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a b s t r a c t

In this paper, we study some equivalent formulations in divergence form for the
optimization problemmax

{∫
Ω
ξdµ ; ξ ∈ W 1,10 (Ω) s.t. |∇ξ(x)| ≤ k(x) a.e. x ∈ Ω

}
where

k ∈ C(Ω) and k > 0 in Ω . This is the so called dual equation of Monge–Kantorovich
problem.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction and main result

Let Ω ⊆ RN be a bounded open domain of RN with C1 smooth boundary Γ , and µ a bounded Radon measure
concentrated inΩ . We are interested in the study of the optimization problem

max
{∫

Ω

ξdµ; ξ ∈ K
}
, (1)

where

K =
{
z ∈ W 1,10 (Ω); |∇z(x)| ≤ k(x) a.e. x ∈ Ω

}
and k ∈ C(Ω) is a positive continuous function. In the case where k ≡ 1, this is the so called dual equation of
Monge–Kantorovich problem. It is of wide interest for Monge optimal mass transport problem (cf. [1,2] and the references
therein). In one hand, it was used by Kantorovich for the study of existence of a solution for his relaxed formulation of the
original Monge problem. On the other hand, it appears in numerous papers, that the PDE in divergence form behind (1)
contains all the information concerning the original Monge problem (cf. [24,23,3,2,1]). The case where k is an x-dependent
function appears in the study of optimal mass transport problem in inhomogeneous domain to treat problems with, say,
subregions through which mass transportation is forbidden or, on the contrary, where it is free of charge (cf. [4]). It appears
also in the study of mass optimization problem (cf. [5]). Existence of a solution of (1) is well known by now for any bounded
Radon measure µ. Our aim in this paper, is to show the equivalence between (1) and formulations in divergence form.
Since their interest for the Monge–Kantorovich problem and related problems, this kind of question was already studied in
previous papers. So, a part of our results are well known by now andmay exist in the literature in amore general setting and
proved by using sophisticated arguments (see for instance [6,7] and the references therein). Our aim here is to give simple
and direct proofs for our (more or less) simple situation.
Perhaps themain difficulty in the study of the PDE associatedwith (1) is the non-regularity of the flux. Roughly speaking,

in general the PDE associated with (1) is a divergence of non-regular flux (a measure). To close the problem, the flux needs
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to be expressed depending on the gradient. Since in general the gradient is no more than L∞, then the gradient should be
taken in an unusual sense. Otherwise, different expressions have been used to close the problem depending on the studied
issues : optimal mass transport problem, mass optimization, evolution Monge–Kantorovich equation (sandpile equation).
Here, we focus our attention on the three following divergence formulations :{
−∇ · Φ = µ inD ′(Ω)
kΦ = |Φ|∇|Φ|u,

(2)−∇ · Φ = µ in D ′(Ω)∫
Ω

kd|Φ| ≤
∫
Ω

udµ, (3)

and 
∫
Ω

kd|Φ| = min
{∫

Ω

kd|ν| ; − ∇ · ν = µ inD ′(Ω)

}
=

∫
Ω

udµ,
(4)

where |Φ| (resp. |ν|) denotes the total variationmeasure ofΦ (resp. ν) and∇|Φ| denotes the tangential gradientwith respect
to |Φ| (see the following section for preliminaries and references). We prove the following:

Theorem 1. Let µ ∈Mb(Ω), whereMb(Ω) the set of bounded Radon measure, and u ∈ K. Then u is a solution of (1), i.e.∫
Ω

(u− ξ)dµ ≥ 0 for any ξ ∈ K , (5)

if and only if there existsΦ ∈Mb(Ω)
N such that (u,Φ) satisfies (3). Moreover, we have

1. (2)⇐⇒ (3)⇐⇒ (4).
2. If Φ ∈Mb(Ω)

N is such that −∇ · Φ = µ inD ′(Ω) and∫
Ω

kd|Φ| = min
{∫

Ω

kd|ν| ; − ∇ · ν = µ inD ′(Ω)

}
,

then, there exists v ∈ K such that∫
Ω

kd|Φ| =
∫
Ω

vdµ.

