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1 Introduction.

In general, the evolution of biological and physical problem uses different processes.
May be the most known processes are diffusion, reaction and convection. Sometimes,
they differ very strongly from one part of the physical system to the other, so that some
kind of competition between them appears. The aim of this paper is to describe the
asymptotic behavior of evolution problem governed by two (or more) competitive processes
like reaction/diffusion or convection/diffusion..

Several useful models for this type of problems may be described by evolution problem
governed by the sum of two (or many) operators. These operators are connected in the
equation by rates which strongly changes. For instance, let us consider the evolution
problem

ut + dkAu + rkBu = f in (0, T ), (1)

where A and B are two operators describing the considered processes with rates dk ∈ R+

and rk ∈ R+, and f is a source term. The variation of the processes lies in the parameter
k ∈ IR. We are interested to the asymptotic behavior of the solution uk of evolution
problem of type (1) when each one of the operators A and B acts strongly. In other

words, we assume that
rk

dk

→ +∞ or
rk

dk

→ 0, as k → ∞, and we study the asymptotic

behavior of uk. First, we study the problem within an abstract general framework. Then,
we show how to apply the result to the particular situation (1) and also to concrete
examples like the reaction-diffusion equation.

Note that this problem is a particular case of an overall program of studying the so
called singular limit for nonlinear partial differential equations. That is a perturbation
problem where the perturbed problem is of totally different character than the unper-
turbed one. In a Banach space X, let us consider a family of evolution equations

ut + Aku 3 f in (0,∞), u(0) = u0 (2)

governed by the family of operators (Ak)k∈IN being such that (2) has a solution uk ∈
C([0, T ), X) and such that Ak converges to A in the graph sense, as k →∞. It is known
that (see for instance [16]) if u0 ∈ D(A), then uk → u in C([0, T ), X) and u is the solution
of

ut + Au 3 f in (0,∞), u(0) = u0. (3)

But, if u0 ∈ X \ D(A), then (3) is not well posed and in general the limit of uk may not
exist. However, for a large class of concrete problems the limit u exists and there exists
u0 ∈ D(A), such that u is the solution of

ut + Au 3 f in (0,∞), u(0) = u0.

But the characterization of u0 is not clear yet in general. For instance, if X is a Hilbert
space and Ak is the Yoshida approximation of A assumed to be maximal monotone in
X, then (cf. [14]) u0 is the projection of u0 on the closure of the domain of A. It is
again the projection, in some particular case of k−homogeneous accretive operators Ak ;
i.e. Ak(λ u) = λk A(u) (cf. [9]). But, in general it is not the projection (see [9] and
[11]). Paper [10] treats the case where Ak = Bk + F which Bk being a family of accretive



operators, and F being nondecreasing bounded and continuous. In [10], it is proved that
u0 is given by lim

t→0
lim
k→∞

e−tBku0, where e−tBk is the semigroup generated by Bk. In this

paper, we treat the case where a rescaling makes the limit regular. More precisely, we

assume that there exists m(k) → 0, such that m(k)Ak → Ã and u0 ∈ D(Ã). As well as
the reaction-diffusion problems is concerned (cf. section 3.), this condition is fulfilled in
a large field of applications like models of the type (1) (cf. section 2).

To give a brief description of our main results, let us consider Ω ⊆ RN a bounded
domain with smooth boundary ∂Ω, u0 ∈ L∞(Ω) and f ∈ L∞(Q). In Ω, we consider the
Reaction-Diffusion problem of the form

P d ,r(u0, f)





ut − d ∆w + r g(u) = f, u = β(w) in Q := Ω× (0, T )

∂~nw = 0 in Σ := ∂Ω× (0, T )

u(x, 0) = u0(x) in Ω,

where d > 0, r ≥ 0, β : R→ R is a nondecreasing continuous function such that β(0) = 0,

(H1) Im(β) = R

and

(Hg) g : R→ R is continuous, nondecreasing with g(0) ≡ 0.

It is known that P d ,r(u0, f) is well posed in the sense of weak solution. More precisely
(see for instance [31] and the references therein), there exists a unique u ∈ L∞(Q), such

that there exists w ∈ L2
(
0, T ; H1(Ω)

)
, u = β(w) a.e. in Q and

d

∫ τ

0

∫

Ω

DwDξ + r

∫ τ

0

∫

Ω

g(u)ξ =

∫ τ

0

∫

Ω

fξ +

∫ τ

0

∫

Ω

uξt +

∫

Ω

u0ξ(0),

for any ξ ∈ C1([0, τ ]× Ω) such that ξ(., τ) ≡ 0. For P d ,r(u0, f), d and r represent respec-
tively the diffusion and the reaction rate. We are interested in the asymptotic behavior
of the solution as d and/or r being very large. Concretely this situation can be found
in models combining reactive and diffusive processes acting strongly and creating asome
competition between the processes (see [26], [15], [18], [21], [12], [23], [13], [24], [19], [35],
[27] and the references therein for concrete applications).

If r = 0 (resp. d = 0) the limit of the solution as d →∞ (resp. r →∞) is also given
by the large time behavior of the solution of P d ,0(u0, f) (resp. P 0 ,r(u0, f)). Indeed, it is
enough to consider the rescaling τ = d t (resp . τ = r t). In these cases, the problem is
well understood (see [2], [1], [34], [32], [31] and the references therein). Our main interest
lies in the case where d and r are both non null.

If we assume that d > 0 and r → ∞, then the problem is the reaction-diffusion
equation with large reaction (cf. [15], [21], [12], [13], [24], [19], [35] and [27]) . Formally,
we see that the limiting problem is





ut − d∆w + G(u) = f, u = β(w) in Q

∂~nw = 0, in Σ
(4)



where, G is the maximal monotone graph given by

G(r) =





0 if m0 < r < M0

[0, +∞) if r = M0

(−∞, 0] if r = m0

where m0 and M0 are given by g−1{0} = [m0, M0]. In other words the limiting problem
is 




m0 ≤ u ≤ M0, u = β(w)

(ut − d ∆w − f)(u−m0)(u−M0) = 0

(ut − d ∆w − f) ≥ 0 in [u = m0]

(ut − d ∆w − f) ≤ 0 in [u = M0]





in Q

∂~nw = 0 on Σ,

which is the so called obstacle problem. Indeed, an instantaneous new distribution of the
spatial inhomogeneities appears in the limiting problem. The solution is forced to transfer
between M0 and m0. Compatible initial data for (4) are functions living in [m0, M0], so
that the limit of the solution of P d ,r(u0, f) is singular. In the sense that a boundary layer
appears in the passage to the limit and it could be interesting to identify the compatible
initial data for (4) associated with u0. As a consequence of the main results of this paper,
the corresponding compatible initial data for the limiting problem is given by the limit,
as t →∞, of the solution of the ode





zt + r g(z) = 0 in (0, T )

z(0) = u0,

which is equal to m0∨(u0∧M0).

