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Abstract

We consider a degenerate elliptic-parabolic problem with nonlinear dynamical
boundary conditions. Assuming L1-data, we prove existence and uniqueness in the
framework of renormalized solutions. Particular instances of this problem appear
in various phenomena with changes of phase like multiphase Stefan problems and
in the weak formulation of the mathematical model of the so called Hele Shaw
problem. Also, the problem with non-homogeneous Neumann boundary condition
is included.

Mathematics Subject Classification (2000): 35J60, 35D02

1 Introduction

In this paper we obtain existence and uniqueness of renormalized solutions for a de-
generate elliptic-parabolic problem with nonlinear dynamical boundary condition of the
form

Pγ,β(f, g, z0, w0)





zt − diva(x,Du) = f, z ∈ γ(u), in QT :=]0, T [×Ω

wt + a(x,Du) · η = g, w ∈ β(u), on ST :=]0, T [×∂Ω

z(0) = z0 in Ω, w(0) = w0 in ∂Ω,
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where T > 0, Ω is a bounded domain in RN with smooth boundary ∂Ω, v0 ∈ L1(Ω),
w0 ∈ L1(∂Ω), f ∈ L1(0, T ;L1(Ω)), g ∈ L1(0, T ;L1(∂Ω)) and η is the unit outward
normal on ∂Ω. Here the function a : Ω×RN → RN is a Carathéodory function satisfying
the classical Leray-Lions conditions. The nonlinearities γ and β are maximal monotone
graphs in R2 (see [23]) such that 0 ∈ γ(0), Dom(γ) = R, and 0 ∈ β(0). In particular, γ
and β may be multivalued and this allows to include the Dirichlet boundary condition
(taking β to be the monotone graph {0}×R), the non-homogeneous Neumann boundary
condition (taking β to be the monotone graph β(r) = 0 for all r ∈ R), as well as many
other nonlinear fluxes on the boundary that occur in some problems in Mechanics and
Physics (see [31] or [22]). Note also that, since γ may be multivalued, problems of type
Pγ,β(f, g, z0, w0) appear in various phenomena with changes of phase like multiphase
Stefan problem (see [28]) and in the weak formulation of the mathematical model of the
so called Hele Shaw problem (see [29] and [32]), for which γ is the Heaviside maximal
monotone graph. Also, if γ(r) = 0 for all r ∈ R, we consider an elliptic problem with
nonlinear dynamical boundary condition.

The dynamical boundary conditions, although not too widely considered in the
mathematical literature, are very natural in many mathematical models as heat transfer
in a solid in contact with moving fluid, thermoelasticity, diffusion phenomena, problems
in fluid dynamics, etc. (see [11], [26], [33], [47] and the reference therein). These dy-
namical boundary conditions also appear in the study of the Stefan problem when the
boundary material has a large thermal conductivity and sufficiently small thickness.
Hence, the boundary material is regarded as the boundary of the domain. For instance,
this is the case if one considers an iron ball in which water and ice coexist. For more de-
tails about these physical considerations one can see for instance [1]. They also appear
in the study of the Hele-Shaw problem. Recall that, in [29] the authors give the weak
formulation of the problem in the form of a non linear degenerate parabolic problem,
governed by the Laplace operator and the multivalued Heaviside function, with static
boundary condition. From the physical point of view they assume that the prescribed
value of the flux on the boundary is known. But, in some practical situations, it may
be not possible to prescribe or to control the exact value of the flux on the boundary.
In [46] (see also [47]), the authors consider the case of nonlocal dynamical boundary
conditions and use variational methods to solve the problem. In the present paper, we
cover the case of general nonlinear diffusion and local dynamical boundary conditions.
Notice, that general nonlinear diffusion operators of Leray-Lions type, different from
the Laplacian, appear when one deals with non-Newtonian fluids (see, e.g., [9], [41, 42]
and the references therein for the case of Hele-Shaw problem with non-Newtonian flu-
ids). Another interesting application we have in mind concerns the filtration equation
with dynamical boundary conditions (see, e.g., [48]), which appears for example in the
study of rainfall infiltration through the soil, when the accumulation of the water on
the ground surfaces caused by the saturation of the surface layer is taken into account.
Observe that β may be such that Ran(β) is different from R, so that we cover the case
where the boundary conditions are either dynamical or static with respect to the values
of w in the problem under consideration. This is the situation where the saturation
happens only for values of w in a subinterval of R.
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There is an extensive literature for doubly non linear problems with homogeneous
Dirichlet boundary conditions (see [2], [10], [3], [17], [19], [24], [38] and the refer-
ences therein). Nevertheless, to our knowledge, there is little literature on problem
Pγ,β(f, g, z0, w0) as we pointed out in [5], where existence and uniqueness of weak so-
lutions of this problem have been obtained for Lp′- data. Our aim in this paper is to
prove existence and uniqueness of solutions for L1-data of Pγ,β(f, g, z0, w0). There are
mainly two type of difficulties in studying this kind of problems, the nonlinearities γ
and β and the consideration of L1-data so that finite energy solutions could not be
expected. To solve this last difficulty, the framework of renormalized solutions, which
was originally introduced in [30] for transport equations, has proved to be a powerful
approach to study large class of second order PDE’s (see [3], [7], [18], [19], [25] and the
references therein).

Another main difficulty when dealing with doubly nonlinear parabolic problems is
the uniqueness. For the Laplace operator, thanks to the linearity of the operator, the
problem can be solved by using suitable test functions with respect to u (see for instance
[37]). For nonlinear operators this kind of argument turns out to be non useful. In [17],
for an elliptic-parabolic problem with Dirichlet boundary condition, it is shown that the
notion of integral solution ([12]) is a very useful tool to prove uniqueness (see also [36]
for nonhomogeneous and time dependent Neumann boundary conditions). For general
non linearities, even for homogeneous Dirichlet boundary condition, the question of
uniqueness is more difficult and most of the arguments used in the literature are based
on doubling variables methods (see for instance [24], [25], [38], [19], [8] and the references
therein). In [5] we have shown that the notion of integral solution is a very useful tool
to prove uniqueness of weak solutions of problem Pγ,β(f, g, z0, w0) for Lp′- data. In
this paper, we use the same method to prove uniqueness of renormalized solutions of
problem Pγ,β(f, g, z0, w0) for L1- data. At this point we want to remark the usefulness
of the test functions introduced in [19] to prove uniqueness.

We want to point out that our existence and uniqueness proofs work without any
continuity assumptions on γ−1 or β−1 and any hypothesis about the jumps of γ or β.
For the existence of the renormalized solution, we use a monotone approximation of f, g,
z0 and w0, by L∞ functions fm,n, gm,n, z0,m,n and w0,m,n. So that, by using the results
of [5] the problem has a unique weak solution (zm,n, wm,n). Thanks to the Nonlinear
Semigroup Theory (see [15], [50]), the results of [4] concerning the stationary problem in
the sense of this theory and the operator governing the Cauchy problem associated with
Pγ,β(f, g, z0, w0), the L1 convergence of (zm,n, wm,n) is not difficult. Nevertheless, the
characterization of the limit of (zm,n, wm,n) in terms of the partial differential equation is
very technical due to the fact that the problem is doubly nonlinear. For the convergence
of um,n (see the proof of Theorem 2.6), we use the monotonicity with respect to m
and n, as it was used in [3], and for the identification of the limit equation we use
Landes approximation (see [43]). Recall that this kind of arguments was also used
in [3] for elliptic-parabolic problems and in [39] for degenerate parabolic problems of
Stefan type. Here we extend these arguments to our general setting (other kind of
arguments may be found in [19]). For the uniqueness, we show that renormalized
solutions are integral solutions, concept due to Ph. Bénilan (see [12], [15]). In other
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words, we show that renormalized solutions satisfy a contraction property with respect
to stationary solutions. The main difficulties here are due to the nonlinear and non-
homogeneous boundary conditions and to the jumps of γ and β. In [19], to obtain a
contraction principle for a similar problem in the case of Dirichlet boundary condition
(β = {0} × R), and for γ having a set of jumps without density points, the authors
give an improvement of the “hole filling” argument of [24] and use the doubling variable
technique in time. This technique can be adapted to our problem. Now, as in [5], by the
Nonlinear Semigroup Theory, we are able to simplify the proof of uniqueness without
using the doubling variable technique in time and without imposing any condition on
the jumps of γ and β.

Let us briefly summarize the contents of the paper. In Section 2 we fix the nota-
tion and give some preliminaries; we also give the concept of renormalized solution for
the problem Pγ,β(f, g, z0, w0) and state the existence and uniqueness result for renor-
malized solutions of problem Pγ,β(f, g, z0, w0). In Section 3 we show the existence of
renormalized solutions and finally in Section 4 we prove the uniqueness of renormalized
solutions.

2 Preliminaries and main result

In this section, after some preliminaries, we introduce the concept of renormalized solu-
tion for problem Pγ,β(f, g, z0, w0) and we state the existence and uniqueness result for
this type of solutions.

Throughout the paper, Ω ⊂ R is a bounded domain with smooth boundary ∂Ω, p >
1, γ and β are maximal monotone graphs in R2 such that Dom(γ) = R, 0 ∈ γ(0)∩ β(0)
and the Carathéodory function a : Ω× RN → RN satisfies

(H1) there exists λ > 0 such that a(x, ξ) ·ξ ≥ λ|ξ|p for a.e. x ∈ Ω and for all ξ ∈ RN ,

(H2) there exists c > 0 and % ∈ Lp′(Ω) such that |a(x, ξ)| ≤ c(%(x) + |ξ|p−1) for
a.e. x ∈ Ω and for all ξ ∈ RN , where p′ = p

p−1 ,

(H3) (a(x, ξ)− a(x, η)) · (ξ − η) > 0 for a.e. x ∈ Ω and for all ξ, η ∈ RN , ξ 6= η.

The hypotheses (H1 − H3) are classical in the study of nonlinear operators in di-
vergence form (see [45] or [13]). The model example of function a satisfying these
hypotheses is a(x, ξ) = |ξ|p−2ξ. The corresponding operator is the p-Laplacian operator
∆p(u) = div(|Du|p−2Du).

In [13], the authors introduce the set

T 1,p(Ω) = {u : Ω −→ R measurable such that Tk(u) ∈W 1,p(Ω) ∀k > 0},

where Tk(s) = sup(−k, inf(s, k)). They also prove that given u ∈ T 1,p(Ω), there exists
a unique measurable function v : Ω → RN such that

DTk(u) = vχ{|u|<k} ∀k > 0.
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This function v will be denoted by Du. It is clear that if u ∈W 1,p(Ω), then v ∈ Lp(Ω)
and v = Du in the usual sense.

We denote T 1,p
τ (Ω) the set of functions u in T 1,p(Ω) such that there exists a mea-

surable function w on ∂Ω with Tk(w) = tr (Tk(u)) a.e. on ∂Ω for all k > 0, where tr is
the usual W 1,p-trace. The function w is the trace of u in a generalized sense. In the
sequel, the trace of u ∈ T 1,p

τ (Ω) on ∂Ω will be denoted by u.