The main interest in the formulation (1)–(4) is their connection with the Monge optimal mass transport problem (cf. [3],
[2,1] and the references therein) as well as mass optimization (cf. [5,8]) and sandpile (cf. [9,10,2] and [11]). The formulation
(2) is the so calledMonge–Kantorovich equation (theMK equation as called by Bouchitté, Buttazzo and Seppecher in [12]). It
is very connected to Monge–Kantorovich problem for optimal mass transportation. Perhaps Kantorovich (in 1940) was the
first who introduced this connection. In addition, Evans and Gangbo (cf. [3]) give rigorous proof for this connection in the
case where µ is regular enough (see also [2]). Indeed, in the case where k ≡ 1, under additional assumptions on µ, Evans
and Gangbo prove in [3] that a related PDE to (1) in divergence form is given by−∇ · Φ = µ, Φ := m∇um ≥ 0, |∇u| ≤ 1, m(|∇u| − 1) = 0

}
in Ω

u = 0 on Γ .
(6)

The unknown function m is in L∞(Ω) in their case and contains all the information concerning the optimal mass
transportation. For the general case,m ∈M+b (Ω) and (6) may be written in the form{

−∇ · Φ = µ, Φ := m∇mu in Ω,
|∇u| ≤ k inΩ, |∇mu| = k m-a.e. inΩ,
u = 0 on Γ .

(7)

The connection between (7) and optimal transportation has been proved in [1] by using the equivalent formulation (2),
where the tangential gradient introduced in [12] (see also [5,8] and the references therein) plays a fundamental role. For
the regularity of m with respect to additional assumptions on µ, we refer the reader to the papers [13,14], [15,16] and the
references therein. Notice that for the particular case where µ is a nonnegative regular function, explicit formulation form
is given in [17] (see also [18]).
The formulation (4) is the natural dual formulation of (1). Its connection with (2) appeared in [12] for the study of mass

optimization problem. In the context of mass optimal transportation, (4) is in connection with minimizing Monge work (for
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more details in this direction see [12,6]). As to the formulation (3), it appears in [19] (see also [4]) and seems to be very
useful for the study of the evolution problem associated with the Monge–Kantorovich equation and the sandpile problem.
Notice that the equivalence between (2), (3) and (7) is related to the following obvious fact : assuming Φ : Ω → RN and
u : Ω → R are regular and |∇u(x)| ≤ k(x), the following assertions are equivalent

• m(|∇u| − k) = 0 andΦ = m∇u inΩ
• mk = |Φ| and k|Φ| = Φ · ∇u inΩ
• mk = |Φ| and

∫
Ω
k|Φ| ≤

∫
Ω
Φ · ∇u

Assuming u = 0 on the boundary and integrating by parts the last equation, we deduce the equivalence between the
preceding assertions and the fact that

mk = |Φ| and
∫
Ω

k|Φ| ≤ −
∫
Ω

u∇ · Φ.

In the following section, we begin by giving some preliminaries that will be used throughout the paper. Then, we prove
some more or less well known results concerning 1-Lipchitz continuous functions that will be used in this paper. Section 3
is devoted to the proofs of the main theorem.

2. Preliminaries

LetΩ ⊂ RN be a bounded open domain.We denote byLN theN-dimensional Lebesguemeasure ofRN . For 1 ≤ p < +∞,
Lp(Ω),W 1,p(Ω) andW 1,p0 (Ω) denote respectively, with respect toLN , the standard Lebesgue space, Sobolev space and the
closure ofD(Ω) inW 1,p(Ω). Otherwise, we denote by Lpµ(Ω), the standard L

p space with respect to the measure µ.
We denote byM(Ω) the space of all Radon measures inΩ . We recall thatM(Ω) can be identified with the dual space

of the set of continuous functions with compact support inΩ . In other words,M(Ω) =
(
Cc(Ω)

)∗
, in the sense that, every

µ ∈M(Ω) is identified to the linear application ξ ∈ Cc(Ω)→
∫
Ω
ξdµ. The setM(Ω) can be identified also with the dual

space of the set of continuous functionsM(Ω) =
(
C(Ω)

)∗
, in the sense that, every µ ∈ M(Ω) is equal to µ̃ ∈

(
C(Ω)

)∗
with µ̃(∂Ω) = 0. So, for any µ ∈M(Ω) and ξ ∈ C(Ω), we use the notation

∫
Ω
ξdµ for the quantity

〈
µ̃, ξ

〉
.