If r > 0 and d → ∞, then the problem describe a reaction-diffusion problem with
large diffusion (cf. [3], [38], [26] and [30]). Using the fact that g is nondecreasing and
continuous this is a particular case of [30] and the limit of the solution is given by





ct + r g(c) =

∫
−
Ω

f in (0, T )

c(0) =

∫
−
Ω

u0.

(5)

Assuming that d →∞ and r →∞, the problem models a reaction diffusion problem
with large reaction and large diffusion. In this case, a competition between the reaction
and the diffusion appears and we need to distinguish between the cases where one of the



rates is more important than the other. So, assume that d = d(k) and r = r(k), with
lim
k→∞

d(k) = lim
k→∞

r(k) = ∞. In the limiting problem, the solution is forced to be constant

in space and transfers between M0 and m0. Precisely, the limiting problem is the following
ode

ct + G(c) 3
∫
−
Ω

f in (0, T ).

For the identification of the corresponding initial data, and as a consequence of the compe-

tition phenomena, we treat separately cases lim
k→∞

d(k)

r(k)
= ∞ and lim

k→∞
d(k)

r(k)
= 0. Actually,

we prove that

1. if lim
k→∞

d (k)

r(k)
= 0, then c(0) = m0∨(M0∧

∫
−
Ω

u0) ,

2. if lim
k→∞

d (k)

r(k)
= ∞, then c(0) = lim

t→∞
z(t) where z is the solution of the obstacle

problem P d
∞ with z(0) = m0∨(u0∧M0), a.e. Ω.

Concerning the corresponding initial data for the limiting problem, we remark that it
is given by the large time behavior of the equation stated only with the most competitive
process. In this direction, our main results (cf. Theorem 2.2, Theorem 2.3 and Theorem
2.5) also allow us to describe the large time behavior for some evolution problems by
adding an artificial regularizing processes (cf. Corollary 2.7). A concrete situation for
hyperbolic equations will be treated in details separately in forthcoming papers.

In the following section, we give in the first part, some preliminaries on nonlinear
semigroup theory. In the second part, we state and prove our main result in a general
abstract framework. We also show how to apply this result to the particular situation (1).
At last, section 3 is devoted to the proof of the results for concrete situation P d ,r(u0, f).

2 Abstract framework.

2.1 Preliminaries.

Throughout this section (X, |.|) is a Banach space, [., .] is the bracket defined as follow

[x, y] = inf
λ>0

|x + λy| − |x|
λ

∀x, y ∈ X.

Recall that an accretive operator A is a function (possibly multi-valued ) from X to P(X)
with nonexpansive resolvent ; i.e. Jλ = (I+λA)−1. It is known also, that this is equivalent
to say that for any v1 ∈ Au1 and v2 ∈ Au2, then

[u1 − u2, v1 − v2] ≥ 0.

In connection with the Hilbert case, i.e. X is a Hilbert space, an operator is accretive if
and only if it is monotone. If A is m-accretive, i.e. A is accretive and the resolvent is



everywhere defined, then, for any f ∈ L1
loc(0, T ; X), and u0 ∈ D(A) (the closure of the

effective domain D(A) = {x ∈ X ; Ax 6= ∅}) the evolution problem





ut + A u 3 f in (0, T )

u(0) = u0,
(6)

has a unique mild-solution. It is the solution that we obtain through the discretization of
the derivative in (6) by the implicit difference schema. Indeed, for any partition 0 = t0 <
t1 < ... < tn−1 < T ≤ tn, take the system of difference relations

ui − ui−1

εi−1

+ Aui 3 fi, i = 1, 2, ..., n (7)

where εi−1 = ti − ti−1 and f1, f2, ...., fn are such that

n∑
i=1

∫ ti

ti−1

|f − fi| ≤ ε.

Using the resolvent of A, the value ui, are determined successively by

ui = Jεi−1
(ui−1 + ε fi), i = 1, 2, ..., n

and therefore (7) has a solution if, and only if, ui + ε fi ∈ R(I +λA), for all i = 1, 2, ..., n.
In particular, this is true for m-accretive operator. The step functions u : [0, T ] → X
defined by u(0) = u0 and u(t) = ui for ti−1 < t ≤ ti is considered to be an approximated
solution of (6), converges to a unique function u ∈ C([0, T ); X) such that u(0) = u0. This
function u is called the mild-solution of (6) on [0, T ].
In particular, if f = 0, then the mild solution is given by the exponential formula

u(t) = e−tAu0 := lim
n→∞

(
I +

t

n
A

)−n

u0. (8)

Moreover, the family of operators e−tA, t > 0, is a continuous semigroup of nonexpansive
self-mappings of D(A).
Many of partial differential equations that can be studied by means of the nonlinear
semigroup theory satisfies a “comparison principle”. This fact is a consequence at the
order preserving property of the semigroup (e−tAu0)t≥0. The operators which generates
order-preserving semigroups are the following : Let X be a Banach lattice and A be an
operator in X. A is called T-accretive if, its resolvents are T-contractions, i.e.,

|(Jλx− Jλx̂)+| ≤ |(x− x̂)+| for x, x̂ ∈ D(Jλ).

Now, since every T-contraction is order-preserving, then if A is T-accretive then, for each
t > 0, e−tA is order-preserving. In general, T-accretivity does not implies accretivity, but
in some Banach spaces T-accretivity implies accretivity, this remains true for the case of
Lp(Ω) spaces, with 1 ≤ p ≤ ∞.



To end up these preliminaries, remember that if we replace the function f by a continuous
perturbation F (t, u); i.e. we consider in X, the evolution problem





ut + A u 3 F (t, u) in (0, T )

u(0) = u0,
(9)

then the definition of the mild solution remains the same by replacing f(.) by F (., u(.)),
and we know that

Proposition 2.1 (Cf. [10] ) Let A be m-accretive in X, u0 ∈ D(A) and F : [0, T ] ×
D(A) −→ X be a Caratheodory function ; i.e. F (t, x) is measurable in t and continuous
with respect to x, such that

(F1)




[x− y, F (t, x)− F (t, y)] ≤ α(t)|x− y| for any x, y ∈ D(A)

and a.e. t ∈ (0, T ) with α ∈ L1
loc([0, T ]),

(F2) |F (t, x)| ≤ c(t) with c ∈ L1
loc([0, T )),

then (9) has a unique mild solution.

2.2 Main results.

Now, in X let us consider (Ak)k≥1 a sequence of m-accretive operator, such that

(H1) Ak −→ A∞ as k −→ +∞, in the sense of the resolvent,

i.e. (I + λ Ak)
−1 converges, in X, to (I + λ A∞)−1. Recall that, since Ak is assumed to

be m-accretive, then (H1) is equivalent to the convergence in the graph sense ; i.e. for
vk ∈ Ak uk, if uk → u and vk → v, then v ∈ A∞ u.

