analogue of (2.7) ; thus the discrete analogue of (P δε ). In particular, subdividing
the plane into squares of side length 1/N, with N ∈ IN∗, we prove the following result which
gives an explicit connection between the solution of (P δε ) and the solution of (4.48).

Lemma 8 Under the assumptions (H1−H3), we assume that there exists N ∈ IN∗, such that

(2.15) is fulfilled. Then, u is a solution of (P δε ), with ε =
1

N
, if and only if

u(t, x) = δ û(t, [N x]) for any (t, x) ∈ [0,∞)× IR2,

where û is the solution of (4.48).

Proof : We know that both problems (P δε ) and (4.48) has unique solutions. To prove the
lemma, we show that if û is the solution of (4.48) then u(t, x) := δ û(t, [Nx]) is a solution of
(P δε ). It is not difficult to see that u(t) ∈ Kδ

ε for any t ≥ 0. Now, for a given ξ ∈ Kδ
ε , let us prove

that

J :=

∫
IR2

(
f(t, x)− ∂tu(t, x)

) (
u(t, x)− ξ(x)

)
dx ≥ 0.(4.49)

For any i ∈ ZZ2, let us denote
Ii = {z ∈ IR2 ; [Nz] = i}.(4.50)

Since for any x ∈ Ii, u(t, x) = δ û(t, i), f(t, x) = δ f̂(t, i) and |Ii| = ε2, then

J =
∑
i∈ZZ2

∫
Ii

(
f(t, x)− ∂tu(t, x)

) (
u(t, x)− ξ(x)

)
dx

= |Ii|
∑
i∈ZZ2

(
δ f̂(t, i)− δ ∂tû(t, i)

) (
δ û(t, i)− 1

|Ii|

∫
Ii

ξ(x) dx
)

= δ2 ε2
∑
i∈ZZ2

(
f̂(t, i)− ∂tû(t, i)

) (
û(t, i)− ξ̂(i)

)
,

where

ξ̂(i) =
1

δ ε2

∫
Ii

ξ(x) dx.

It is not difficult to verify that ξ̂ ∈ K̂, so that by using the fact that û is a solution of (4.48),
we deduce that J ≥ 0.

The connection between the stochastic model and the discrete model for growing sandpile is
given by the following result :

Proposition 1 Assume that f̂ ∈ BV (0, T ; l2(ZZ2)), f̂ ≥ 0 and f(t) has a bounded support in
ZZ2, for any t ∈ [0, T ). Let û be the solution of (4.48) and (η(t), t ≥ 0) be the stochastic process
generated by f̂ . We have

IE

 ∑
i∈ZZ2

(η(t, i)− û(t, i))2

 ≤ ∫ t

0

∑
j∈ZZ2

f̂(s, j) ds, for any t ≥ 0.(4.51)
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Recall that the proof of Proposition 1 (cf. [25]) is based on the following inequality∑
j∈ZZ2

c(j, η, t) (η(t, j)− w(j)) ≤
∑
i∈ZZ2

f̂(t, i) (η(t, i)− w(i)), ∀w ∈ K̂.(4.52)

To prove (4.52), the authors of [25] defined two types of sets (set of type I and set of type II) and
proved (4.52) by separating the calculation with respect to each case. Here, we use essentially
the remark below and give a direct and short proof of (4.52).

Remark 4 For a given ξ ∈ S, if p(i, j, ξ) > 0, then there exists at least one staircase i0 = i ∼
i1 ∼ ... ∼ im = j, such that ξ(ip) = ξ(ip+1) + 1 for any p = 0, 1, ...m − 1. Let us denote this
staircase by C(i, j) ; i.e.

C(i, j) = [i, i1, ..., im−1, j].

In addition, for k ∈ C(i, j), we denote by k̃, the adjacent side to k satisfying u(k) = u(k̃) + 1.
It is clear that for any i, j ∈ ZZ2 such that p(i, j, ξ) > 0, C(i, j) is not empty and may be not
unique.

Lemma 9 Under the assumptions of Proposition 1, (4.52) is fulfielld.

Proof : Thanks to (2.9), we have∑
j∈ZZ2

c(j, η, t) (η(t, j)− w(j)) =
∑

j,i∈ZZ2

p(i, j, η(t)) f̂(t, i) (η(t, j)− w(j))

=
∑

j,i∈ZZ2

p(i, j, η(t)) f̂(t, i) (η(t, i)− w(i))

+
∑

j,i∈ZZ2

p(i, j, η(t)) f̂(t, i)
(
(w(i)− w(j))− (η(t, i)− η(t, j))

)

= I1 + I2

Since
∑
j∈ZZ2

p(i, j, η(t)) = 1 for any (t, i) ∈ ZZ2 × (0,∞), then

I1 =
∑
i∈ZZ2

f̂(t, i) (η(t, i)− w(i)).

Let us prove that I2 ≤ 0. Thanks to Remark 4, we have

I2 =
∑
j 6=i

p(i, j, η(t)) f̂(t, i)
∑

k∈C(i,j)\{j}

(
(w(k)− w(k̃))− (η(k, t)− η(k̃, t))

)

≤
∑
j 6=i

p(i, j, η(t)) f̂(t, i)
∑

k∈C(i,j)\{j}

(
(w(k)− w(k̃))− 1

)

≤ 0,(4.53)
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where we used the fact that |w(k)− w(k̃)| ≤ 1 (since w ∈ K and k ∼ k̃).

Remark 5 In the proof of (4.53), we take an arbitrary staircase C(i, j) associated with
p(i, j, η(t)) > 0. The proof is independent of the choice of such C(i, j).

Now, the rest of the proof of Proposition 1 follows the same ideas of [25]. For completeness,
let us give the arguments.