For a maximal monotone graph ϑ in R× R, its main section ϑ0 is defined by

ϑ0(s) :=





the element of minimal absolute value of ϑ(s) if ϑ(s) 6= ∅,

+∞ if [s,+∞) ∩Dom(ϑ) = ∅,

−∞ if (−∞, s] ∩Dom(ϑ) = ∅.
We shall denote ϑ− := inf Ran(ϑ) and ϑ+ := supRan(ϑ). If 0 ∈ Dom(ϑ), jϑ(r) =∫ r

0
ϑ0(s)ds defines a convex l.s.c. function such that ϑ = ∂jϑ. If j∗ϑ is the Legendre

transformation of jϑ then ϑ−1 = ∂j∗ϑ.

For the maximal monotone graphs γ and β, we shall denote

R+
γ,β := γ+|Ω|+ β+|∂Ω|, R−γ,β := γ−|Ω|+ β−|∂Ω|.

In the sequel, we suppose R−γ,β < R+
γ,β and we write Rγ,β :=]R−γ,β ,R+

γ,β [.

It is said that a is smooth (see [6] and [4]) if, for any φ ∈ L∞(Ω) such that there
exists a bounded weak solution u of the homogeneous Dirichlet problem

(D)
{ − div a(x,Du) = φ in Ω
u = 0 on ∂Ω,

there exists g ∈ L1(∂Ω) such that u is also a weak solution of the Neumann problem

(N)
{ − div a(x,Du) = φ in Ω

a(x,Du) · η = g on ∂Ω.

Functions a corresponding to linear operators with smooth coefficients and p-Laplacian
type operators are smooth (see [22] and [44]).

The following integration by parts formula, which is a slight modification of [5,
Lemma 4.1], will play an important role in our arguments. We denote by (., .) the
pairing between (W 1,p(Ω))′ and W 1,p(Ω).

Lemma 2.1 ([5]) Let ϑ and % be maximal monotone graphs in R2. Let z ∈ C([0, T ] :
L1(Ω)), w ∈ C([0, T ] : L1(∂Ω)), F ∈ Lp′(0, T ; (W 1,p(Ω))′), f ∈ L1(0, T ;L1(Ω)) and
g ∈ L1(0, T ;L1(∂Ω)) such that

∫ T

0

∫

Ω

z(t)ψt +
∫ T

0

∫

∂Ω

w(t)ψt
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=
∫ T

0

(F (t), ψ(t))dt+
∫ T

0

∫

Ω

f(t)ψ(t)dt+
∫ T

0

∫

∂Ω

g(t)ψ(t)dt

for any ψ ∈W 1,1(0, T ;W 1,1(Ω)∩L∞(Ω))∩Lp(0, T ;W 1,p(Ω))∩L∞(0, T ;L∞(Ω)), ψ(0) =
ψ(T ) = 0. Then,

∫ T

0

∫

Ω

(∫ z(t)

0

H(x, (ϑ−1)0(s))ds

)
ψt +

∫ T

0

∫

∂Ω

(∫ w(t)

0

H(x, (%−1)0(s))ds

)
ψt

=
∫ T

0

(F (t),H(x, u(t))ψ(t))dt+
∫ T

0

∫

Ω

f(t)H(x, u(t))ψ(t)dt

+
∫ T

0

∫

∂Ω

g(t)H(x, u(t))ψ(t)dt,

being u ∈ Lp(0, T ;W 1,p(Ω)) such that z ∈ ϑ(u) a.e. in QT and w ∈ %(u) a.e. in
ST , H(x, r) a bounded Caratheodory function of bounded variation in r, such that
H(., u(., .)) ∈ Lp(0, T ;W 1,p(Ω)), and ψ ∈ D(]0, T [×RN ).

We now recall the concept of weak solution for problem Pγ,β(f, g, z0, w0) and state
the existence and uniqueness result given in [5] for such solutions.

Definition 2.2 Given f ∈ L1(0, T ;L1(Ω)), g ∈ L1(0, T ;L1(∂Ω)), z0 ∈ L1(Ω) and
w0 ∈ L1(∂Ω), a weak solution of Pγ,β(f, g, z0, w0) in [0, T ] is a couple (z, w) such that
z ∈ C([0, T ] : L1(Ω)), w ∈ C([0, T ] : L1(∂Ω)), z(0) = z0, w(0) = w0 and there exists
u ∈ Lp(0, T ;W 1,p(Ω)) such that z ∈ γ(u) a.e. in QT , w ∈ β(u) a.e. on ST and

d

dt

∫

Ω

z(t)ξ +
d

dt

∫

∂Ω

w(t)ξ +
∫

Ω

a(x,Du(t)) ·Dξ =
∫

Ω

f(t)ξ +
∫

∂Ω

g(t)ξ in D′(]0, T [)

(1)
for any ξ ∈ C1(Ω).

Theorem 2.3 ([5]) Assume Dom(γ) = R and assume either Dom(β) = R or a smooth.
Let T > 0. Let f ∈ Lp′(0, T ;Lp′(Ω)), g ∈ Lp′(0, T ;Lp′(∂Ω)), z0 ∈ Lp′(Ω) and w0 ∈
Lp′(∂Ω) such that

γ− ≤ z0 ≤ γ+, β− ≤ w0 ≤ β+, (2)

∫

Ω

j∗γ(z0) +
∫

Γ

j∗β(w0) < +∞, (3)

and ∫

Ω

z0 +
∫

∂Ω

w0 +
∫ t

0

(∫

Ω

f +
∫

∂Ω

g

)
∈ Rγ,β ∀ t ∈ [0, T ]. (4)

Then, there exists a unique weak solution (z, w) of problem Pγ,β(f, g, z0, w0) in [0, T ].
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Moreover, the following L1-contraction principle holds. For i = 1, 2, let fi ∈
L1(0, T ;L1(Ω)), gi ∈ L1(0, T ;L1(∂Ω)), zi0 ∈ L1(Ω) and wi0 ∈ L1(∂Ω); let (zi, wi)
be a weak solution in [0, T ] of problem Pγ,β(fi, gi, zi0, wi0), i = 1, 2. Then

∫

Ω

(z1(t)− z2(t))+ +
∫

∂Ω

(w1(t)− w2(t))+ ≤
∫

Ω

(z10 − z20)+ +
∫

∂Ω

(w10 − w20)+

+
∫ t

0

∫

Ω

(f1(τ)− f2(τ))+ dτ +
∫ t

0

∫

∂Ω

(g1(τ)− g2(τ))+ dτ

for almost every t ∈]0, T [.

We recall that in the case β = 0, for the Laplacian operator and γ the multivalued
Heaviside function (i.e., for the Hele-Shaw problem), existence and uniqueness of weak
solutions for this problem is known to be true only if

∫

Ω

z0 +
∫ t

0

(∫

Ω

f +
∫

∂Ω

g

)
∈ (0, |Ω|) for any t ∈ [0, T )

(see [35] or [40])), so condition (4) is necessary.

Let us give the concept of renormalized solution.

Definition 2.4 Given f ∈ L1(0, T ;L1(Ω)), g ∈ L1(0, T ;L1(∂Ω)), z0 ∈ L1(Ω) and
w0 ∈ L1(∂Ω), a renormalized solution of Pγ,β(f, g, z0, w0) in [0, T ] is a couple (z, w),
z ∈ C([0, T ] : L1(Ω)), w ∈ C([0, T ] : L1(∂Ω)), z(0) = z0, w(0) = w0, for which there
exists a measurable function u in ]0, T [×Ω, u(t) ∈ T 1,p

τ (Ω) a.e. t ∈]0, T [, such that
Tk(u) ∈ Lp(0, T ;W 1,p(Ω)) for all k > 0, z ∈ γ(u) a.e. in QT , w ∈ β(u) a.e. on ST ,

d

dt

∫

Ω

(∫ z(t)

0

H((γ−1)0(s))ds

)
ξ +

d

dt

∫

∂Ω

(∫ w(t)

0

H((β−1)0(s))ds

)
ξ

+
∫

Ω

a(x,Du(t)) ·D (H(u(t))ξ) =
∫

Ω

f(t)H(u(t))ξ +
∫

∂Ω

g(t)H(u(t))ξ

(5)

in D′(]0, T [), for any ξ ∈ C1(Ω) and any Lipschitz continuous function H : R → R of
compact support, and

lim
n→+∞

∫

{(t,x)∈QT :n≤|u(t,x)|≤n+1}
a(x,Du) ·Du = 0. (6)

Remark 2.5 (i) In (5) and (6) every term is well defined. Observe that the third term
of the left hand side of (5) has to be understood as

∫

Ω

a(x,Du(t)) ·D (H(u(t))ξ) =
∫

Ω

a(x,DTM (u(t))) ·D (H(TM (u(t)))ξ) ,
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where M > 0 is such that supp(H) ⊂ [−M,M ]. Similarly, the integral in (6) has to be
understood as

∫

{(t,x)∈QT :n≤|u(t,x)|≤n+1}
a(x,DTn+1(u)) ·DTn+1(u).

(ii) A renormalized solution satisfies

∫

Ω

z(t) +
∫

∂Ω

w(t) =
∫

Ω

z0 +
∫

∂Ω

w0 +
∫ t

0

(∫

Ω

f +
∫

∂Ω

g

)
∀t ∈ [0, T ]. (7)

(iii) A weak solution in the sense of Definition 2.2 is a renormalized solution. In
fact, if (z, w) is a weak solution of Pγ,β(f, g, z0, w0) in [0, T ], then there exists u ∈
Lp(0, T ;W 1,p(Ω)) such that z ∈ γ(u) a.e. in QT , w ∈ β(u) a.e. on ST and

∫ T

0

∫

Ω

a(x,Du) ·Dψ =
∫ T

0

∫

Ω

z(t)ψt +
∫ T

0

∫

∂Ω

w(t)ψt

+
∫ T

0

∫

Ω

f(t)ψ +
∫ T

0

∫

∂Ω

g(t)ψ

(8)

for any ψ ∈W 1,1(0, T ;W 1,1(Ω)∩L∞(Ω))∩Lp(0, T ;W 1,p(Ω)), ψ(0) = ψ(T ) = 0. Then,
by Lemma 2.1, we have

∫ T

0

∫

Ω

(∫ z(t)

0

H((γ−1)0(s))ds

)
ψt +

∫ T

0

∫

∂Ω

(∫ w(t)

0

H((β−1)0(s))ds

)
ψt

=
∫ T

0

∫

Ω

a(x,Du(t)) ·D (H(u(t))ψ(t)) dt

−
∫ T

0

∫

Ω

f(t)H(u(t))ψ(t)−
∫ T

0

∫

∂Ω

g(t)H(u(t))ψ(t),

(9)

for anyH : R→ R Lipschitz continuous of compact support and ψ(t, x) = ϕ(t)ξ(x), with
ϕ ∈ D(]0, T [) and ξ ∈ C1(Ω). Hence (5) holds. Moreover, since u ∈ Lp(0, T ;W 1,p(Ω)),
(6) also holds, and consequently (z, w) is a renormalized solution of Pγ,β(f, g, z0, w0) in
[0, T ].