We are interested to the asymptotic behavior, as k →∞, of mild solution uk of

(Pk)





ut +Aku 3 F (t, u) in (0, T )

u(0) = u0,

where u0 ∈ D(Ak) and F : (0, T ) × D(Ak) → X is a Caratheodory function satisfying
(F1) and (F2). In general, D(A∞) 6= ∩k≥1D(Ak), and





ut +A∞u 3 F (t, u) in [0, T )

u(0) = u0

has a solution if and only if u0 ∈ D(A∞). If u0 ∈ D(A∞), we know (Theorem of Trotter-
Kato-Brezis-Pazy [16] and [28] ), that uk −→ u in C([0, T ), X) and u is the unique
mild solution of 




ut +A∞u 3 F (t, u) in [0, T )

u(0) = u0.



But, if u0 /∈ D(A∞) and the limit of uk exists, then the limit is singular, a boundary layer
at t = 0 appears in the passage to the limit. In fact, there exists a modified initial data
u0 (depending on u0 and A∞) such that the limit of uk is the solution of





ut +A∞u 3 F (t, u) in [0, T )

u(0) = u0.

The characterization of u0 is not well understood in general. In this paper we are
interested to characterization of u0, in the case where Ak is such that there exist m :
R+ → R+ such that lim

k→∞
m(k) = 0,

(H2) Ãk := m(k)Ak −→ Ã∞ as k −→∞,

and

(H3) u0 ∈ D(Ã∞).

In other words, we assume that there exists a rescaling for which the limit is not singular.

Theorem 2.2 Let (Ak)k∈N be a sequence of m - accretive operators in X satisfying (H1)

and (H2), F : [0, T ]×D(Ak) −→ X be a Caratheodory function satisfying (F1) and (F2),

u0 ∈
⋂

k≥1

D(Ak) and uk be the mild solution of (Pk). If, u0 satisfies (H3) and

lim
t−→+∞

e−t eA∞u0 =: u0 ∈ D(A∞),

then
uk −→ u in C((0, T ], X) as k −→ +∞,

where u is the unique mild solution of

(P∞)





ut +A∞u 3 F (t, u) in (0, T )

u(0) = u0.

Proof : Thanks to Theorem 4.1. of [28], it is enough to prove the result for F ≡ 0. In
this case, it is known that the mild solution is given by the exponential formula. So, for
any t, τ > 0 and k ∈ N such that τm(k) < t, we have

|uk(t)− u(t)| = |e−tAku0 − e−tA∞u0|

≤ |e−tAku0 − e−(t−τm(k))Aku0|+ |e−(t−τm(k))A∞u0 − e−tA∞u0|
(10)

+ |e−(t−τm(k))Aku0 − e−(t−τm(k))A∞u0|.



Using the additive property of the semigroup e−tAk , the first term of the right hand of
(10) satisfies

|e−tAku0 − e−(t−τm(k))Aku0| = |e−(t−τm(k))Ake−τm(k)Aku0 − e−(t−τm(k))Aku0|

≤ |e−τm(k)Aku0 − u0| = |e−τ eAku0 − u0|

≤ |e−τ eAku0 − e−τ eA∞u0|+ |e−τ eA∞u0 − u0|.

The contraction property of e−A∞ implies that the second term (10) is such that

|e−(t−τm(k))A∞u0 − e−tA∞u0| ≤ |e−τm(k)A∞u0 − u0|.

For the last term of the right hand of ( 10 ), we have

|e−(t−τm(k))Aku0 − e−(t−τm(k))A∞u0| ≤ sup
s∈[0,T ]

|e−sAku0 − e−sA∞u0|.

So

|uk(t)− u(t)| ≤ |e−τ eAku0 − e−τ eA∞u0|+ |e−τ eA∞u0 − u0|

+ sup
s∈[0,T ]

|e−sAku0 − e−sA∞u0|+ |e−τm(k)A∞u0 − u0|

Using the fact that u0 ∈ D(Ã∞), u0 ∈ D(A∞), lim
k→∞

m(k) = 0 and [16], we deduce that

lim sup
k→+∞

|uk(t)− u(t)| ≤ |e−τ eA∞u0 − u0|.

At last, letting τ −→ +∞ we obtain

lim
k−→∞

|uk(t)− u(t)| = 0.

Still in the abstract setting, the main applications we have in mind is the study of
evolution problems governed by two competitive operators. More precisely, consider the
evolution problem

(P ′k)




ut + d(k)Au + r(k)Bu 3 F (t, u) in (0, T )

u(0) = u0

where r , d : R+ −→ R+ are two functions such that

lim
k→∞

r(k)

d(k)
= +∞, (11)



A, B, d(k)A + r(k)B and H are accretive operators such that D(A) ⊆ D(B), F satisfies
(F1)− (F2) and u0 ∈ D(A). We assume that

d(k)A + r(k)B −→ H, as k →∞. (12)

As a consequence of Theorem 2.2, we have

Theorem 2.3 Let uk be the mild solution of (P ′k). Assume that

ε A + B → B̃, as ε → 0 (13)

and u0 ∈ D(B̃). If

lim
t→+∞

e−tB̃u0 := u0 ∈ D(H), (14)

then, as k −→∞, uk −→ u in C((0, T ), X), and u is the mild solution of

(P ′∞)





ut +Hu 3 F (t, u) in (0, T )

u(0) = u0.

Proof. It is enough to apply Theorem 2.2 with Ak := d(k)A+r(k)B and m(k) = [r(k)]−1.

Remark 2.4 1. In general, B̃ 6= B. For instance, let X = R and A be the maximal
monotone graph defined by

A(r) =





0 if |r| < 1

[0,∞) if r = 1

(−∞, 0] if r = −1.

Then, it is clear that for any ε > 0, ε A = A and ε A + B = A + B = B̃.

2. If D(A) = D(B) and A is strictly accretive, i.e. [u1 − u2, v2 − v1] ≤ 0 for any
v1 ∈ Au1, v2 ∈ Au2, then B̃ = B. Indeed, set

[x, y]s = −[x,−y] := sup
λ<0

|x + λy| − |x|
λ

,

so that A is strictly accretive is equivalent to [u1 − u2, v1 − v2]s ≥ 0, for any v1 ∈
Au1, v2 ∈ Au2. For f ∈ X, let ũε be the solution of the problem

ũε + ε Aũε + Bũε 3 f,



and ũ is the solution of
ũ + Bũ 3 f.

Since B is accretive in X then for w̃ε ∈ Bũε, w̃ ∈ Bũ we have

[ũε − ũ, w̃ε − w̃] ≥ 0

and
[ũε − ũ,−ũε − ε ṽε + ũ] ≥ 0 where ṽε ∈ Aũε,

which implies that

|ũε − ũ| ≤ [ũε − ũ,−ε ṽε]

≤ [ũε − ũ,−ε (ṽε − ṽ)− ε ṽ]

≤ ε [ũε − ũ,−ṽε + ṽ] + [ũε − ũ,−ε ṽ].