Forµ ∈M(Ω), we denote byµ+, µ− and |µ| the positive part, negative part and the total variation measure associated
withµ, respectively. Then we denote,Mb(Ω) the space of Radonmeasures with bounded total variation |µ|(Ω). Recall that
Mb(Ω) equipped with the norm |µ|(Ω) is a Banach space.
We denote byM(Ω)N the space of RN -valued Radon measures ofΩ ; i.e. µ ∈ M(Ω)N if and only if µ = (µ1, . . . , µn)

with µi ∈ M(Ω). We recall that the total variation measure associated with µ ∈ M(Ω)N , denoted again by |µ|, is defined
by

|µ|(B) = sup

{
∞∑
i=1

|µ(Bi)| ; B =
∞

∪
i=1
Bi, Bi a Borelean set

}
and belongs to M+(Ω), the set of nonnegative Radon measure. The subspace Mb(Ω)

N equipped with the norm ‖µ‖ =
|µ|(Ω) is a Banach space. It is clear thatM(Ω)N endowed with the norm ‖ ‖ is isometric to the dual of Cc(Ω)N . The duality
is given by〈

µ, ξ
〉
=

N∑
i=1

∫
Ω

ξidµi,

for any µ = (µ1, . . . , µN) ∈M(Ω)N and ξ = (ξ1, . . . , ξN) ∈ Cc(Ω)
N .

For any µ ∈ Mb(Ω)
N and ν ∈ Mb(Ω)

+, µ is absolutely continuous with respect to ν; denoted by µ � ν, provided
ν(A) = 0 implies |µ|(A) = 0, for any A ⊂ Ω . Thanks to Radon–Nicodym Decomposition Theorem, we know that for any
µ ∈ Mb(Ω)

N and ν ∈ Mb(Ω) such that µ << ν, there exists unique bounded RN -valued Radon measure denoted by Dνµ,
such that

µ(A) =
∫
A
Dνµdν for any A ⊆ Ω;

Dνµ ∈Mb(Ω)
N is the density ofµwith respect to ν, that can be computed by differentiating. In particular, it is not difficult

to see that, for any µ ∈M(Ω)N , we have µ << |µ|,D|µ|µ ∈ L1|µ|(Ω)
N and |D|µ|µ| = 1, |µ|-a.e. inΩ (see for instance [20]).

In connection with the polar factorization, in general, D|µ|µ is denoted by
µ

|µ|
. So, for any µ ∈Mb(Ω)

N , we have

µ(A) =
∫
A

µ

|µ|
d|µ|, for any Borel set A ⊆ Ω.
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So, every µ ∈Mb(Ω)
N can be identified with the linear application

ξ ∈ Cc(Ω)
N
→

∫
Ω

µ

|µ|
· ξd|µ|.

For anyΦ ∈Mb(Ω)
N and ν ∈Mb(Ω), we say that−∇ · Φ = ν inD ′(Ω) provided∫

Ω

Φ

|Φ|
· ∇ξd|Φ| =

∫
Ω

ξdν for any ξ ∈ C10(Ω),

where C10(Ω) is the set of C
1 function inΩ , such that ξ and∇ξ are null on the boundary ofΩ . In particular,−∇ ·Φ = ν in

D ′(Ω) is equivalent to−∇ ·
(
Φ

|Φ|
|Φ|

)
= ν inD ′(Ω).

Let ν ∈Mb(Ω)
+ be given. To define the tangential gradient with respect to ν (see [12]), recall the sets

Nν :=

{
ξ ∈ L∞ν (Ω)

N
; ∃un ∈ C∞(Ω), un → 0 in C(Ω) and Dun → ξ in σ(L∞ν (Ω)

N , L1ν(Ω)
N)
}

and

N ⊥ν :=
{
η ∈ L1ν(Ω)

N
;

∫
Ω

η · ξdν = 0, ∀ξ ∈ Nν

}
For ν-a.e. x ∈ Ω , we define the tangent space Tν(x) to the measure ν, as the subspace of RN :

Tν(x) =
{
A ∈ RN ; ∃ ξ ∈ N ⊥ν , A = ξ(x)

}
.