(iv) If u is a renormalized solution such that u ∈ Lp(0, T ;W 1,p(Ω)), u is a weak solution
in the sense of Definition 2.2.

The main result of this paper is the following existence and uniqueness theorem.

Theorem 2.6 Assume Dom(γ) = R and assume either Dom(β) = R or a smooth. Let
T > 0.
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(i) Let f ∈ L1(0, T ;L1(Ω)), g ∈ L1(0, T ;L1(∂Ω)), z0 ∈ L1(Ω) and w0 ∈ L1(∂Ω)
such that

γ− ≤ z0 ≤ γ+, β− ≤ w0 ≤ β+ (10)

and ∫

Ω

z0 +
∫

∂Ω

w0 +
∫ t

0

(∫

Ω

f +
∫

∂Ω

g

)
∈ Rγ,β ∀ t ∈ [0, T ]. (11)

Then, there exists a unique renormalized solution (z, w) of problem Pγ,β(f, g, z0, w0) in
[0, T ].

(ii) Moreover, the following L1-contraction principle holds. For i = 1, 2, let fi ∈
L1(0, T ;L1(Ω)), gi ∈ L1(0, T ;L1(∂Ω)), zi0 ∈ L1(Ω) and wi0 ∈ L1(∂Ω); and let (zi, wi)
be a renormalized solution in [0, T ] of problem Pγ,β(fi, gi, zi0, wi0), i = 1, 2. Then

∫

Ω

(z1(t)− z2(t))+ +
∫

∂Ω

(w1(t)− w2(t))+ ≤
∫

Ω

(z10 − z20)
+ +

∫

∂Ω

(w10 − w20)
+

+
∫ t

0

∫

Ω

(f1(τ)− f2(τ))+ dτ +
∫ t

0

∫

∂Ω

(g1(τ)− g2(τ))+ dτ

(12)
for almost every t ∈]0, T [.

To prove the above theorem we use the Nonlinear Semigroup Theory (see [12], [15]
or [27]).

3 Existence of renormalized solutions

In this section we prove the existence part of Theorem 2.6. We use the following lemma
proved in [5, Lemma 4.2].

Lemma 3.1 ([5]) Let {un}n∈N ⊂ W 1,p(Ω), {zn}n∈N ⊂ L1(Ω), {wn}n∈N ⊂ L1(∂Ω)
such that, for every n ∈ N, zn ∈ γ(un) a.e. in Ω and wn ∈ β(un) a.e. in ∂Ω. Let us
suppose that

(i) if R+
γ,β = +∞, there exists M > 0 such that

∫

Ω

z+
n +

∫

∂Ω

w+
n < M ∀n ∈ N;

(ii) if R+
γ,β < +∞, there exists M ∈ R such that

∫

Ω

zn +
∫

∂Ω

wn < M < R+
γ,β

and

lim
L→+∞

(∫

{x∈Ω:zn(x)<−L}
|zn|+

∫

{x∈∂Ω:wn(x)<−L}
|wn|

)
= 0

9



uniformly in n ∈ N.

Then, there exists a constant C = C(M) such that

‖u+
n ‖Lp(Ω) ≤ C

(‖Du+
n ‖Lp(Ω) + 1

) ∀n ∈ N.

Proof of Theorem 2.6 (Existence). We divide the proof in several steps.

Step 1 [Approximate problems]. For f ∈ L1(0, T ;L1(Ω)), g ∈ L1(0, T ;L1(∂Ω)), z0 ∈
L1(Ω) and w0 ∈ L1(∂Ω) satisfying (10) and (11), let

fm,n = sup{inf{m, f},−n}, gm,n = sup{inf{m, g},−n},

z0m,n = sup{inf{m, z0},−n} and w0m,n = sup{inf{m,w0},−n},
where m,n ∈ N, and consider the approximate problems

Pγ,β(fm,n, gm,n, z0m,n, w0m,n).

It is clear that for m,n large enough, fm,n, gm,n, z0m,n, w0m,n satisfy (2), (3) and (4),
in fact, there exists r1, r2 ∈ R such that, for any m,n large enough and any t ∈ [0, T ],

R−γ,β < r1 ≤
∫

Ω

z0m,n +
∫

∂Ω

w0m,n +
∫ t

0

(∫

Ω

fm,n +
∫

∂Ω

gm,n

)
≤ r2 < R+

γ,β . (13)

Therefore, by Theorem 2.3, there exists a unique weak solution (zm,n, wm,n) of prob-
lem Pγ,β(fm,n, gm,n, z0m,n, w0m,n), so there exists um,n ∈ Lp(0, T,W 1,p(Ω)) such that
zm,n ∈ γ(um,n) a.e. in Ω×]0, T [, wm,n ∈ β(um,n) a.e. in ∂Ω×]0, T [, and

∫ T

0

∫

Ω

a(x,Dum,n) ·Dψ =
∫ T

0

∫

Ω

zm,n(t)ψt +
∫ T

0

∫

∂Ω

wm,n(t)ψt

+
∫ T

0

∫

Ω

fm,n(t)ψ +
∫ T

0

∫

∂Ω

gm,n(t)ψ

(14)

for any ψ ∈W 1,1(0, T ;W 1,1(Ω) ∩ L∞(Ω)) ∩ Lp(0, T ;W 1,p(Ω)), ψ(0) = ψ(T ) = 0. Since
fm,n, gm,n, z0m,n and w0m,n are monotone non decreasing in m and monotone non
increasing in n, by results of [4] and [5], we can also consider that so are um,n, zm,n and
wm,n. Therefore, there exists a subsequence {n(m)}m such that

lim
m

(zm,n(m), wm,n(m)) = (z, w) a.e. in QT × ST , (15)

lim
m
um,n(m) = u a.e. in QT , (16)

and
lim
m
um,n(m) = v a.e. on ST , (17)

where z(t, x), w(t, x), u(t, x), v(t, x) ∈ R.
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Let us write
zm = zm,n(m), wm = wm,n(m),

um = um,n(m), (18)

fm = fm,n(m), gm = gm,n(m),

z0m = z0m,n(m) and w0m = w0m,n(m).

Step 2 [Convergence of zm, wm]. Let us see that

lim
m

(zm, wm) = (z, w) in C([0, T ];X), (19)

where X = L1(Ω)× L1(∂Ω) provided with the natural norm

‖(f, g)‖ := ‖f‖L1(Ω) + ‖g‖L1(∂Ω), (f, g) ∈ X.

Observe that then z(0) = z0 and w(0) = w0 also hold.

Consider the operator Bγ,β defined in X by (ẑ, ŵ) ∈ Bγ,β(z, w) if and only if there
exists u ∈W 1,p(Ω) such that z(x) ∈ γ(u(x)) a.e. in Ω, w(x) ∈ β(u(x)) a.e. in ∂Ω, and

∫

Ω

a(x,Du) ·Dv =
∫

Ω

ẑv +
∫

∂Ω

ŵv (20)

for all v ∈ L∞(Ω)∩W 1,p(Ω). By results in [4] and [5], we know that the abstract Cauchy
problem in X, 




V ′(t) + Bγ,β(V (t)) 3 (f, g) t ∈ (0, T )

V (0) = (z0, w0),
(21)

has a unique mild solution for any f ∈ L1(0, T ;L1(Ω)), g ∈ L1(0, T ;L1(∂Ω)), z0 ∈ L1(Ω)
and w0 ∈ L1(∂Ω) satisfying (10) and (11). Moreover, under the hypothesis of Theorem
2.3, in [5] it is proved that the mild solution of problem (21) is the unique weak solution
of Pγ,β(f, g, z0, w0).

Therefore, (zm, wm) is the mild solution of problem (21) for data (fm, gm) and
(z0m, w0m). Since (fm, gm) → (f, g) in L1(0, T ;X) and (z0m, w0m) → (z0, w0) in X,
by the Nonlinear Semigroup Theory, there exists limm(zm, wm) in C([0, T ];X) and by
(15), (19) holds, being (z, w) the mild solution of (21) for data (f, g) and (z0, w0). We
shall see that (z, w) is, in fact, a renormalized solution of problem Pγ,β(f, g, z0, w0).

Step 3 [Boundedness of Tk(um)]. Let us see there exists C1 > 0 such that, for any k > 0,

∫ T

0

∫

Ω

|DTk(um)|p ≤ k

λ

(‖(f, g)‖L1(0,T ;X) + ‖(z0, w0)‖X

)
(22)

and
‖Tk((um(t))±)‖Lp(Ω) ≤ C1

(‖DTk((um(t))±)‖Lp(Ω) + 1
) ∀ t ∈ [0, T ]. (23)
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By Lemma 2.1, we have
∫ T

0

∫

Ω

(∫ zm(t)

0

G((γ−1)0(s))ds

)
ψt +

∫ T

0

∫

∂Ω

(∫ wm(t)

0

G((β−1)0(s))ds

)
ψt

=
∫ T

0

∫

Ω

a(x,Dum(t)) ·D (G(um(t))ψ(t)) dt

−
∫ T

0

∫

Ω

fm(t)G(um(t))ψ(t)−
∫ T

0

∫

∂Ω

gm(t)G(um(t))ψ(t),

(24)

for any bounded function of bounded variationG(r) such thatG(um) ∈ Lp(0, T ;W 1,p(Ω))
and for any ψ ∈ D(]0, T [×RN ). Taking in (24) ψ(t, x) = ϕ(t), ϕ ∈ D(]0, T [), and
G(r) = Tk(r), k ≥ 0, we get

∫ T

0

ϕt

∫

Ω

(∫ zm(t)

0

Tk((γ−1)0(s))ds

)
+

∫ T

0

ϕt

∫

∂Ω

(∫ wm(t)

0

Tk((β−1)0(s))ds

)

=
∫ T

0

ϕ(t)
∫

Ω

a(x,Dum(t)) ·DTk(um(t))dt

−
∫ T

0

ϕ(t)
∫

Ω

fm(t)Tk(um(t))−
∫ T

0

ϕ(t)
∫

∂Ω

gm(t)Tk(um(t)).

(25)

Therefore

d

dt

∫

Ω

(∫ zm(t)

0

Tk((γ−1)0(s))ds

)
+
d

dt

∫

∂Ω

(∫ wm(t)

0

Tk((β−1)0(s))ds

)

+
∫

Ω

a(x,Dum(t)) ·DTk(um(t))dt =
∫

Ω

fm(t)Tk(um(t)) +
∫

∂Ω

gm(t)Tk(um(t))

(26)

in D′(]0, T [). Integrating (26) from 0 to T , and using (H1), we get (22).

In order to prove (23) we need to treat separately different cases. In the case R+
γ,β =

+∞, let

M = sup
t∈[0,T ]

(∫

Ω

z+(t) +
∫

∂Ω

w+(t)
)

+ 1.

Then, by (19) there exists m0 ∈ N such that

sup
t∈[0,T ]

(∫

Ω

(zm)+(t) +
∫

∂Ω

(wm)+(t)
)
< M ∀m ≥ m0.