This implies that,
[ũε − ũ,−ε ṽ] ≤ ε |ṽ|

and
ε [ũε − ũ, ṽε − ṽ]s + |ũε − ũ| ≤ ε |ṽ| for ṽ ∈ Aũ

and, Since A is strictly accretive, we deduce that

|ũε − ũ| ≤ ε |ṽ|

so that, letting ε −→ 0, we obtain ũε −→ ũ, in X.

3. It is clear by the preceding remarks that an s-accretive operator is accretive, but
conversely an accretive operator is not necessarily s-accretive. If X = L1(Ω), then

[u, v] =

∫

Ω

v sign0(u) +

∫

[u=0]

|v|.

Then, it is not difficult to see that an accretive operator A is strictly accretive if and
only if ∫

[u1=u2]

|v1 − v2| ≤
∣∣∣
∫

Ω

(v1 − v2) sign0(u1 − u2)
∣∣∣.

For instance, if γ is a nondecreasing continuous function in R, then A defined in

L1(Ω) by Au = γ(u) and D(A) =
{

z ∈ L1(Ω) ; γ(z) ∈ L1(Ω)
}

is strictly accretive.

In some practical situation the condition (14) may not be fulfilled (as for example
P d,r(u0, f) in the case of large reaction and diffusion), in this case we need to work
moreover with the limit of the modified operator A + [d(k)]−1r(k)B. More precisely, we
have



Theorem 2.5 Assume (12) and (13) are fulfilled, u0 ∈ D(B̃) and let uk be the mild
solution of (P ′k). Let G be given by

A + r(k) [d(k)]−1B −→ G, as k →∞.

If,

lim
t−→+∞

e−tB̃u0 := u0 ∈ D(G)

and
lim

t−→+∞
e−tGu0 := u

0
∈ D(H), (15)

then, as k −→∞,
uk −→ u in C((0, T ), X)

where u is the mild solution of

(P ′∞)





ut +Hu 3 F (t, u) in (0, T )

u(0) = u
0

.

Proof. Let Hk := d(k)A + r(k)B, Gk := A + [d(k)]−1r(k)B, γ(k) = [r(k)]−1 + [d(k)]−1 ,
for any t, τ > 0 and k ∈ N such that τ < γ(k)t, we have

|uk(t)− u(t)| = |e−tHku0 − e−tHu0|

≤ |e−tHku0 − e−(t−τγ(k))Hku0|+ |e−(t−τγ(k))Hu0 − e−tHu0|
(16)

+ |e−(t−τγ(k))Hku0 − e−(t−τγ(k))Hu0|.

It is clear that the first term of the right hand of (16) satisfies

|e−tHku0 − e−(t−τγ(k))Hku
0
| ≤ |e−tHku0 − e−(t− τ

r(k)
)Hku0|

+ |e−(t− τ
r(k)

)Hku0 − e−(t−τγ(k))Hku
0
|

≤ |e− τ
r(k)

Hku0 − u0|+ |e− τ
d(k)

Hku0 − u
0
|.

The second one is such that

|e−(t−τγ(k))Hu
0
− e−tHu

0
| ≤ |e−τγ(k)Hu

0
− u

0
|.

The last term of the right hand of ( 16 ) satisfies

|e−(t−τγ(k))Hku
0
− e−(t−τγ(k))Hu

0
| ≤ sup

s∈[0,T ]

|e−sHku
0
− e−sHu

0
|



So that

|uk(t)− u(t)| ≤ |e− τ
r(k)

Hku0 − u0|+ |e− τ
d(k)

Hku0 − u
0
|

+ |e−τγ(k)Hu
0
− u

0
|+ sup

s∈[0,T ]

|e−sHku
0
− e−sHu

0
| .

Thanks to (12), we have

lim sup
k→+∞

|e− τ
r(k)

Hku0 − u0| = |e−τB̃u0 − u0|

Using the fact that u0 ∈ D(B), u
0
∈ D(H) and the Theorem of [16] , we get

lim sup
k→+∞

|uk(t)− u(t)| ≤ |e−τB̃u0 − u0|+ |e−τGu0 − u
0
|

and by letting τ −→ +∞ we obtain

lim
k−→∞

|uk(t)− u(t)| = 0.

Remark 2.6 The passage to the limit in the problem (Pk) leads to a singular limit. An
instantaneous change of initial data is necessary. If F ≡ 0, then, in order to describe the
behavior of the solution for small t > 0 and large value for k, it is sufficient to work with
vk given by vk(t) = uk(t/m(k)). Indeed, it is clear that vk is the mild solution of





vt + Ãkv 3 0 in (0,∞)

v(0) = u0.

So, thanks to Theorem 2.3, the compatible initial data for the limiting problem of (Pk) is
given by lim

t→∞
lim
k→∞

vk(t). In other words

lim
t→0

lim
k→∞

uk(t) = lim
t→∞

lim
k→∞

vk(t).

At last, we note that in some practical situation, the previous result may also describe
the large time behavior of the mild solution of evolution problems. In the following
corollary, we give one consequence of Theorem 2.3 in this direction. Concrete situation
will be given in details in forthcoming papers.

Corollary 2.7 Let A be an accretive operator and u0 ∈ D(A). If u0 := lim
t→∞

e−tAu0 exists

then
u0 = lim

t→0
lim
k→∞

uk,



where uk is the mild solution of




ut + k Au + Bu 3 0 in (0, T )

u(0) = u0,
(17)

and B is an accretive operator such that A + ε B converges to A, as ε → 0, and u0 ∈
D(lim inf

k→∞
(kA + B)).

In Corollary 2.7, B is an arbitrary artificial process. The interest of B may be in the
fact that we can choose it such that the solution of (17) is regular. In particular this could
be interesting for numerical analysis for lim

t→∞
e−tAu0.

3 Applications.

Throughout this section, Ω ⊆ RN is a bounded domain with smooth boundary ∂Ω,
βand g are nondecreasing continuous functions such that β(0) = g(0) = 0 and Im(β) = R.
In Ω, we consider the problem P d,r(u0, f), where u0 ∈ L∞(Ω) and f ∈ L∞(Q). Our aim in
this section is to study the competition between reaction r and diffusion d in the reaction
diffusion problem P d,r(u0, f). The main result of this section is the following Theorem
3.1.

Theorem 3.1 Let f ∈ L∞(Q), u0 ∈ L∞(Ω) and denote by ud,r the solution of P d ,r(u0, f).

1. Large diffusion : For any r > 0, as d → ∞, ud,r → c in C((0, T ), L1(Ω)), where

c ∈ C1([0, T )) is the unique solution of the ode,




ct + r g(c) =

∫
−
Ω

f in (0, T )

c(0) =

∫
−
Ω

u0.

(18)

2. Large reaction : For any d > 0, as r → ∞, ud,r → u in C((0, T ), L1(Ω)), where u
is the unique weak solution (see Proposition 3.10 for the definition) of the obstacle
problem (4) with u(0) = m0∨(u0∧M0) a.e. in Ω.