Then (cf. Proposition 3.2 of [21]) the operator ∇ν : Lip(Ω) → L∞ν (Ω)
N is the continuous linear operator such that for any

u ∈ C1(Ω),

∇νu(x) = IPTν(x)∇u(x) ν-a.e. x ∈ Ω,

where IPTν(x) is the orthogonal projector on Tν(x), Lip(Ω) is the set of Lipchitz continuous function equippedwith the uniform
convergence and L∞ν (Ω)

N is equipped with the weak star topology. A RN -valued RadonmeasureΦ is said to be a tangential
measure onΩ provided there exists ν ∈Mb(Ω)

+ andσ ∈ L1ν(Ω)
N , such thatσ(x) ∈ Tν(x), ν-a.e. x ∈ Ω andΦ = σν. At last,

thanks to Proposition 3.5 of [21], we know that for any tangential measureΦ = σν onΩ , such that−∇ ·Φ = µ ∈ Mb(Ω),
we have the following integration by parts∫

Ω

udµ =
∫
Ω

σ · ∇νudν, (8)

for any u ∈ Lip(Ω) null on the boundary ofΩ .
To prove Theorem 1, we use in Section 3. Below are the following two lemmas :

Lemma 1. For any z ∈ K, there exists (zε)ε>0 a sequence inD(Ω) ∩ K such that

zε → z in C0(Ω) and in W 1,∞(Ω)-weak∗.

Proof. Let d be the solution of the maximization problem∫
Ω

d(x)dx = max
ξ∈K

∫
Ω

ξ(x)dx.

Then, for any u ∈ K , we have u ≤ d in Ω . Indeed, for any u ∈ K , taking ũ(x) = max(u(x), d(x)) for any x ∈ Ω , we have
ũ ∈ K , ũ ≥ d inΩ and

∫
Ω
ũ(x)dx ≤

∫
Ω
d(x)dx, so that ũ = d inΩ and, then u ≤ d inΩ . Now, let us consider

dε = (d− ε)+ inΩ.

We see that dε ∈ K and, for any ε > 0, there existsΩε ⊂⊂ Ω , such that dε is compactly supported inΩε . Let us denote by

z̃ε(x) =
{
(dε(x)− z−(x))+ − (dε(x)− z+(x))+ if x ∈ Ωε

0 if x ∈ RN \Ωε .

It is not difficult to verify that z̃ε ∈ K and that z̃ε is supported in Ωε . Let (ρλ)λ>0 be the standard sequence of mollifiers.

We denote by m := min
{
k(x) ; x ∈ Ω

}
and, for any ε > 0, we denote by ω(ε) the modulus of continuity of z ;

i.e. ω(ε) = sup|x−y|≤ε |z(x)− z(y)|. Now, take α > 0 small enough so that, for any 0 < ε < 1, we have

zε :=
m

m+ ω(ε)
z̃ε ∗ ραε ∈ D(Ω)
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and

|∇zε(x)| ≤
m

m+ ω(ε)

(
k(x)+ ω(ε)

)
≤ k(x) a. e. x ∈ Ω.

Since, as ε → 0, dε converges to d in C0(Ω), ω(ε) → 0 and zε is bounded in W 1,∞(Ω), then the result of the lemma
follows. �

Lemma 2. For any u ∈ K and ν ∈Mb(Ω)
+, we have

|∇νu| ≤ k ν-a.e. inΩ.

Proof. If u ∈ D(Ω), then ∇νu(x) coincides with IPTν (x)∇u(x), ν-a.e. x ∈ Ω , and then the property is true. For u ∈ K , let
(uε)ε>0 be a sequence of regularization of u as given by Lemma 1. Thanks to the first part of the proof, we get |∇uε| ≤ k, ν-
a.e. inΩ . At last, thanks to the continuity of the operator∇ν (cf. Proposition 3.2 of [21]),∇νuε → ∇νu in L∞(Ω, dν)-weak∗,
which implies that |∇νu| ≤ kν-a.e. inΩ . �

3. Proof of Theorem 1

The proof of Theorem 1, follows as a consequence of the sequence of the lemmas below.

Lemma 3. Let µ ∈Mb(Ω), u ∈ K andΦ ∈Mb(Ω)
N . If (u,Φ) satisfies (3), then∫

Ω

kd|Φ| =
∫
Ω

udµ. (9)

and u satisfies (5).

Proof. Let uε ∈ D(Ω) ∩ K be the approximation of u as given by Lemma 1. Then the Eq. (9) is a simple consequence of (3)
and the fact that∫

Ω

udµ = lim
ε→0

∫
Ω

uεdµ

= lim
ε→0

∫
Ω

∇uε ·
Φ

|Φ|
d|Φ|

≤

∫
Ω

kd|Φ|.