In the case R+
γ,β < +∞, by (13) (see Remark 2.5 (ii) and (iii)), there exist M ∈ R and

m0 ∈ N such that, for all m ≥ m0,

sup
t∈[0,T ]

(∫

Ω

zm(t) +
∫

∂Ω

wm(t)
)
< M < R+

γ,β .
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Moreover, by (19),

lim
L→+∞

(∫

{x∈Ω:zm(t)(x)<−L}
|zm(t)|+

∫

{x∈∂Ω:wm(t)(x)<−L}
|wm(t)|

)
= 0

uniformly in m ∈ N and t ∈ [0, T ].

Let us define

zk
m =





zm if |um| < k,

γ0(k) if um ≥ k,

γ0(−k) if um ≤ −k
and

wk
m =





wm if |um| < k,

β0(k) if um ≥ k,

β0(−k) if um ≤ −k.
Then zk

m ∈ γ(Tk(um)) a.e. in QT and wk
m ∈ β(Tk(um)) a.e. in ST . Now, in the case

R+
γ,β = +∞, there exists M ∈ R such that, for all k > 0,

sup
t∈[0,T ]

(∫

Ω

(zk
m)+(t) +

∫

∂Ω

(wk
m)+(t)

)
< M ∀m ≥ m0.

And in the case R+
γ,β < +∞, there exist M < R+

γ,β and k0 such that, for all k ≥ k0 and
for all m ≥ m0,

sup
t∈[0,T ]

(∫

Ω

zk
m(t) +

∫

∂Ω

wk
m(t)

)
< M,

and

lim
L→+∞

(∫

{x∈Ω:zk
m(t)(x)<−L}

|zk
m(t)|+

∫

{x∈∂Ω:wk
m(t)(x)<−L}

|wk
m(t)|

)
= 0,

uniformly in m, k ∈ N and t ∈ [0, T ]. Therefore, by Lemma 3.1, (23) follows for the
positive part of um. For the negative part of um we use again Lemma 3.1 for ûm = −um,
ẑm = −zm, ŵm = −wm and the graphs γ̂(r) = −γ(−r) and β̂(r) = −β(−r).

Step 4 [Convergence of Tk(um)]. In this step we show that

u is finite a.e. in QT , (27)

u(t) ∈ τ 1,p
τ (Ω) a.e. t ∈]0, T [, (28)

z ∈ γ(u) a.e. in QT , (29)

w ∈ β(u) a.e. in ST , (30)
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and, for any k ∈ N,

Tk(um) converges to Tk(u) weakly in Lp(0, T ;W 1,p(Ω)),

strongly in Lp(0, T ;Lp(Ω))
(31)

and
Tk(um) converges to Tk(u) in Lp(0, T ;Lp(∂Ω)). (32)

Indeed, having in mind (22) and (23),

LN+1
({(t, x) ∈ QT : u±m(t, x) ≥ k}) ≤

∫ T

0

∫

Ω

|Tk((um(t))±)|p
kp

≤ C2

kp

∫ T

0

(
1 + ‖DTk((um(t))±)‖p

Lp(Ω)

)
dt ≤ C3

kp
(1 + k).

This implies, taking limits first as m goes to +∞ and after as k goes to +∞, that
(27) holds. Hence, again by (22), (31) and (32) hold for any k > 0, and consequently
u(t) ∈ τ 1,p(Ω) a.e. t ∈]0, T [,.

Similarly, since

(L1 ×HN−1)
({(t, x) ∈ ST : u±m(t, x) ≥ k}) ≤

∫ T

0

∫

∂Ω

|Tk((um)±)|p
kp

≤ C4

kp

∫ T

0

(‖Tk((um)±)‖Lp(Ω) + ‖DTk((um)±)‖Lp(Ω)

)p

≤ C5

kp
(1 + k),

v is measurable in ST , and (28) holds.

Finally, by (15), (16), (17), (27) and (28) and the facts that

zm ∈ γ(um) a.e. in QT ,

wm ∈ β(um) a.e. in ST ,

and γ and β are maximal monotone graphs, (29) and (30) hold.

Step 5 [Uniform renormalized condition for um]. Let us define

ν(n) := sup
m

∫

{(t,x)∈QT :n<|um(t,x)|<n+1}
a(x,Dum) ·Dum.

Then
lim
n
ν(n) = 0. (33)
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In order to prove (33) we take in (26) k = n + 1 and after k = n. Subtracting the
corresponding equalities and integrating from 0 to T , we get

0 ≤
∫

{(t,x)∈QT :n<|um(t,x)|<n+1}
a(x,Dum) ·Dum

= −
∫

Ω

∫ zm(T )

z0m

Gn((γ−1)0(s))ds−
∫

∂Ω

∫ wm(T )

w0m

Gn((β−1)0(s))ds

+
∫ T

0

∫

Ω

fmGn(um) +
∫ T

0

∫

∂Ω

gmGn(um),

(34)

where Gn(r) := Tn+1(r)− Tn(r). Therefore, since

lim
n→+∞

LN+1 ({(t, x) ∈ QT : |um(t, x)| ≥ n}) = 0

and
lim

n→+∞
(L1 ×HN−1) ({(t, x) ∈ ST : |um(t, x)| ≥ n}) = 0

uniformly in m, by equiintegrability the two last terms on the right hand side of equality
(34) go to zero as n goes to +∞. For the first term on the right hand side of (34), we
have

−
∫

Ω

∫ zm(T )

z0m

Gn((γ−1)0(s))ds ≤
∫

Ω

(
z+
0 − sup γ(n)

)+
+

∫

Ω

(
inf γ(−n)− z−0

)−

which converges to zero by (10). Similarly, we can handle with the second term on the
right hand side of (34) and the proof of (33) is concluded.

Step 6 [Convergence of a(x,DTk(um))]. Let us see that

a(x,DTk(um)) ⇀ a(x,DTk(u)) weakly in Lp′(QT ) as m→ +∞. (35)

Let n ∈ N, n > k. Given any subsequence of um, by (22) and (H2), there exists a
subsequence, still denoted by um, such that,

a(x,DTk(um)) ⇀ Φk weakly in (Lp′(QT ))N as m→ +∞. (36)

a(x,DTn+1(um)) ⇀ Φn+1 weakly in (Lp′(QT ))N as m→ +∞. (37)

a(x,DTn+1(um))χ{|um|>k} ⇀ Ψn+1,k weakly in (Lp′(QT ))N as m→ +∞. (38)

Let us prove that, for any ϕ ∈ D(]0, T [), 0 ≤ ϕ ≤ 1,

lim
m→+∞

∫ T

0

ϕ(t)
∫

Ω

a(x,Dum) ·DTk(um) ≤
∫ T

0

ϕ(t)
∫

Ω

Φk ·DTk(u). (39)

Then, by Minty-Browder’s method, it is easy to see that

Φk = a(x,DTk(u)), (40)
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and (35) is proved.

Now, in order to get (39), we take limit in (25) to obtain

lim
m→+∞

∫ T

0

ϕ(t)
∫

Ω

a(x,Dum(t)) ·DTk(um(t)) =

∫ T

0

ϕt

∫

Ω

(∫ z(t)

0

Tk((γ−1)0(s))ds

)
+

∫ T

0

ϕt

∫

∂Ω

(∫ w(t)

0

Tk((β−1)0(s))ds

)

+
∫ T

0

ϕ(t)
∫

Ω

f(t)Tk(u(t)) +
∫ T

0

ϕ(t)
∫

∂Ω

g(t)Tk(u(t)).

(41)

Consequently, it is enough to prove that

∫ T

0

ϕ(t)
∫

Ω

Φk ·DTk(u(t)) ≥

∫ T

0

ϕt

∫

Ω

(∫ z(t)

0

Tk((γ−1)0(s))ds

)
+

∫ T

0

ϕt

∫

∂Ω

(∫ w(t)

0

Tk((β−1)0(s))ds

)

+
∫ T

0

ϕ(t)
∫

Ω

f(t)Tk(u(t)) +
∫ T

0

ϕ(t)
∫

∂Ω

g(t)Tk(u(t)).

(42)

To this end we use the regularization method of Landes ([43]). For k, ν ∈ N, we define
the regularization in time of the function Tk(u) given by

(Tk(u))ν(t, x) := ν

∫ t

−∞
eν(s−t)Tk(u(s, x))ds,

extending Tk(u) by 0 for s < 0. Observe that (Tk(u))ν ∈ Lp(0, T ;W 1,p(Ω))∩L∞(Q), it
is differentiable for a.e. t ∈ (0, T ) with

|(Tk(u))ν(t, x)| ≤ k
(
1− e−νt

)
< k a.e.,

∂(Tk(u))ν

∂t
= ν(Tk(u)− (Tk(u))ν) ∈ Lp(0, T ;W 1,p(Ω)) ∩ L∞(Q),

(Tk(u))ν(0, x) = 0 ∀x ∈ Ω,

(Tk(u))ν converges to Tk(u) in Lp(0, T ;W 1,p(Ω)) and in Lp(]0, T [×∂Ω), as ν →∞,

and, moreover,

∫ T

0

ϕ(t)
∫

Ω

Φk ·DTk(u) = lim
ν→∞

lim
m→∞

∫ T

0

ϕ(t)
∫

Ω

a(x,DTk(um)) ·D(Tk(u))ν .
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By considering Hn(r) = inf(1, (n+1− |r|)+), for any n > k, which implies Hn(um) = 1
if |um| ≤ k, we have
∫ T

0

ϕ(t)
∫

Ω

Φk ·DTk(u) = lim
ν→∞

lim
m→∞

∫ T

0

ϕ(t)
∫

Ω

a(x,DTk(um)) ·D(Hn(um) (Tk(u))ν)

= lim
ν→∞

lim
m→∞

(∫ T

0

ϕ(t)
∫

Ω

a(x,DTn+1(um)) ·D(Hn(um) (Tk(u))ν)

−
∫ ∫

[k<|um|≤n+1]

ϕ(t)a(x,DTn+1(um)) ·D(Hn(um) (Tk(u))ν)

)

= lim
ν→∞

lim
m→∞

(∫ T

0

ϕ(t)
∫

Ω

a(x,DTn+1(um)) ·D(Hn(um) (Tk(u))ν)

−
∫ ∫

[k<|um|≤n+1]

ϕ(t)a(x,Dum) ·D((Tk(u))ν)Hn(um)

−
∫ ∫

[k<|um|≤n+1]

ϕ(t)a(x,Dum) ·Dum H ′
n(um) (Tk(u))ν

)

= lim
ν→∞

lim
m→∞

(∫ T

0

ϕ(t)
∫

Ω

a(x,DTn+1(um)) ·D(Hn(um) (Tk(u))ν)

−
∫ ∫

ϕ(t)a(x,DTn+1(um)) ·D((Tk(u))ν)Hn(um)χ[|um|>k]

−
∫ ∫

[k<|um|≤n+1]

ϕ(t)a(x,Dum) ·Dum H ′
n(um) (Tk(u))ν

)
.

Since |(Tk(u))ν | = k (1− e−νt) in [|u| ≥ k], having in mind (38), we get

lim
ν→∞

lim
m→∞

∫ ∫
ϕ(t)a(x,DTn+1(um)) ·D(Tk(u))νHn(um)χ[|um|>k]

= lim
ν→∞

lim
m→∞

∫ ∫
ϕ(t)a(x,DTn+1(um)) ·D(Tk(u))νHn(um)χ[|um|>k]

χ
[|u|<k] = 0.