3. Large diffusion and reaction : If d = d (k) and r = r(k), with lim
k→∞

d (k) = lim
k→∞

r(k) =

∞, then
ud,r → c in C((0, T ), L1(Ω)

where c ∈ C1([0, T )) is the solution of the ode

ct + G(c) 3
∫
−
Ω

f in (0, T ),

with



(a) if lim
k→∞

d (k)

r(k)
= 0, then c(0) = m0∨(M0∧

∫
−
Ω

u0) ,

(b) if lim
k→∞

d (k)

r(k)
= ∞, then c(0) = lim

t→∞
z(t) where z is the solution of the obstacle

problem P d
∞ with z(0) = m0∨(u0∧M0), a.e. Ω.

It is known that the weak solution of P d,r(u0, f) is given by nonlinear semigroup theory.
Indeed, we know that the weak solution is the mild solution of the Cauchy problem

CP d,r(u0, f)





ut +Ad,ru = f in (0, T )

u(0) = u0,

where, Ad,r is the m-T-accretive operator defined in L1(Ω) by

f = Ad,rv ⇔





v, f ∈ L1(Ω), g(v) ∈ L1(Ω), ∃ w ∈ W 1,1(Ω), v = β(w) a.e. in Ω and

d

∫

Ω

DwDξ + r

∫

Ω

g(v)ξ =

∫

Ω

fξ for any ξ ∈ W 1,∞(Ω).

and, D(Ad,r) = L1(Ω). More precisely (see for instance [31]) we have

Proposition 3.2 If f ∈ L∞(Q) and u0 ∈ L∞(Ω), then the mild solution u of CP d,r(u0, f)
is the unique solution of P d ,r(u0, f) in the sense that u ∈ L∞(Q), there exists w ∈
L2

(
0, T ; H1(Ω)

)
such that, u = β(w) a.e. in Q, and

d

∫ τ

0

∫

Ω

DwDξ + r

∫ τ

0

∫

Ω

g(u)ξ =

∫ τ

0

∫

Ω

fξ +

∫ τ

0

∫

Ω

uξt +

∫

Ω

u0ξ(0), (19)

for any ξ ∈ C1([0, τ ]× Ω) such that ξ(., τ) ≡ 0. Moreover, for any τ ≥ 0

||u(τ)||L∞(Q) ≤ ||u0||L∞(Ω) + T ||f ||L∞(Q), (20)

∫

Ω

|u(τ)|+ r

∫ τ

0

∫

Ω

|g(u)| ≤
∫ τ

0

∫

Ω

|f |+
∫

Ω

|u0| (21)

and ∫

Ω

j(u(τ)) + d

∫ τ

0

∫

Ω

|Dw|2 ≤
∫

Ω

j(u0) +

∫ τ

0

∫

Ω

fw, (22)

where j : R 7−→ [0,∞] is a proper convex s.c.i function such that j(β(q)) =

∫ q

0

sdβ(s).

Now, the study of the asymptotic behavior of the solution of P d,r(u0, f) with respect
to d and r is closely connected to the limit of its associate stationary equation

Sd,r(f)





v − d∆w + rg(v) = f, v = β(w) in Ω

∂~nw = 0, in ∂Ω .



Recall (cf. [7]) that for any f ∈ L1(Ω), there exists a unique (u,w) solution of Sd,r(f) in
the sense that





v ∈ L1(Ω), g(v) ∈ L1(Ω),∃ w ∈ W 1,1(Ω), v = β(w) a.e. in Ω and

d

∫

Ω

DwDξ + r

∫

Ω

g(v)ξ =

∫

Ω

(f − v)ξ for any ξ ∈ W 1,∞(Ω).

In addition, for f1, f2 ∈ L1(Ω), if (vi, wi) is the solution of Sd,r(fi)) for i = 1, 2, then

∫

Ω

(v1 − v2)
+ + r

∫

Ω

(g(v1)− g(v2))
+ ≤

∫

Ω

(f1 − f2)
+ (23)

and ∫

Ω

|v1 − v2|+ r

∫

Ω

|g(v1)− g(v2)| ≤
∫

Ω

|f1 − f2|. (24)

Moreover, if f ∈ L∞(Ω) then the solution (v, w) ∈ L∞(Ω) × H2(Ω) and one has the
following estimates:

||v||L∞(Ω) ≤ ||f ||L∞(Ω) and ||r g(v)||L∞(Ω) ≤ ||f ||L∞(Ω). (25)

Indeed, taking cr such that cr + rg(cr) = ‖f‖L∞(Ω), then it is clear that cr is the solution
of Sd,r(‖f‖∞) and using (23), we get

v ≤ cr ≤ ‖f‖L∞(Ω) and rg(v) ≤ rg(cr) ≤ ‖f‖L∞(Ω),

where we used the fact that cr ≥ 0 and g(cr) ≥ 0. In the same way, we prove

v ≥ −‖f‖L∞(Ω) and rg(v) ≥ −‖f‖L∞(Ω).

Thanks to (H1), we have

‖w‖L∞(Ω) ≤ max
(
β−1(‖f‖L∞(Ω)) ∪ −β−1(−‖f‖L∞(Ω))

)
=: C. (26)

and

d

∫

Ω

|Dw|2 ≤ C
′||f ||L∞(Ω), (27)

where C
′
is a constant which depends only on Ω and ||f ||L1(Ω).

Theorem 3.3 Let f ∈ L1(Ω) and let us denote by vd,r the solution of Sd ,r(f).

1. If d = d (k) and lim
k→∞

d (k) = ∞, then

vd,r −→ (IIR + r g)−1(

∫
−
Ω

f) in L1(Ω).



2. If r = r (k) and lim
k→∞

r (k) = ∞, then vd,r → v in L1(Ω) and v is the unique solution

of the elliptic problem




v − d∆w + G(v) 3 f, v = β(w) in Ω

∂~nw = 0, in ∂Ω

in the sense that v ∈ L∞(Ω) there exists w ∈ W 1,1(Ω), u = β(w) a.e. in Ω, there
exists η ∈ L1(Ω), η ∈ G(v) a.e. in Ω and

d

∫

Ω

DwDξ +

∫

Ω

η ξ =

∫

Ω

(f − v) ξ

for any ξ ∈ W 1,∞(Ω). Moreover,

‖v‖L∞(Ω) ≤ ‖f‖L∞(Ω) and ‖η‖L∞(Ω) ≤ ‖f‖L∞(Ω) (28)

3. If d = d (k) and r = r(k), with lim
k→∞

d (k) = lim
k→∞

r(k) = ∞, then

vd,r −→ (I + G)−1(

∫
−
Ω

f) in L1(Ω).