As to (5), it follows again from Lemma 1. Indeed, for any ξ ∈ K , we have∫
Ω

ξdµ = lim
ε→0

∫
Ω

Φ

|Φ|
· ∇ξεd|Φ|

≤

∫
Ω

kd|Φ| =
∫
Ω

udµ,

where we used ξε ∈ D(Ω) ∩ K the approximation of ξ as given by Lemma 1. �

Lemma 4. Let µ ∈Mb(Ω), u ∈ K andΦ ∈Mb(Ω)
N be given such that−∇·Φ = µ inD ′(Ω). Then, the following assumptions

are equivalent :

1.
∫
Ω
kd|Φ| ≤

∫
Ω
udµ.

2.
∫
Ω
kd|Φ| = limε→0

∫
Ω

Φ

|Φ|
· ∇uεd|Φ|, for any uε ∈ K ∩D(Ω), such that uε → u in W 1,∞(Ω)-weak∗.

3. kΦ = |Φ|∇|Φ|u.

Proof. Step 1: 1⇔ 2. First, notice that since−∇ · Φ = µ inD ′(Ω), then∫
Ω

udµ = lim
ε→0

∫
Ω

uεdµ = lim
ε→0

∫
Ω

∇uε ·
Φ

|Φ|
d|Φ|,

for any uε ∈ D(Ω), such that uε → u inC0(Ω). So, the equivalence between 1 and 2 is an obvious consequence of Lemma 1
and the first part of Lemma 3.
Step 2: 1⇒ 3. Now assume that (u,Φ) satisfies 1. Thanks to the continuity of the operator ∇|Φ|, we have∫

Ω

kd|Φ| ≤
∫
Ω

udµ = lim
ε→0

∫
Ω

∇uε ·
Φ

|Φ|
d|Φ| =

∫
Ω

∇|Φ|u ·
Φ

|Φ|
d|Φ|, (10)
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In addition, since by Lemma 2, we have |∇|Φ|u| ≤ k|Φ|-a.e. inΩ , then (10) implies that

∇|Φ|u ·
Φ

|Φ|
= k |Φ|-a.e. inΩ,

which implies 3.
Step 3: 3⇒ 1. Assume that (u,Φ) satisfies 3., then ∇|Φ|u · Φ|Φ| = k, |Φ|-a.e. inΩ . By using (8), we get∫

Ω

kd|Φ| =
∫
Ω

Φ

|Φ|
· ∇|Φ|ud|Φ| =

∫
Ω

udµ,

which implies 2. �

Lemma 5. Let ν ∈Mb(Ω) and u ∈ K. If (u,Φ) is a weak solution of (3), then∫
Ω

kd|Φ| = min
{∫

Ω

kd|ν| ; − ∇ · ν = µ inD ′(Ω)

}
.

Proof. Let ν ∈ Mb(Ω) be such that−∇ · ν = µ inD ′(Ω). Since, (u,Φ) is a weak solution then, by using uε ∈ D(Ω) ∩ K
the approximation of u as given by Lemma 1, we have∫

Ω

kd|Φ| ≤
∫
Ω

u dµ = lim
ε→0

∫
Ω

uε dµ = lim
ε→0

∫
Ω

∇uε ·
ν

|ν|
d|ν|

≤

∫
Ω

kd|ν|,

and the proof is complete. �

As a consequence of Lemmas 4 and 5, we deduce that (3) implies (2) and (5) is equivalent to (3) and (3) implies (4). Now,
let us prove both that (4) implies (3) and, that (5) implies (3). To this end, we consider the elliptic equationλ uε −∇ · wε = νεwε = φε(x,∇uε)

∣∣∣∣ inΩ

uε = 0 on ∂Ω,
(Sε)

where νε is a given measure inMb(Ω), λ ≥ 0 is fixed and, for any ε > 0 and x ∈ Ω, φε(x, .) : RN → RN is given by

φε(x, r) =
1
ε

(
(|r| − k(x))+

)(p−1) r
|r|
, for any r ∈ RN ,

with p > N fixed. It is not difficult to see that φε satisfies the following properties

(i) for any r1, r2 ∈ RN and x ∈ Ω,
(
φε(x, r1)− φε(x, r2)

)
· (r1 − r2) ≥ 0.