Hence, for any n > k, we have
∫ T

0

ϕ(t)
∫

Ω

Φk ·DTk(u)

= lim
ν→∞

lim
m→∞

(∫ T

0

ϕ(t)
∫

Ω

a(x,DTn+1(um)) ·D(Hn(um) (Tk(u))ν)

−
∫ ∫

[k<|um|≤n+1]

ϕ(t)a(x,Dum) ·Dum H ′
n(um) (Tk(u))ν

)
.

(43)
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Now,
∣∣∣∣∣
∫ ∫

[k<|um|≤n+1]

ϕ(t)a(x,Dum) ·Dum H ′
n(um) (Tk(u))ν

∣∣∣∣∣ ≤ k ν(n),

thus
−

∫ ∫

[k<|um|≤n+1]

ϕ(t)a(x,Dum) ·Dum H ′
n(um) (Tk(u))ν ≥ −k ν(n),

so that, by (43) and (33), we get
∫ T

0

ϕ(t)
∫

Ω

Φk ·DTk(u)

≥ lim inf
n→∞

lim inf
ν→∞

lim inf
m→∞

∫ T

0

ϕ(t)
∫

Ω

a(x,DTn+1(um)) ·D(Hn(um) (Tk(u))ν).

(44)

Since Hn is a bounded function of bounded variation, from (24), by approximation of
(Tk(u))νϕ, we deduce

∫ T

0

ϕ(t)
∫

Ω

a(x,DTn+1(um)) ·D (Hn(um)(Tk(u))ν) =

∫ T

0

∫

Ω

a(x,Dum) ·D (Hn(um)(Tk(u))νϕ) =

∫ T

0

∫

Ω

bγn(zm)(ϕ (Tk(u))ν)t +
∫ T

0

∫

∂Ω

bβn(wm)(ϕ (Tk(u))ν)t

+
∫ T

0

∫

Ω

fmHn(um) ϕ (Tk(u))ν +
∫ T

0

∫

∂Ω

gmHn(um) ϕ (Tk(u))ν ,

(45)

where
bγn(r) =

∫ r

0

Hn((γ−1)0(s))ds for r ∈ Ran(γ), (46)

and
bβn(r) =

∫ r

0

Hn((β−1)0(s))ds for r ∈ Ran(β). (47)

Letting m→∞ in (45), we have

lim
m→∞

∫ T

0

∫

Ω

a(x,Dum) ·D (Hn(um)(Tk(u))νϕ) =

∫ T

0

∫

Ω

bγn(z)(ϕ (Tk(u))ν)t +
∫ T

0

∫

∂Ω

bβn(w)(ϕ (Tk(u))ν)t

+
∫ T

0

∫

Ω

fHn(u) ϕ (Tk(u))ν +
∫ T

0

∫

∂Ω

gHn(u) ϕ (Tk(u))ν .
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For the first term on the right hand side, using the fact that (Tk(u))ν = Tk((Tk(u))ν),
z ∈ γ(u), the monotonicity of bγn and the integration by parts formula, we get
∫ T

0

∫

Ω

bγn(z)(ϕ(Tk(u))ν)t =
∫ T

0

∫

Ω

bγn(z)ϕt(Tk(u))ν +ν
∫ T

0

∫

Ω

bγn(z)ϕ(Tk(u)−(Tk(u))ν)

≥
∫ T

0

∫

Ω

bγn(z)ϕt(Tk(u))ν + ν

∫ T

0

∫

Ω

bγn(γ0((Tk(u))ν))ϕ (Tk(u)− (Tk(u))ν)

=
∫ T

0

∫

Ω

bγn(z)ϕt(Tk(u))ν +
∫ T

0

∫

Ω

bγn(γ0((Tk(u))ν))((Tk(u))ν)t ϕ

=
∫ T

0

∫

Ω

bγn(z)ϕt(Tk(u))ν −
∫ T

0

∫

Ω

∫ (Tk(u))ν

0

bγn
(
γ0(s)

)
ds ϕt.

Now, letting ν →∞, we deduce that

lim inf
ν→∞

∫ T

0

∫

Ω

bγn(z)(ϕ(Tk(u))ν)t ≥
∫ T

0

∫

Ω

bγn(z)ϕtTk(u)−
∫ T

0

∫

Ω

∫ Tk(u)

0

bγn
(
γ0(s)

)
dsϕt,

so that,

lim inf
n→∞

lim inf
ν→∞

lim inf
m→∞

∫ T

0

∫

Ω

bγn(zm)(ϕ (Tk(u))ν)t

≥
∫ T

0

∫

Ω

ϕt z Tk(u)−
∫ T

0

∫

Ω

∫ Tk(u)

0

γ0(s)ds ϕt.

Using the fact that, since z ∈ γ(u),

zTk(u)−
∫ Tk(u)

0

γ0(s) ds =
∫ z

0

Tk((γ−1)0(s)) ds,

we obtain that

lim inf
n→∞

lim inf
ν→∞

lim inf
m→∞

∫ T

0

∫

Ω

bγn(zm)(ϕ (Tk(u))ν)t ≥
∫ T

0

ϕt

∫

Ω

(∫ z(t)

0

Tk((γ−1)0(s))ds

)

In the same way, we get that

lim inf
n→∞

lim inf
ν→∞

lim inf
m→∞

∫ T

0

∫

∂Ω

bβn(wm)(ϕ(Tk(u))ν)t ≥
∫ T

0

ϕt

∫

∂Ω

(∫ w(t)

0

Tk((β−1)0(s))ds

)
.

Then, passing to the limit in (45), by (44), (42) follows.

Step 7 [Passing to the limit]. In this step we see that

d

dt

∫

Ω

(∫ z(t)

0

H((γ−1)0(s))ds

)
ξ +

d

dt

∫

∂Ω

(∫ w(t)

0

H((β−1)0(s))ds

)
ξ

+
∫

Ω

a(x,Du(t)) ·D (H(u(t))ξ) =
∫

Ω

f(t)H(u(t))ξ +
∫

∂Ω

g(t)H(u(t))ξ

(48)
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in D′(]0, T [).

By Step 6, for any ϕ ∈ D(]0, T [), 0 ≤ ϕ ≤ 1, we have

lim
m→+∞

∫ T

0

ϕ(t)
∫

Ω

(a(x,DTk(um))− a(x,DTk(u))) · (DTk(um)−DTk(u)) = 0.

Then, we can suppose, extracting a subsequence if necessary, that

ϕ(t)(a(x,DTk(um))− a(x,DTk(u))) · (DTk(um)−DTk(u)) → 0 in L1(QT ), (49)

a.e. in QT , and is dominated in L1(QT ).

Taking in (24) G(r) = H(r), being H : R → R a Lipschitz continuous function of
compact support, and ψ(t, x) = ϕ(t)ξ(x), ϕ ∈ D(]0, T [) and ξ ∈ C1(Ω), we have

∫ T

0

∫

Ω

(∫ zm(t)

0

H((γ−1)0(s))ds

)
ξϕt +

∫ T

0

∫

∂Ω

(∫ wm(t)

0

H((β−1)0(s))ds

)
ξϕt

=
∫ T

0

ϕ(t)
∫

Ω

a(x,Dum(t)) ·D (H(um(t))ξ) dt

−
∫ T

0

ϕ(t)
∫

Ω

fm(t)H(um(t))ξ −
∫ T

0

ϕ(t)
∫

∂Ω

gm(t)H(um(t))ξ.

(50)

Now, if supp(H) ⊂ [−M,M ],

∫ T

0

ϕ(t)
∫

Ω

a(x,Dum(t)) ·D (H(um(t)ξ)) dt

=
∫ T

0

ϕ(t)
∫

Ω

a(x,DTM (um(t))) ·D (H(TM (um(t)))ξ) dt

=
∫ T

0

ϕ(t)
∫

Ω

H(TM (um(t)))a(x,DTM (um(t))) ·Dξdt

+
∫ T

0

ϕ(t)
∫

Ω

ξH ′(TM (um(t)))a(x,DTM (um(t))) ·DTM (um(t))dt

=
∫ T

0

ϕ(t)
∫

Ω

H(TM (um(t)))a(x,DTM (um(t))) ·Dξdt

+
∫ T

0

ϕ(t)
∫

Ω

ξH ′(TM (um(t)))
(
a(x,DTM (um(t)))− a(x,DTM (u(t)))

)

×
(
DTM (um(t))−DTM (u(t))

)
dt

+
∫ T

0

ϕ(t)
∫

Ω

ξH ′(TM (um(t)))a(x,DTM (um(t))) ·DTM (u(t))dt
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+
∫ T

0

ϕ(t)
∫

Ω

ξH ′(TM (um(t)))a(x,DTM (u(t))) ·DTM (um(t))dt

−
∫ T

0

ϕ(t)
∫

Ω

ξH ′(TM (um(t)))a(x,DTM (u(t))) ·DTM (u(t))dt.

Since by approximation we can assume H to be smooth, by (35) and (49), we get

lim
m→∞

∫ T

0

ϕ(t)
∫

Ω

a(x,Dum(t)) ·D (H(um(t))ξ) dt

=
∫ T

0

ϕ(t)
∫

Ω

H(TM (u(t)))a(x,DTM (u(t))) ·Dξdt

+
∫ T

0

ϕ(t)
∫

Ω

ξH ′(TM (u(t)))a(x,DTM (u(t))) ·DTM (u(t))dt

=
∫ T

0

ϕ(t)
∫

Ω

a(x,Du(t)) ·D (H(u(t))ξ) dt.

Consequently, taking limit in (50) as m→∞, (48) follows.

Step 8 [Renormalized condition]. Let us see finally that

lim
n→+∞

∫

{(t,x)∈QT :n≤|u(t,x)|≤n+1}
a(x,Du) ·Du = 0. (51)

By (49), we have

lim
m→+∞

∫ T−s

s

∫

Ω

a(x,D(Tk(um)) ·D(Tk(um)) =
∫ T−s

s

∫

Ω

a(x,D(Tk(u)) ·D(Tk(u)).

(52)
Taking now in (52) k = n + 1, k = n and substracting the resulting equalities, for any
0 < s < T/2,

lim
m

∫ T−s

s

∫

{n≤|um(t,x)|≤n+1}
a(x,Dum(t)) ·Dum(t)dxdt

=
∫ T−s

s

∫

{n≤|u(t,x)|≤n+1}
a(x,Du(t)) ·Du(t)dxdt.

Then, by the definition of ν(n),
∫ T−s

s

∫

{n≤|u(t,x)|≤n+1}
a(x,Du(t)) ·Du(t)dxdt ≤ ν(n).

Therefore, taking limits as s goes to 0, and taking into account (33), (51) is proved.

With this last step the proof of the existence part of Theorem 2.6 is concluded. ¤

Remark 3.2 Using (49), we can get, as in [21, Lema 5], the strong convergence of
{DTk(um)}m.
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4 Uniqueness of renormalized solution

In this section we prove the uniqueness part of Theorem 2.6 using as main tool the
concept of integral solution due to Ph. Bénilan (see [12], [15]).