Proof : Since in each part of the theorem, d and/or r depends on k, then, throughout
the proof, vd,r, wd,r and rg(vd,r) are denoted by vk, wk and ηk respectively. First, let
us assume that f ∈ L∞(Ω). Thanks to (25), (26) and (27), vk and wk are bounded in
L∞(Ω) and moreover wk is bounded in H1(Ω). So that, wk is weakly relatively compact
in H1(Ω), and since β is continuous then vk is relatively compact in L1(Ω). Then, there
exists a subsequence that we denote again by k, such that vk → v in L1(Ω), wk → w in
L1(Ω) and weakly in H1(Ω), and u = β(w) a.e in Ω. Moreover, hk := vk + r(k)g(vk) is
relatively compact in L1(Ω). Indeed, thanks to Lemma F. of [7] we have

lim
|y|→0

sup
k

∫

Ω
′
|hk(x + y)− hk(x)| = 0,

and moreover, the sequence is uniformly integrable. Therefore

r(k)g(vk) → η in L1(Ω).

Now, in order to characterize u, w and η, we treat separately each case of the theorem.

1. Thanks to (27), we have

d(k)

∫

Ω

|Dwk|2 ≤ C
′||f ||∞,

so that ∫

Ω

|Dw|2 ≤ lim inf
k→∞

∫

Ω

|Dwk|2 = 0,

which implies that w and v are constant functions. Taking ξ ≡ 1 as a test function

and passing to the limit we deduce that the constant v satisfies v + rg(v) =

∫
−
Ω

f.

This ends up the proof of the first part of the Theorem.



2. Since g(0) = β(0) = 0, then (24) implies that

r(k)|g(vk)|L1(Ω) ≤ |f |L1(Ω).

So, g(v) ≡ 0 and m0 ≤ v ≤ M0 a.e. in Ω. Recall that r(k)g converges in the graph
sense to G, then by standard monotone arguments η ∈ G(v) a.e. in Ω. As to (28),
it follows from the estimates (25). And the proof of the second part finishes.

3. Since ∫

Ω

|Dwk|2 ≤ C1(Ω, N)

d(k)
‖f‖L∞(Ω),

then w and v are constants. Moreover, since r(k)g converges in the graph sense to
G, then η ∈ G(v) a.e. in Ω. Integrating the equation over Ω and letting k →∞, we
get

v + G(v) 3
∫
−
Ω

f.

At last, we see that the application f → lim
k→∞

vk as defined in each cases of the theorem is

well defined and is a contraction from in L1(Ω) into L1(Ω), so the convergence result for
f ∈ L1(Ω) follows by density of L∞(Ω) in L1(Ω).

As an immediate consequence, we have

Corollary 3.4 1. For any r > 0, as d → ∞, then the operator Ad ,r converges to the
T-accretive operator A∞,r defined, in L1(Ω), by

f ∈ A∞,rv ⇔ f ∈ L1(Ω), v ≡ c, c ∈ R and r g(c) =

∫
−
Ω

f.

2. For any d > 0, as r → ∞, then Ad ,r converges to the T-accretive operator Ad,∞

defined, in L1(Ω), by

f ∈ Ad,∞v ⇔





v, f ∈ L1(Ω),∃ w ∈ W 1,1(Ω), ∃ η ∈ L1(Ω)

v = β(w), η ∈ G(v) a.e. on Ω and

d

∫

Ω

DwDξ +

∫

Ω

ηξ =

∫

Ω

fξ for any ξ ∈ W 1,∞(Ω)

3. If d = d (k) and r = r(k), with lim
k→∞

d (k) = lim
k→∞

r(k) = ∞, then Ad ,r converges to

the T-accretive operator A∞, defined by

f ∈ A∞v ⇔ f ∈ L1(Ω), v ≡ c, c ∈ R and

∫
−
Ω

f ∈ G(c).



It is not difficult to see that
Ad,r = dA + rB (29)

where A = A1,0 and B : L1(Ω) → L1(Ω) is defined by Bu = g(u) with

D(B) =
{

u ∈ L1(Ω); g(u) ∈ L1(Ω)
}

,

and D(A) ⊆ D(B).

Lemma 3.5 As ε → 0, ε A + B → B, in the sense of resolvent.

Proof : Since, εβ−1 converges to the graph N ≡ 0, then the proof is a simple consequence
of [7].

Proposition 3.6 1. D(Ad ,∞) =
{

z ∈ L1(Ω) ; m0 ≤ z ≤ M0 a.e. Ω
}

.

2. D(A∞ ,r) = R.

3. D(A∞) = [m0,M0].

Proof :

1. Clearly, by the definition of Ad,∞ we have D(Ad,∞) ⊆
{

z ∈ L1(Ω) ; m0 ≤ z ≤
M0 a.e. Ω

}
. To prove the converse part, let u ∈ L1(Ω) be such that m0 ≤ u ≤ M0

a.e. in Ω and consider uε the solution of




uε − ε4wε = u, uε = β(wε) in Ω

∂~nwε = 0, in ∂Ω

It is clear that m0 ≤ uε ≤ M0 a.e. in Ω, so that uε ∈ D(Ad,∞), for each ε > 0.
Since, εβ−1 converges to 0 in the graph sense, then by [7], we deduce that uε → u
in L1(Ω), as ε → 0, and the proof completes.

2. This is a simple consequence of the fact that D(g) = R. Indeed, for any c ∈ R,

rg(c) is well defined and there exists f ∈ L1(Ω), such that

∫
−
Ω

f = rg(c), so that

f ∈ A∞,r(c) and A∞,r(c) 6= ∅.
3. It is clear that D(A∞) ⊆ [m0,M0]. Now, for c ∈ [m0, M0], G(c) is not empty and

for any α ∈ G(c), there exists f ∈ L1(Ω), such that

∫
−
Ω

f = α, so that f ∈ A∞(c)

and we deduce that A∞(c) 6= ∅, and c ∈ D(A∞).



3.1 Large Diffusion.

In this subsection, we begin by studying the first part of Theorem 3.1, i.e. the case of
large diffusion. So, we fix r > 0 and we let d → ∞. In order to apply Theorem 2.3, we
consider first the Cauchy problem





ut + Au = 0 in (0, T )

u(0) = u0.
(30)

It is known (see for instance [31] and [34] and the references therein) that, if u0 ∈ L∞(Ω),
then the mild solution u of (30) is the unique weak solution of





ut −∆w = 0 u = β(w) in Q

∂~nw = 0, on Σ

u(0) = u0 in Ω

(31)

and

lim
t→∞

u(t) =

∫
−
Ω

u0.

Lemma 3.7 For any u0 ∈ L∞(Ω) and f ∈ L1(Ω), the mild solution of





ut + B u = f in (0, T )

u(0) = u0

(32)

is the solution of the ode





ut + r g(u) = f in (0, T )

u(0) = u0

in the sense that u ∈ W 1,1((0, T ), L1(Ω)) and the equation is satisfied a.e. in Q with
u(0) = u0. Moreover, if f ≡ 0, then

lim
t→∞

u(t) = m0∨(u0∧M0) a.e. in Ω.