(ii) there exists ε0 > 0 and A > 1 such that φε(x, r) · r ≥ |r|p for any x ∈ Ω, |r| ≥ A and ε < ε0.
(iii) for any ε > 0, r ∈ RN and x ∈ Ω, k|φε(x, r)| ≤ φε(x, r) · r .

So (see for instance [22]), for any νε ∈ W−1,p
′

(Ω), (Sε) has a unique weak solution uε . In particular, since for any
p > N,Mb(Ω)may be injected continuously intoW−1,p

′

(Ω), then for any νε ∈Mb(Ω), (Sε) has a unique weak solution uε .

Lemma 6. Let (νε)0<ε<ε0 a bounded sequence in W
−1,p′(Ω) and (uε)0<ε<ε0 the sequence of solutions of (Sε). Then,

1. (uε)0<ε<ε0 is bounded in W
1,p
0 (Ω).

2.
(
Φε(.,∇uε)

)
0<ε<ε0

is bounded L1(Ω)N .

3. For any Borel set B ⊆ Ω ,

lim inf
ε→0

∫
B
k|∇uε|p−1 ≤

∫
B
kp.

Proof. 1. Taking uε as a test function in (Sε), we get
1
ε

∫
Ω

(|∇uε| − k)+(p−1)|∇uε| =
∫
Ω

Φε(.,∇uε) · ∇uε

=

∫
Ω

uεdνε − λ
∫
Ω

u2ε

≤ C‖νε‖W−1,p′ (Ω)‖∇uε‖Lp(Ω), (11)
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where C is the constant of Poincaré inequality. Using (11) and property (ii) of φε , for any 0 < ε < ε0, we get∫
Ω

|∇uε|p =
∫
[|∇uε |≤A]

|∇uε|p +
∫
[|∇uε |>A]

|∇uε|p

≤

∫
[|∇uε |≤A]

|∇uε|p +
1
ε

∫
Ω

(|∇uε| − k)+(p−1)|∇uε|

≤

∫
[|∇uε |≤A]

|∇uε|p + C‖vε‖W−1,p′ (Ω)‖∇uε‖Lp(Ω)

≤ |A|p|Ω| + C‖νε‖W−1,p′ (Ω)‖∇uε‖Lp(Ω).

Thus, by Young inequality, uε is bounded inW
1,p
0 (Ω).

2. Since min
{
k(x) ; x ∈ Ω

}
> 0, then the second part of the lemma follows by the assumption (iii) onΦε and the first part.

3. Now, let B ⊆ Ω be a fixed Borel set. We have,(∫
B
|k∇uε|p−1

) 1
p−1

≤

(∫
B
k(|∇uε| − k)+(p−1)

) 1
p−1

+

(∫
B
kp
) 1
p−1

≤

(∫
B
(|∇uε| − k)+(p−1)|∇uε|

) 1
p−1

+

(∫
B
kp
) 1
p−1

≤

(
Cε‖νε‖W−1,p′ (Ω)‖∇uε‖Lp(Ω)

) 1
p−1
+

(∫
B
kp
) 1
p−1

.

Letting ε→ 0, and using the fact that uε and νε are bounded respectively inW
1,p
0 (Ω) andW−1,p

′

0 (Ω),we obtain

lim inf
ε→0

∫
B
k|∇uε|p−1 ≤

∫
B
kp. �

Lemma 7. Under the assumptions of Lemma 6, suppose that ν ∈Mb(Ω) is such that

νε → ν weakly inMb(Ω).

Then, there exists a subsequence that we denote again by ε, such that, as ε→ 0,

uε → u in C0(Ω) and in W 1,∞(Ω)-weak∗, (12)

Φε(.,∇uε)→ Φ inMb(Ω)
N -weak∗, (13)

and ∫
Ω

k|Φε(.,∇uε)| →
∫
Ω

kd|Φ|. (14)

Moreover, u ∈ K and (u,Φ) satisfiesλu−∇ · Φ = ν inD ′(Ω)∫
kd|Φ| ≤

∫
udν − λ

∫
u2. (15)

Proof. Thanks to Lemma 6, there exists u ∈ W 1,p0 (Ω),Φ ∈ Mb(Ω)
N and a subsequence that we denote again by ε, such

that (12) and (13) are fulfilled and λu−∇ · Φ = ν inD ′(Ω). Thanks to the third part of Lemma 6 and (12), we have∫
B
k|∇u|p−1 ≤ lim inf