Definition 4.1 A function V = (z, w) ∈ C([0, T ];X) is an integral solution of (21) in
[0, T ], if for every (f̂ , ĝ) ∈ Bγ,β(ẑ, ŵ) we have

d

dt

∫

Ω

|z(t)− ẑ|+ d

dt

∫

∂Ω

|w(t)− ŵ|

≤
∫

Ω

(f(t)− f̂)sign0(z(t)− ẑ) +
∫

{x∈Ω:z(t)=ẑ}
|f(t)− f̂ |

+
∫

∂Ω

(g(t)− ĝ)sign0(w(t)− ŵ) +
∫

{x∈∂Ω:w(t)=ŵ}
|g(t)− ĝ|

in D′(]0, T [), and V (0) = (z0, w0).

Under the hypothesis Dom(γ) = R and either Dom(β) = R or a smooth, the operator
Bγ,β (see Section 3) is accretive in X (see [4] and [5]). In [5, Theorem 3.6] the existence
of mild solutions of problem (21) is proved under conditions (11) and (10). Now, mild
solutions and integral solutions of problem (21) coincide (see [12], [15]). In Theorem 4.3,
we shall prove that a renormalized solution of Pγ,β(f, g, z0, w0) in [0, T ] is an integral
solution of (21). Consequently, since in fact Bγ,β is T -accretive in X (see [4] and [5]), the
contraction principle (12) follows by the Nonlinear Semigroup Theory. Finally, under
the assumptions of Theorem 2.6 (i), the mild solution of (21) in [0, T ] is the unique
renormalized solution of Pγ,β(f, g, z0, w0) in [0, T ].

The main difficulties in order to prove Theorem 4.3 are due to the nonlinear and
non-homogeneous boundary conditions and to the jumps of γ and β. In [19], to obtain
a contraction principle for a similar problem in the case of Dirichlet boundary condition
(β = {0} × R), and for γ having a set of jumps without density points, the authors
give an improvement of the “hole filling” argument of [24] and use the doubling vari-
able technique in time. This technique can be adapted to our problem. Now, by the
Nonlinear Semigroup Theory, we are able to simplify the proof of Theorem 4.3 without
using the doubling variable technique in time and without imposing any condition on
the jumps of γ and β.

We shall use the following integration by parts formula.

Lemma 4.2 Let (z, w) be a renormalized solution of Pγ,β(f, g, z0, w0) in [0, T ]. Let
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k > 0, n ∈ N, Hn(r) = inf(1, (n+ 1− |r|)+), and h ∈W 1,p(Ω). Then,

d

dt

∫

Ω

(∫ z(t)

0

Hn((γ−1)0(s))Tk

(
(γ−1)0(s)− h

)
ds

)
ψdx

+
d

dt

∫

∂Ω

(∫ w(t)

0

Hn((β−1)0(s))Tk

(
(β−1)0(s)− h

)
ds

)
ψdσ(x)

+
∫

Ω

a(x,Du(t))D(Hn(u(t))Tk (u(t)− h)ψ)dx

=
∫

Ω

fHn(u(t))Tk (u(t)− h)ψdx+
∫

∂Ω

gHn(u(t))Tk (u(t)− h)ψdσ(x)

in D′(]0, T [), for any ψ ∈ D(RN), being u the function given in the definition of (z, w)
as renormalized solution.

Proof. Let bγn and bβn be defined as in (46) and (47) respectively. Since (z, w) is a
renormalized solution of Pγ,β(f, g, z0, w0) in [0, T ], for ξ ∈ C1(Ω),

− d

dt

∫

Ω

bγn(z(t))ξdx− d

dt

∫

∂Ω

bβn(w(t))ξdσ(x)

=
∫

Ω

a(x,Du(t)) ·D (Hn(u(t))ξ) dx−
∫

Ω

f(t)Hn(u(t))ξdx−
∫

∂Ω

g(t)Hn(u(t))ξdσ(x)

in D′(]0, T [). Therefore, since bγn(z(t)) ∈ (bγn ◦ γ)(u(t)), bβn(z(t)) ∈ (bβn ◦ β)(u(t)), by
Lemma 2.1, applied with H(x, r) = Tk (r − Tm(h)) and

(F (t), ξ) =
∫

Ω

a(x, Tk+m+n(u))Dξdx,

m ∈ N, it follows that
∫ T

0

∫

Ω

(∫ bγ
n(z(t))

0

Tk

(
((bγn ◦ γ)−1)0(s)− Tm(h)

)
ds

)
ψtdxdt

+
∫ T

0

∫

∂Ω

(∫ bβ
n(w(t))

0

Tk

(
((bβn ◦ β)−1)0(s)− Tm(h)

)
ds

)
ψtdσ(x)dt

=
∫ T

0

∫

Ω

a(x,Du) ·D(Hn(u(t))Tk (u(t)− Tm(h))ψ(t))dxdt

−
∫ T

0

∫

Ω

f(t)Hn(u(t))Tk (u(t)− Tm(h))ψ(t)dxdt

−
∫ T

0

∫

∂Ω

g(t)Hn(u(t))Tk (u(t)− Tm(h))ψ(t)dσ(x)dt
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for any ψ ∈ D(]0, T [×RN ). Therefore, by the change of variables formula,

∫ T

0

∫

Ω

(∫ z(t)

0

Hn((γ−1)0(s))Tk

(
((bγn ◦ γ)−1)0(bγn(s))− Tm(h)

)
ds

)
ψtdxdt

+
∫ T

0

∫

∂Ω

(∫ w(t)

0

Hn((β−1)0(s))Tk

(
((bβn ◦ β)−1)0(bβn(s))− Tm(h)

)
ds

)
ψtdσ(x)dt

=
∫ T

0

∫

Ω

a(x,Du) ·D(Hn(u(t))Tk (u(t)− Tm(h))ψ(t))dxdt

−
∫ T

0

∫

Ω

f(t)Hn(u(t))Tk (u(t)− Tm(h))ψ(t)dxdt

−
∫ T

0

∫

∂Ω

g(t)Hn(u(t)Tk (u(t)− Tm(h))ψ(t)dσ(x)dt

(53)
for any ψ ∈ D(]0, T [×RN ). Observe that

∫ z(t)

0

Hn((γ−1)0(s))Tk

(
((bγn ◦ γ)−1)0(bγn(s))− Tm(h)

)
ds

=
∫ z(t)

0

Hn((γ−1)0(s))Tk

(
(γ−1)0(s)− Tm(h)

)
ds,

and ∫ w(t)

0

Hn((β−1)0(s))Tk

(
((bβn ◦ β)−1)0(bβn(s))− Tm(h)

)
ds

=
∫ w(t)

0

Hn((β−1)0(s))Tk

(
(β−1)0(s)− Tm(h)

)
ds.

Indeed, let us see, for example, that

Hn((γ−1)0(s))Tk

(
((bγn ◦ γ)−1)0(bγn(s))− Tm(h)

)

= Hn((γ−1)0(s))Tk

(
(γ−1)0(s)− Tm(h)

)
.

(54)

If s = 0 then (γ−1)0(s) = 0 = ((bγn ◦ γ)−1)0(bγn(s)) and (54) holds. If If bγn(s) = 0 and
s 6= 0 then Hn((γ−1)0(s)) = 0 and (54) also holds. If bγn(s) > 0 then 0 ≤ (γ−1)0(s) ∈
(bγn ◦ γ)−1(bγn(s)), and if α ∈ (bγn ◦ γ)−1(bγn(s)) then there exists c ∈ γ(α) such that
bγn(s) = bγn(c); now, if s ≤ c it is easy to see that (γ−1)0(s) ≤ α, so (γ−1)0(s) =
((bγn ◦ γ)−1)0(bγn(s)), and, if s > c then Hn((γ−1)0(s)) = 0, therefore in any case (54)
holds. Similarly, if bγn(s) < 0, (54) is true.

Therefore, taking limit as m goes to +∞ in (53) we finish the proof. ¤
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To prove the following theorem we use a similar scheme to that used in the proof
of Theorem 5.3 in [5]. Now here, we have to overcome the added difficulties due to the
fact that for u we only know that its truncations are in Lp(0, T ;W 1,p(Ω)). In this sense
the renormalized condition (6) plays a role.

Theorem 4.3 Let (z, w) be a renormalized solution of Pγ,β(f, g, z0, w0) in [0, T ]. Let
(f̂ , ĝ) ∈ Bγ,β(ẑ, ŵ). Then,

d

dt

∫

Ω

|z(t)− ẑ|dx+
d

dt

∫

∂Ω

|w(t)− ŵ|dσ(x)

≤
∫

Ω

(f(t)− f̂)sign0(z(t)− ẑ)dx+
∫

{x∈Ω:z(t)=ẑ}
|f(t)− f̂ |dx

+
∫

∂Ω

(g(t)− ĝ)sign0(w(t)− ŵ)dσ(x) +
∫

{x∈∂Ω:w(t)=ŵ}
|g(t)− ĝ|dσ(x)

in D′(]0, T [), that is, since (z(0), w(0)) = (z0, w0), (z, w) is an integral solution of (21)
in [0, T ].

Proof.

We divide the proof in three steps.

Step 1 [Inequality inside Ω]. Let Hn be as in Lemma 4.2, ψ ∈ D(Ω), 0 ≤ ψ ≤ 1,
ρ ∈W 1,p(Ω), −1 ≤ ρ ≤ 1. Given (f̂ , ĝ) ∈ Bγ,β(ẑ, ŵ) there exists û ∈W 1,p(Ω) such that
ẑ(x) ∈ γ(û(x)) a.e. in Ω, ŵ(x) ∈ β(û(x)) a.e. in ∂Ω, and

∫

Ω

a(x,Dû) ·Dv =
∫

Ω

f̂v +
∫

∂Ω

ĝv
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for all v ∈ L∞(Ω) ∩W 1,p(Ω). Then, if u is the function given in the definition of (z, w)
as renormalized solution, we have, for 0 < t̂ ≤ t < T ,

∫

Ω

∫ z(t)

z(t̂)

Hn((γ−1)0(s))sign0(s− ẑ)ψdsdx

+
∫

Ω

∫ z(t)

z(t̂)

Hn((γ−1)0(s))
(
ρ− sign0(s− ẑ)

)
χ{s:(γ−1)0(s)=û}ψdsdx

+
∫ t

t̂

∫

Ω

(a(x,Du(s))− a(x,Dû)) ·Du(s)H ′
n(u(s))sign0(u(s)− û)ψdxds

+
∫ t

t̂

∫

Ω

(a(x,Du(s))− a(x,Dû)) ·DψHn(u(s))sign0(u(s)− û)dxds

≤
∫ t

t̂

∫

Ω

(f(s)− f̂)Hn(u(s))
(
sign0(z(s)− ẑ) + sign0(u(s)− û)χ{x∈Ω:z(s)=ẑ}

)
ψdxds

+
∫ t

t̂

∫

Ω

(f(s)− f̂)Hn(u(s))
(
ρ− sign0(z(s)− ẑ)

)
χ{x∈Ω:u(s)=û}ψdxds.