Proof. Thanks to Lemma 3.5, we know that εA + B converges to B, so the limit of the
mild solution uε of 




ut + εAu + Bu = 0 in (0, T )

u(0) = u0,



converges to u (the mild solution of (32)). Using Proposition 3.2, uε ∈ L∞(Q), there
exists wε ∈ L2(0, T ; H1(Ω)), uε = β(wε) a.e. in Q and

ε

∫ τ

0

∫

Ω

DwεDξ + r

∫ τ

0

∫

Ω

g(uε)ξ =

∫ τ

0

∫

Ω

fξ +

∫ τ

0

∫

Ω

uεξt +

∫

Ω

u0ξ(0). (33)

Moreover, uε, wε and rg(uε) are bounded in L∞(Ω) and εwε is bounded in L2(0, T ; H1(Ω)),
so that

εwε → 0 weakly in L2(0, T ; H1(Ω)).

Passing to the limit in (33), we deduce that g(u) ∈ L∞(Q) and

r

∫ τ

0

∫

Ω

g(u) ξ =

∫ τ

0

∫

Ω

f ξ +

∫ τ

0

∫

Ω

u ξt +

∫

Ω

u0 ξ(0).

Since, f, g(u) ∈ L1(Q) then u ∈ W 1,1(0, T, L1(Ω)) and, for a.e. x ∈ Ω, ut(x)+ rg(u(x)) =
f(x) in (0, T ). This ends up the proof of the first part of the lemma.
Assuming that f ≡ 0, there exists a measurable function u∞, such that, as t → ∞,
u(t) → u∞, a.e. in Ω and g(u∞) = 0, a.e. in Ω ; i.e. m0 ≤ u∞ ≤ M0, p.p. in Ω.
Moreover, since u is bounded in L∞(Q), then the convergence is in L1(Ω). Let us prove
that u∞ = m0∨(u0∧M0). First, note that, if m0 ≤ u0(x) ≤ M0, then, u(t, x) = u0(x),
for any t ≥ 0, and u∞(x) = u0(x). If u0(x) ≥ M0, then it is clear that t 7−→ u(t, x) is
nonincreasing. So,

u∞(x) ≤ u0(x),

and we deduce that u∞(x) = M0. In a similar way, u∞(x) = m0, a.e.x ∈ Ω, such that
u0 ≤ m0, and the proof of the lemma finishes.

Now, applying Theorem 2.3, we get the first part of Theorem 3.1. More precisely,

Proposition 3.8 For any r > 0, as d →∞,

ud,r → c in C((0, T ), L1(Ω)),

where c ∈ C1([0, T )) is the unique solution of the ode




ct + r g(c) =

∫
−
Ω

f in (0, T )

c(0) =

∫
−
Ω

u0.

Proof : Recall that ud,r is the mild solution of CP d,r(u0, f), Ad,r = dA+ rB. Moreover,
thanks to Lemma 3.5, A and B satisfy the assumption (13), with B̃ = B, and lim

t→∞
e−tAu0 =∫

−
Ω

u0 . Since

∫
−
Ω

u0 ∈ D(A∞,r), then applying Theorem 2.3 we deduce that ud,r → u in

C((0, T ); L1(Ω)), where u is the mild solution of




ut +A∞,ru 3 f in (0, T )

u(0) =

∫
−
Ω

u0.
(34)



It is not difficult to see that the mild solution of (34) is the mild solution of




ut + Bu =

∫
−
Ω

f in (0, T )

u(0) =

∫
−
Ω

u0,

and, thanks to Lemma 3.7, the proof is finished.

3.2 Large Reaction.

Assume now, that d > 0 is fixed and that r is very large ; i.e. r →∞.

Lemma 3.9 As r →∞, ud,r → u in C((0, T ); L1(Ω)), where u is the mild solution of




ut +Ad,∞u 3 f in (0, T )

u(0) = m0∨(u0(x)∧M0).
(35)

Proof : Thanks to Lemma 3.7,

lim
t→∞

e−tBu0 = m0∨(u0(x)∧M0) a.e. x ∈ Ω.

On the other hand, we have Ad,r(k) → Ad,∞ and m0∨(u0∧M0) ∈ D(Ad,∞), then the lemma
is a simple consequence of Theorem 2.3.

At last, the proof of the second part of Theorem 3.1 follows by characterizing the mild
solution of 




ut +Ad,∞u 3 f in (0, T )

u(0) = v0

(36)

Proposition 3.10 Let f ∈ L∞(Q) and v0 ∈ L∞(Ω) such that m0 ≤ v0 ≤ M0 a.e. in Ω.
Then, the mild solution of (36) is the unique solution of the obstacle problem





ut − d∆w + G(u) = f, u = β(w) in Q

∂~nw = 0, in Σ

u(0) = v0 on Ω.

That is : u ∈ C([0, T ), L1(Ω)), u(0) = v0, there exists w ∈ L2(0, T ; H1(Ω)), u = β(w),
there exists η ∈ L2(0, T ; L2(Ω)) such that η ∈ G(u) a.e. in Q and

d

∫ τ

0

∫

Ω

DwDξ +

∫ τ

0

∫

Ω

ηξ =

∫ τ

0

∫

Ω

fξ +

∫ τ

0

∫

Ω

uξt +

∫

Ω

v0ξ(0)

for any ξ ∈ C1([0, τ ]× Ω) such that ξ(., τ) ≡ 0.



Proof : The proof of this proposition is standard by now (see for instance [31]). For
completeness let us give the arguments. For t ∈ [0, τ ], consider a subdivision t0 = 0 < t1 <

... < tn−1 < τ ≤ tn, with ti−ti−1 = ε, f1, ..., f2 ∈ L∞(Ω) with
n∑

i=1

∫ ti

ti−1

||f(t)−fi||L1(Ω) ≤ ε

and
n∑

i=1

ε||fi||L∞(Ω) ≤
∫ T

0

‖f ||L∞(Ω). By definition of the mild solution, u is given by

u(t) = L1 − lim
ε→0

uε(t)

uniformly for t ∈ [0, T ), where uε is the approximate solution by uε(0) = u0, uε(t) = ui

for t ∈]ti−1, ti], i = 1, ..., n, where ui satisfies ui + εAd,∞ui = εfi + ui−1. That is, there
exists wi ∈ H1(Ω) and ηi ∈ L∞(Ω) such that





ui − εd∆wi + εηi = ui−1 + εfi, ui = β(wi), ηi ∈ G(ui) in Ω

∂~nwi = 0, in ∂Ω
(37)

Thanks to (24) and (25), it follows that

∫

Ω

|ui|+ ε

∫

Ω

|ηi| ≤
∫

Ω

|ui−1|+ ε

∫

Ω

|fi| (38)

and

||ui||L∞(Ω) + ε||ηi||L∞(Ω) ≤ 2
(
||u0||L∞(Ω) +

∫ T

0

‖f ||L∞(Ω)