Proof of Proposition 1 :
Claim 1. For any w ∈ S and t ≥ 0, we have

I :=
1

2
Lt
( ∑
i∈ZZ2

(
η(t, i)− w(i)

)2)
≤
∑
j∈ZZ2

f̂(t, j) (η(t, j)− w(j)) +
1

2

∑
j∈ZZ2

f(t, j).

By definition of Lt, we have

I =
1

2

∑
j∈ZZ2

c(j, η, t)
( ∑
i∈ZZ2

(
Tj(η(t))(i)− w(i)

)2
−
∑
i∈ZZ2

(
η(t, i)− w(i)

)2)
.

So,

I =
1

2

∑
j∈ZZ2

c(j, η, t)
∑
i∈ZZ

(
Tj(η)(i)− η(i)

)(
Tj(η)(i) + η(i)− 2 w(i)

)

=
1

2

∑
j∈ZZ2

c(j, η, t) (2 η(j) + 1− 2 w(j))

=
∑
j∈ZZ2

c(j, η, t)
(
η(j)− w(j)

)
+

1

2

∑
j∈ZZ2

c(j, η, t).

Thanks to (2.10), we deduce that

I =
∑
j∈ZZ2

c(j, η, t)
(
η(j)− w(j)

)
+

1

2

∑
j∈ZZ2

f(t, j).

Thus, the claim follows from Lemma 9.
Claim 2. For any w ∈W 1,∞(0, T ;H) such that, for any t ∈ [0, T ), w(t) ∈ K̂, we have

1

2

∑
i∈ZZ2

(η(t, i)− w(t, i))2 ≤
∫ t

0

[ ∑
i∈ZZ2

ws(i, s) (w(i, s)− η(i, s))

+
∑
j∈ZZ2

f(s, j) (η(s, j)− w(s, j)) +
1

2

∑
j∈ZZ2

f(s, j)
]

+M(t)
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where Ls is given by (2.11) and
(
M(t)

)
t≥0

is a martingale satisfying

IE(M(t)) = 0 for any t ≥ 0.

As in [25], we use the following stochastic integral equation : for any F : S × (0,∞) → IR
Lipchitz continuous in t and F (η(., 0), 0) = 0, we have

F (η(., t), t) =

∫ t

0

(
∂F

∂s
+ Ls F

)
(η(., s)) +M(t),(4.54)

where
(
M(t)

)
t≥0

is a martingale satisfying IE(M(t)) = 0 for any t ≥ 0. Let F be given by

F (ξ, t) =
1

2

∑
i∈ZZ2

(
ξ(i)− w(t, i)

)2
, for any (ξ, t) ∈ S × (0, T ).

Then,
∂F

∂s
(ξ, s) = −

∑
i∈ZZ2

ws(i, s)
(
ξ(i)− w(i, s)

)
, for any (ξ, t) ∈ S × (0, T ),

and (4.54) implies that, for any t ≥ 0,

1

2

∑
i∈ZZ2

(η(t, i)− w(t, i))2 =

∫ t

0

( ∑
i∈ZZ2

ws(i, s)
(
w(i, s)− η(i, s) + Ls(F (η(., s), s)

)
ds+M(t).

Then, by using the first step, the second part of the lemma follows.
Claim 3. We have (4.51). Since û is a solution of (4.48) and η(t) ∈ K̂, for any t ≥ 0, we have∑

i∈ZZ2

ûs(i, s) (û(i, s)− η(i, s)) +
∑
j∈ZZ2

f̂(s, j) (η(s, j)− û(s, j)) ≤ 0 for any t ≥ 0.

Then, using Claim 2. with w = û, where û is the solution of (4.48), we deduce (4.51).

Proof of Theorem 3 : Let us consider uδ,N the solution of the PIDE associated with fδ,N
given by

fδ,N (t, x) = f

(
t,

[Nx]

N

)
for any (t, x) ∈ (0,∞)× IR2.

Setting

I :=

(
IE

[∫
IR2
|u(t, x)− δ η(t, [N x])|2

]) 1
2

,

and using Jensen inequality, it is not difficult to see that

I ≤
(
IE

[∫
IR2
|uδ,N (t, x)− δ η(t, [N x])|2

]) 1
2

+

(∫
IR2
|uδ,N (t, x)− u(t, x)|2

) 1
2

.(4.55)
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For the last term of (4.55), we use the second part of Theorem 1 to obtain∫
IR2
|u(t, x)− uδ,N (t, x)|2 dx ≤

∫ t

0

∫
IR2
|f(t, x)− fδ,N (s, x)|2 dxds.

As to the first term of the right hand of (4.55), since fδ,N satisfies (2.15), by using Lemma 8
and the fact that |Ii| = ε2, we get

IE

[∫
IR2

(δ η(t, [Nx])− uδ,N (t, x))2 dx

]
=

∑
i∈ZZ2

IE

[∫
Ii

(δ η(t, [Nx])− uδ,N (t, x))2 dx

]

= δ2 ε2 IE

 ∑
i∈ZZ2

(η(t, i)− û(t, i))2

 .
So, by using (4.51), we obtain

IE

[∫
IR2

(δ η(t, [Nx])− u(t, x))2 dx

]
≤ δ2 ε2

∫ t

0

∑
j∈ZZ2

f̂(s, j) ds

≤ δ

∫ t

0

∫
IR2

fδ,N (s, x) dxds.

Thus, (4.55) implies

I ≤ δ
1
2

(∫ t

0

∫
IR2

fδ,N (s, x) dxds

) 1
2

+

(∫ t

0

∫
IR2
|f(t, x)− fδ,N (s, x)|2 dxds

) 1
2

and the proof is complete.
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