(55)

In order to prove (55), let us take in Lemma 4.2, h(x) = û(x)− kρ(x), ρ ∈W 1,p(Ω),
−1 ≤ ρ ≤ 1, k > 0. Then, for any ψ ∈ D(Ω), 0 ≤ ψ ≤ 1,

d

dt

∫

Ω

(∫ z(t)

ẑ

Hn((γ−1)0(s))
1
k
Tk

(
(γ−1)0(s)− û+ kρ

)
ds

)
ψdx

+
∫

Ω

(a(x,Du(t))− a(x,Dû)) ·D
(
Hn(u(t))

1
k
Tk (u(t)− û+ kρ)ψ

)
dx

=
∫

Ω

(f(t)− f̂)Hn(u(t))
1
k
Tk (u(t)− û+ kρ)ψdx

(56)

in D′(]0, T [). Integrating from t̂ to t, 0 < t̂ ≤ t < T ,
∫

Ω

∫ z(t)

ẑ

Hn((γ−1)0(s))
1
k
Tk

(
(γ−1)0(s)− û+ kρ

)
ψdsdx

−
∫

Ω

∫ z(t̂)

ẑ

Hn((γ−1)0(s))
1
k
Tk

(
(γ−1)0(s)− û+ kρ

)
ψdsdx

+
∫ t

t̂

∫

Ω

(a(x,Du(s))− a(x,Dû)) ·D
(
Hn(u(s))

1
k
Tk (u(s)− û+ kρ)ψ

)
dxds

=
∫ t

t̂

∫

Ω

(f(s)− f̂)Hn(u(s))
1
k
Tk (u(s)− û+ kρ)ψdxds.

(57)
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For the first term in (57), we take limit in k and use that

lim
k→0

1
k
Tk (r − q + kρ) = sign0(r − q) + ρχ{r=q} ∀ − 1 ≤ ρ ≤ 1 (58)

and

sign0(r − q) + sign0(r̂ − q̂)χ{r=q}

= sign0(r̂ − q̂) + sign0(r − q)χ{r̂=q̂} ∀r̂ ∈ γ(r), q̂ ∈ γ(q),
(59)

to obtain

lim
k→0

∫

Ω

∫ z(t)

ẑ

Hn((γ−1)0(s))
1
k
Tk

(
(γ−1)0(s)− û+ kρ

)
ψdsdx

=
∫

Ω

∫ z(t)

ẑ

Hn((γ−1)0(s))
(
sign0((γ

−1)0(s)− û) + ρχ{s:(γ−1)0(s)=û}
)
ψdsdx

=
∫

Ω

∫ z(t)

ẑ

Hn((γ−1)0(s))
(
sign0(s− ẑ) +

(
ρ− sign0(s− ẑ)

)
χ{s:(γ−1)0(s)=û}

+sign0((γ
−1)0(s)− û)χ{s=ẑ}

)
ψdsdx

=
∫

Ω

∫ z(t)

ẑ

Hn((γ−1)0(s))
(
sign0(s− ẑ) +

(
ρ− sign0(s− ẑ)

)
χ{s:(γ−1)0(s)=û}

)
ψdsdx

=
∫

Ω

∫ z(t)

ẑ

Hn((γ−1)0(s))sign0(s− ẑ)ψdsdx

+
∫

Ω

∫ z(t)

ẑ

Hn((γ−1)0(s))
(
ρ− sign0(s− ẑ)

)
χ{s:(γ−1)0(s)=û}ψdsdx.

Similarly, for the second term in (57),

lim
k→0

(
−

∫

Ω

∫ z(t̂)

ẑ

Hn((γ−1)0(s))
1
k
Tk

(
(γ−1)0(s)− û+ kρ

)
ψdsdx

)

= −
∫

Ω

∫ z(t̂)

ẑ

Hn((γ−1)0(s))sign0(s− ẑ)ψdsdx

−
∫

Ω

∫ z(t̂)

ẑ

Hn((γ−1)0(s))
(
ρ− sign0(s− ẑ)

)
χ{s:(γ−1)0(s)=û}ψdsdx.

Let us now decompose the third term in (57) as D1(k, n)+D2(k, n)+D3(k, n)+D4(k, n),
where

D1(k, n) =
∫ t

t̂

∫

Ω

(a(x,Du(s))− a(x,Dû)) ·Du(s)H ′
n(u(s))

1
k
Tk (u(s)− û+ kρ)ψdxds,
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D2(k, n) =
∫ t

t̂

∫

Ω

(a(x,Du(s))− a(x,Dû)) ·DψHn(u(s))
1
k
Tk (u(s)− û+ kρ) dxds,

D3(k, n) =
∫ t

t̂

[ ∫

Ω

(a(x,Du(s))− a(x,Dû)) · (Du(s)−Dû)

×Hn(u(s))
1
k
T ′k (u(s)− û+ kρ)ψdx

]
ds

and

D4(k, n) =
∫ t

t̂

∫

Ω

(a(x,Du(s))− a(x,Dû)) ·DρHn(u(s))T ′k (u(s)− û+ kρ)ψdxds.

Now, by the Dominated Convergence’s Theorem, and using that Du(s) = Dû when
u(s) = û,

lim
k→0

D1(k, n) =

∫ t

t̂

∫

Ω

(a(x,Du(s))− a(x,Dû)) ·Du(s)H ′
n(u(s))sign0(u(s)− û)ψdxds,

lim
k→0

D2(k, n) =

∫ t

t̂

∫

Ω

(a(x,Du(s))− a(x,Dû)) ·DψHn(u(s))sign0(u(s)− û)dxds,

lim
k→0

D4(k, n) = 0

and, using (H3), since t̂ ≤ t,
D3(k, n) ≥ 0.

Finally, for the fourth term in (57), using (58) and (59), we have that

lim
k→0

∫ t

t̂

∫

Ω

(f(s)− f̂)Hn(u(s))
1
k
Tk (u(s)− û+ kρ)ψdxds

=
∫ t

t̂

∫

Ω

(f(s)− f̂)Hn(u(s))
(
sign0(z(s)− ẑ) + sign0(u(s)− û)χ{x∈Ω:z(s)=ẑ}

)
ψdxds

+
∫ t

t̂

∫

Ω

(f(s)− f̂)Hn(u(s))
(
ρ− sign0(z(s)− ẑ)

)
χ{x∈Ω:u(s)=û}ψdxds.

Hence, taking limit in (57) as k goes to 0, we get (55).
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Step 2 [Inequality up to ∂Ω]. For any 0 < t̂ ≤ t < T ,
∫

Ω

|z(t)− ẑ|dx−
∫

Ω

|z(t̂)− ẑ|dx

+
∫

∂Ω

|w(t)− ŵ|dσ(x)−
∫

∂Ω

|w(t̂)− ŵ|dσ(x)

≤
∫ t

t̂

∫

Ω

(f(s)− f̂)
(
sign0(z(s)− ẑ) + sign0(u(s)− û)χ{x∈Ω:z(s)=ẑ}

)
dxds

+
∫ t

t̂

∫

Ω

(f(s)− f̂)
(
sign0(z(t)− ẑ)− sign0(z(s)− ẑ)

)
χ{x∈Ω:u(s)=û}dxds

+
∫ t

t̂

∫

∂Ω

(g(s)− ĝ)
(
sign0(w(s)− ŵ) + sign0(u(s)− û)χ{x∈∂Ω:w(s)=ŵ}

)
dσ(x)ds

+
∫ t

t̂

∫

∂Ω

(g(s)− ĝ)
(
sign0(w(t)− ŵ)− sign0(w(s)− ŵ)

)
χ{x∈∂Ω:u(s)=û}dσ(x)ds.

(60)

In fact, since in (55) there are no space derivatives of ρ, by approximation, we can
take, for each t fixed, ρ = sign0(z(t) − ẑ). Then, by monotonicity of sign0, the second
term in (55) is positive and so, for any 0 < t̂ ≤ t < T ,

∫

Ω

∫ z(t)

z(t̂)

Hn((γ−1)0(s))sign0(s− ẑ)ψdsdx

+
∫ t

t̂

∫

Ω

(a(x,Du(s))− a(x,Dû)) ·Du(s)H ′
n(u(s))sign0(u(s)− û)ψdxds

+ I

≤
∫ t

t̂

∫

Ω

(f(s)− f̂)Hn(u(s))
(
sign0(z(s)− ẑ) + sign0(u(s)− û)χ{x∈Ω:z(s)=ẑ}

)
ψdxds

+
∫ t

t̂

∫

Ω

(f(s)− f̂)Hn(u(s))
(
sign0(z(t)− ẑ)− sign0(z(s)− ẑ)

)
χ{x∈Ω:u(s)=û}ψdxds,

(61)
where

I =
∫ t

t̂

∫

Ω

(a(x,Du(s))− a(x,Dû)) ·DψHn(u(s))sign0(u(s)− û)dxds

=
∫ t

t̂

∫

Ω

(a(x,Du(s))− a(x,Dû)) ·D(ψ − 1)Hn(u(s))sign0(u(s)− û)dxds.
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Now, for ρ̂ ∈ W 1,p(Ω), −1 ≤ ρ̂ ≤ 1, proceeding as in Step 1 and using the fact that
ψ − 1 = −1 on ∂Ω, we obtain that

I ≥ −
∫

Ω

∫ z(t)

z(t̂)

Hn((γ−1)0(s))sign0(s− ẑ)(ψ − 1)dsdx

−
∫

Ω

∫ z(t)

z(t̂)

Hn((γ−1)0(s))
(
ρ̂− sign0(s− ẑ)

)
χ{s:(γ−1)0(s)=û}(ψ − 1)dsdx

+
∫

∂Ω

∫ w(t)

w(t̂)

Hn((β−1)0(s))sign0(s− ŵ)dsdσ(x)

+
∫

∂Ω

∫ w(t)

w(t̂)

Hn((β−1)0(s))
(
ρ̂− sign0(s− ŵ)

)
χ{s:(β−1)0(s)=û}dsdσ(x)

+
∫ t

t̂

∫

Ω

(f(s)− f̂)Hn(u(s))
(
sign0(z(s)− ẑ) + sign0(u(s)− û)χ{x∈Ω:z(s)=ẑ}

)
(ψ − 1)dxds

+
∫ t

t̂

∫

Ω

(f(s)− f̂)Hn(u(s))
(
ρ̂− sign0(z(s)− ẑ)

)
χ{x∈Ω:u(s)=û}(ψ − 1)dxds

−
∫ t

t̂

∫

∂Ω

(g(s)− ĝ)Hn(u(s))
(
sign0(w(s)− ŵ) + sign0(u(s)− û)χ{x∈∂Ω:w(s)=ŵ}

)
dσ(x)ds

−
∫ t

t̂

∫

∂Ω

(g(s)− ĝ)Hn(u(s))
(
ρ̂− sign0(w(s)− ŵ)

)
χ{x∈∂Ω:u(s)=û}dσ(x)ds

−
∫ t

t̂

∫

Ω

(a(x,Du(s))− a(x,Dû)) ·Du(s)H ′
n(u(s))sign0(u(s)− û)(ψ − 1)dxds.
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Therefore, from (61) we get