ε→0

∫
B
k|∇uε|p−1 ≤

∫
B
kp,

for any Borel set B ⊆ Ω . Thus |∇u| ≤ k, a.e. inΩ , and then u ∈ K . To prove (14), we see that using property (iii) of Φ and
(12), we have

lim sup
ε→0

∫
Ω

k|φε(.,∇uε)| ≤ lim sup
ε→0

∫
Ω

φε(.,∇uε) · ∇uε

≤ lim sup
ε→0

(∫
Ω

uεdνε − λ
∫
Ω

u2ε
)

≤

∫
Ω

udν − λ
∫
Ω

u2. (16)
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In addition, we have∫
Ω

udν = lim
ε→0

∫
Ω

udνε = lim
ε→0

(∫
Ω

φε(.,∇uε) · ∇u+ λ
∫
Ω

uεu
)

≤ lim inf
ε→0

∫
Ω

k|φε(.,∇uε)| + λ
∫
Ω

u2. (17)

So, (16) and (17) implies that

lim
ε→0

∫
Ω

k|φε(.,∇uε)| =
∫
Ω

udν − λ
∫
Ω

u2. (18)

and, using (13), we get∫
kd|Φ| ≤ lim

ε→0

∫
Ω

k|φε(.,∇uε)| =
∫
Ω

udν − λ
∫
Ω

u2. (19)

This ends up as the proof of (15). At last, using uε the approximation as given by Lemma 1, we see that∫
Ω

udν − λ
∫
Ω

u2 = lim
ε→0

∫
Ω

uεdν − λ
∫
Ω

uεu

= lim
ε→0

∫
Ω

∇uε ·
Φ

|Φ|
d|Φ|

≤

∫
Ω

kd|Φ|.

Combining this with (15), we obtain∫
Ω

kd|Φ| =
∫
Ω

udν − λ
∫
Ω

u2,

so that, by using (14) and (18) follows. �

Lemma 8. Let ν ∈Mb(Ω). If λ 6= 0, then the following assumptions are equivalent :
1. v ∈ K and

∫
Ω
(v − z)dν ≥

∫
Ω
λv(v − z)dx for any z ∈ K .

2. For any νε ∈Mb(Ω) such that

νε → ν weakly inMb(Ω),

we have v = C0(Ω)− limε→0 uε , where uε is the solution of (Sε).

Proof. Since λ 6= 0, then the proof is a simple consequence of Lemmas 3 and 7 and the uniqueness of v given by 1. �

Lemma 9. If u is a solution of (1), then there existsΦ ∈Mb(Ω), such that (u,Φ) satisfies (3).

Proof. Assume that u is a solution of (1); i.e. u ∈ K and
∫
Ω
udµ = maxξ∈K

∫
Ω
udµ. Taking in Lemma 8 λ = 1, ν = µ + u

and v = u, we deduce that u = C0(Ω)− limε→0 uε , where uε is the solution of{
uε −∇ · Φε(x,∇uε) = µ+ u inD ′(Ω)

uε ∈ W
1,p
0 (Ω).

Then, using Lemma 7, the result of the lemma follows. �

Proof of Theorem 1. Thanks to Lemmas 3 and 9, the first part of the theorem follows ; i.e. u is a solution of (5) if and only
if there exists Φ ∈ Mb(Ω)

N such that (u,Φ) satisfies (3). The equivalence between (2)and (3) follows by Lemma 4. As a
consequence of Lemma 5, we have (3) implies (4) and the fact that (4) implies (3) follows by definition ofΦ in (4). To prove
the last part of the theorem, let Φ ∈Mb(Ω)

N be such that−∇ · Φ = µ inD ′(Ω) and∫
Ω

kd|Φ| = min
{∫

Ω

kd|ν| ; − ∇ · ν = µ inD ′(Ω)

}
.

Let us prove that, there exists v ∈ K such that∫
Ω

kd|Φ| =
∫
Ω

vdµ.

To this end, let µε ∈ W−1,p
′

(Ω) be such that

µε → µ weakly inMb(Ω)
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and let us consider uε a solution of (Sε)with λ = 0. Then, by definition ofΦ in (4), we have∫
Ω

kd|Φ| ≤
∫
Ω

k(x)|Φε(x,∇uε(x))|dx.

So, using (14) and (15), we deduce that∫
Ω

kd|Φ| ≤
∫
Ω

udν,

and the proof is complete. �
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