∫

Ω

∫ z(t)

z(t̂)

Hn((γ−1)0(s))sign0(s− ẑ)dsdx

−
∫

Ω

∫ z(t)

z(t̂)

Hn((γ−1)0(s))
(
ρ̂− sign0(s− ẑ)

)
χ{s:(γ−1)0(s)=û}(ψ − 1)dsdx

+
∫

∂Ω

∫ w(t)

w(t̂)

Hn((β−1)0(s))sign0(s− ŵ)dsdσ(x)

+
∫

∂Ω

∫ w(t)

w(t̂)

Hn((β−1)0(s))
(
ρ̂− sign0(s− ŵ)

)
χ{s:(β−1)0(s)=û}dsdσ(x)

≤
∫ t

t̂

∫

Ω

(f(s)− f̂)Hn(u(s))
(
sign0(z(s)− ẑ) + sign0(u(s)− û)χ{x∈Ω:z(s)=ẑ}

)
dxds

+
∫ t

t̂

∫

Ω

(f(s)− f̂)Hn(u(s))
(
sign0(z(t)− ẑ)− sign0(z(s)− ẑ)

)
χ{x∈Ω:u(s)=û}ψdxds

−
∫ t

t̂

∫

Ω

(f(s)− f̂)Hn(u(s))
(
ρ̂− sign0(z(s)− ẑ)

)
χ{x∈Ω:u(s)=û}(ψ − 1)dxds

+
∫ t

t̂

∫

∂Ω

(g(s)− ĝ)Hn(u(s))
(
sign0(w(s)− ŵ) + sign0(u(s)− û)χ{x∈∂Ω:w(s)=ŵ}

)
dσ(x)ds

+
∫ t

t̂

∫

∂Ω

(g(s)− ĝ)Hn(u(s))
(
ρ̂− sign0(w(s)− ŵ)

)
χ{x∈∂Ω:u(s)=û}dσ(x)ds

+
∫ t

t̂

∫

Ω

(a(x,Du(s))− a(x,Dû)) ·Du(s)H ′
n(u(s))sign0(u(s)− û)dxds.
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Letting now n go to +∞, on account of (6), we obtain
∫

Ω

|z(t)− ẑ|dx−
∫

Ω

|z(t̂)− ẑ|dx

−
∫

Ω

∫ z(t)

z(t̂)

(
ρ̂− sign0(s− ẑ)

)
χ{s:(γ−1)0(s)=û}(ψ − 1)dsdx

+
∫

∂Ω

|w(t)− ŵ|dσ(x)−
∫

∂Ω

|w(t̂)− ŵ|dσ(x)

+
∫

∂Ω

∫ w(t)

w(t̂)

(
ρ̂− sign0(s− ŵ)

)
χ{s:(β−1)0(s)=û}dsdσ(x)

≤
∫ t

t̂

∫

Ω

(f(s)− f̂)
(
sign0(z(s)− ẑ) + sign0(u(s)− û)χ{x∈Ω:z(s)=ẑ}

)
dxds

+
∫ t

t̂

∫

Ω

(f(s)− f̂)
(
sign0(z(t)− ẑ)− sign0(z(s)− ẑ)

)
χ{x∈Ω:u(s)=û}ψdxds

−
∫ t

t̂

∫

Ω

(f(s)− f̂)
(
ρ̂− sign0(z(s)− ẑ)

)
χ{x∈Ω:u(s)=û}(ψ − 1)dxds

+
∫ t

t̂

∫

∂Ω

(g(s)− ĝ)
(
sign0(w(s)− ŵ) + sign0(u(s)− û)χ{x∈∂Ω:w(s)=ŵ}

)
dσ(x)ds

+
∫ t

t̂

∫

∂Ω

(g(s)− ĝ)
(
ρ̂− sign0(w(s)− ŵ)

)
χ{x∈∂Ω:u(s)=û}dσ(x)ds.

(62)
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Taking into (62) ψm instead of ψ such that L1(Ω)- limm ψm = 1 and letting m go to
+∞, we have

∫

Ω

|z(t)− ẑ|dx−
∫

Ω

|z(t̂)− ẑ|dx

+
∫

∂Ω

|w(t)− ŵ|dσ(x)−
∫

∂Ω

|w(t̂)− ŵ|dσ(x)

+
∫

∂Ω

∫ w(t)

w(t̂)

(
ρ̂− sign0(s− ŵ)

)
χ{s:(β−1)0(s)=û}dsdσ(x)

≤
∫ t

t̂

∫

Ω

(f(s)− f̂)
(
sign0(z(s)− ẑ) + sign0(u(s)− û)χ{x∈Ω:z(s)=ẑ}

)
dxds

+
∫ t

t̂

∫

Ω

(f(s)− f̂)
(
sign0(z(t)− ẑ)− sign0(z(s)− ẑ)

)
χ{x∈Ω:u(s)=û}dxds

+
∫ t

t̂

∫

∂Ω

(g(s)− ĝ)
(
sign0(w(s)− ŵ) + sign0(u(s)− û)χ{x∈∂Ω:w(s)=ŵ}

)
dxds

+
∫ t

t̂

∫

∂Ω

(g(s)− ĝ)
(
ρ̂− sign0(w(s)− ŵ)

)
χ{x∈∂Ω:u(s)=û}dσ(x)ds.

(63)

Now, by approximation, we can take, for each t fixed, ρ̂ such that its trace is equal to
sign0(w(t)−ŵ). Then the fifth term in the above expression is positive and (60) follows.

Step 3 [Integral solution]. Let

ϕ1(t) :=
∫

Ω

|z(t)− ẑ|dx+
∫

∂Ω

|w(t)− ŵ|dσ(x),

ϕ2(s) :=
∫

Ω

(f(s)− f̂)
(
sign0(z(s)− ẑ) + sign0(u(s)− û)χ{x∈Ω:z(s)=ẑ}

)
dx

+
∫

∂Ω

(g(s)− ĝ)
(
sign0(w(s)− ŵ) + sign0(u(s)− û)χ{x∈∂Ω:w(s)=ŵ}

)
dσ(x)

and

ϕ3(t, s) :=
∫

Ω

(f(s)− f̂)
(
sign0(z(t)− ẑ)− sign0(z(s)− ẑ)

)
χ{x∈Ω:u(s)=û}dx

+
∫

∂Ω

(g(s)− ĝ)
(
sign0(w(t)− ŵ)− sign0(w(s)− ŵ)

)
χ{x∈∂Ω:u(s)=û}dσ(x).
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Taking in (60) t̂ = t − h, h > 0, dividing by h and letting h go to 0, we get for any
η ∈ D(]0, T [), η ≥ 0,

−
∫ T

0

ϕ1(t)ηt(t)dt = − lim
h→0+

∫ T

0

ϕ1(t)
η(t+ h)− η(t)

h
dt

= lim
h→0+

∫ T

0

ϕ1(t)− ϕ1(t− h)
h

η(t)dt

≤ lim
h→0+

(∫ T

0

1
h

(∫ t

t−h

ϕ2(s)ds
)
η(t)dt+

∫ T

0

1
h

(∫ t

t−h

ϕ3(t, s)ds
)
η(t)dt

)
.

(64)

By the Dominate Convergence Theorem,

lim
h→0+

∫ T

0

1
h

(∫ t

t−h

ϕ2(s)ds
)
η(t)dt = − lim

h→0+

∫ T

0

(∫ t

0

ϕ2(s)ds
)
η(t+ h)− η(t)

h
dt

= −
∫ T

0

(∫ t

0

ϕ2(s)ds
)
ηt(t)dt =

∫ T

0

ϕ2(t)η(t)dt.

On the other hand, for h small enough,
∫ T

0

1
h

(∫ t

t−h

ϕ3(t, s)ds
)
η(t)dt =

∫ T

0

1
h

(∫ s+h

s

ϕ3(t, s)η(t)dt

)
ds,

and ∣∣∣∣∣
∫ T

0

1
h

(∫ s+h

s

ϕ3(t, s)η(t)dt

)
ds

∣∣∣∣∣

≤
∫ T

0

1
h

(∫ s+h

s

∫

Ω

∣∣f(s)− f̂
∣∣ |sign0(z(t)− ẑ)− sign0(z(s)− ẑ)| η(t)dxdt

)
ds

+
∫ T

0

1
h

(∫ s+h

s

∫

∂Ω

∣∣g(s)− ĝ
∣∣ |sign0(w(t)− ŵ)− sign0(w(s)− ŵ)| η(t)dσ(x)dt

)
ds

≤ ‖η‖L∞(0,T )

∫ T

0

∫

Ω

∣∣f(s)− f̂
∣∣ 1
h

∫ s+h

s

|sign0(z(t)− ẑ)− sign0(z(s)− ẑ)| dtdxds

+‖η‖L∞(0,T )

∫ T

0

∫

∂Ω

∣∣g(s)− ĝ
∣∣ 1
h

∫ s+h

s

|sign0(w(t)− ŵ)− sign0(w(s)− ŵ)| dtdσ(x)ds.

Now, since (t, x) 7→ sign0(z(t, x)− ẑ(x)) ∈ L1(QT ), if we set

%h(s, x) =
1
h

∫ s+h

s

|sign0(z(t, x)− ẑ(x))− sign0(z(s, x)− ẑ(x))| dt,

we have that,
lim

h→0+
%h(s, .) = 0 in L1(Ω) a.e. s ∈ [0, T ].
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Moreover,
%h(s, x) ≤ 2 a.e in QT .

Consequently, applying twice the Dominate Convergence Theorem, we get

lim
h→0+

∫ T

0

∫

Ω

∣∣f(s)− f̂
∣∣ 1
h

∫ s+h

s

|sign0(z(t)− ẑ)− sign0(z(s)− ẑ)| dtdxds = 0.

Similarly,

lim
h→0+

∫ T

0

∫

∂Ω

∣∣g(s)− ĝ
∣∣ 1
h

∫ s+h

s

|sign0(w(t)− ŵ)− sign0(w(s)− ŵ)| dtdσ(x)ds = 0.

Therefore, from (64) we obtain that

d

dt

∫

Ω

|z(t)− ẑ|+ d

dt

∫

∂Ω

|w(t)− ŵ|

≤
∫

Ω

(f(t)− f̂)sign0(z(t)− ẑ) +
∫

{x∈Ω:z(t)=ẑ}

∣∣f(t)− f̂
∣∣

+
∫

∂Ω

(g(t)− ĝ)sign0(w(t)− ŵ) +
∫

{x∈∂Ω:w(t)=ŵ}

∣∣g(t)− ĝ
∣∣

in D′(]0, T [), and the proof of Theorem 4.3 is finished. ¤
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ysis 24 (1977), 148-155.

[11] I. Bejenaru, J.I. Diaz, and I. Vrabie. An abstract approximate controllability result
and applications to elliptic and parabolic system with dinamic boundary conditions.
Electronic J. Diff. Eq., 2001(50):1–19, 2001.

[12] Ph. Bénilan. Equations d’évolution dans un espace de Banach quelconque et ap-
plications. Thesis, Univ. Orsay, 1972.
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