)
=: M,

so that,

||uε(t)||L∞(Ω) +

∫ T

0

||ηε(t)||L∞(Ω)dt ≤ M ∀t ∈ [0, T ], (39)

where fε, ηε : [0, τ ] −→ L1(Ω), with fε(t) = fi and ηε = ηi, for any t ∈]ti−1, ti], i =
1, ..., n. Taking ξ = wi as a test function in (37 ) and using the fact that

∫

Ω

(ui−1 − ui)wi ≤
∫

Ω

j(ui−1)−
∫

Ω

j(ui)

we deduce that
∫

Ω

j(ui) + εd

∫

Ω

|Dwi|2 + ε

∫

Ω

ηiwi ≤ ε

∫

Ω

fiwi +

∫

Ω

j(ui−1), (40)

so that, adding for i = 1, ..., n, we get

∫

Ω

j(uε(τ)) + d

∫ τ

0

∫

Ω

|Dwε|2 +

∫ τ

0

∫

Ω

ηεwε ≤
∫

Ω

j(u0) +

∫ τ

0

∫

Ω

fεwε. (41)

where wε : [0, τ ] −→ H1(Ω) with wε = wi, for any t ∈]ti−1, ti], i = 1, ..., n. Since
Im(β) = R, then we deduce that wε is bounded in L∞((0, τ) × Ω) and, using the fact
that j ≥ 0, ηεwε ≥ 0 a.e. in [0, τ ] × Ω, it follows that wε bounded in L2(0, τ, H1(Ω)).



So, let w ∈ L2(0, τ, H1(Ω)) and η ∈ L2((0, τ) × Ω), such that wεk
−→ w, weakly in

L2(0, τ, H1(Ω)) and ηε → η weakly in L2((0, τ) × Ω), where εk is a sequence such that
εk −→ 0. Using the monotony of β and G, we have u = β(w) and η ∈ G(w) a.e. in Q.
Now, let us consider ũε the function from [0, τ ] into L1(Ω), defined by ũε(ti) = ui and ũε

linear in [ti−1, ti], then ( 37 ) implies that

d

∫ τ

0

∫

Ω

DwεDξ +

∫ τ

0

∫

Ω

ηεξ =

∫ τ

0

∫

Ω

fεξ +

∫ τ

0

∫

Ω

ũεξt +

∫

Ω

u0ξ(0). (42)

for any ξ ∈ C1([0, τ ]× Ω), s.t ξ(τ) = 0. Letting ε → 0 in ( 42 ) , we get

d

∫ τ

0

∫

Ω

DwDξ +

∫ τ

0

∫

Ω

ηξ =

∫ τ

0

∫

Ω

fξ +

∫ τ

0

∫

Ω

uξt +

∫

Ω

u0ξ(0). (43)

for any ξ ∈ C1([0, τ ]× Ω), s.t ξ(τ) = 0.

3.3 Large Reaction and Diffusion.

To finish the proof of Theorem 3.1, we consider the case where both the reaction and
the diffusion rates are very large. So, we assume that d = d (k) and r = r(k), with
lim
k→∞

d (k) = lim
k→∞

r(k) = ∞. First let us consider the case where

lim
k→∞

d (k)

r(k)
= 0, (44)

in other words the reaction is more competitive than the diffusion. Thanks to Theorem
2.5, we need to consider the operator

A +
r (k)

d(k)
B =: Ak.

Since
r (k)

d(k)
→∞, then by Theorem 3.3, we deduce that

Ak → A1,∞.

On the other hand, thanks to Lemma 3.7, remember that lim
t→∞

e−tBu0 = m0∨(u0∧M0),

a.e. Ω. Since, m0∨(u0∧M0) 6∈ D(A∞), then, having in mind Theorem 2.5, the boundary
layer of the limit of ud,r is given by the large time behavior of the solution of the Cauchy
problem 




ut +A1,∞u 3 0 in (0,∞)

u(0) = m0∨(u0∧M0).
(45)

To this aim, we consider the set

K = {z ∈ [m0, M0]; ∃c ∈ R, z = β(c)}.
It is not difficult to see that K is a nonempty closed subset of L1(Ω) and, moreover, K is

contained in the set of stationary solution of (45), i.e. for any z ∈ K, e−tA1,∞
z = z, for

any t ≥ 0.



Proposition 3.11 For any u0 ∈ L1(Ω), such that m0 ≤ u0 ≤ M0 a.e. in Ω, there exists
a unique u

0
∈ K, such that

e−tA1,∞
u0 → u

0
in L1(Ω), as t →∞.

Proof : The proof of this proposition follows the same line of [28]. To summarize the
proof we give just the main lines. For more details one can see [28]. Indeed, using the
results of [7], we prove first that the resolvents are relatively compact from L∞(Ω) into
L1(Ω), i.e. if B is a bounded subset of L∞(Ω), then (I+εA1,∞)−1(B) is relatively compact

in L1(Ω) so that, the orbit γ(u0) = {e−tA1,∞
u0 : t ≥ 0} is relatively compact in L1(Ω). In

addition, it is not difficult to prove that

∫ ∞

0

∫

Ω

|Dw|2 ≤
∫

Ω

j(u0),

which implies that the ω−limit set is contained in K. Then, by using the additive semi-
group property, we deduce that the ω− limit set is a singleton and the proof finished.

Remark 3.12 The identification of u
0

is an open problem. In this direction, the reader
can see the papers [29] and [31].

Lemma 3.13 Under the assumption (44), ud,r → c in C((0, T ); L1(Ω)), where c is the
mild solution of the Cauchy problem





ct +A∞c 3 f in (0, T )

c(0) = u
0

(46)

and u
0

is given by Proposition 3.11.

Proof : Recall that we have d(k)A + r(k)B → A∞, lim
k→∞

r(k)

d(k)
= ∞, lim

t→∞
e−tBu0 =

m0∨(u0∧M0) and u
0

= lim
t→∞

e−tA1,∞
m0∨(u0∧M0) ∈ D(A∞). Then, the result of the lemma

is a consequence of Theorem 2.3.

Proposition 3.14 For any c0 ∈ [m0,M0], the mild solution of





ct +A∞c 3 f in (0, T )

c(0) = c0

(47)

is the unique solution of the ode







ct + G(c) 3
∫
−
Ω

f in (0, T ),

c(0) = c0,

in the sense that c ∈ W 1,1(0, T ), there exists η ∈ L1(0, T ), such that c(0) = c0 and

ct + η =

∫
−
Ω

f, a.e. in (0, T ).

Proof Since, for any f ∈ L1(Ω), (I + λ A∞)−1(f) = (I + λ A∞)−1(

∫
−

Ω

f) = (I +

λ G)−1(

∫
−

Ω

f), then the mild solution of (47) is the mild solution of





ct + G(c) 3
∫
−

Ω

f in (0, T )

c(0) = c0.

(48)

Thus the proof is a simple application the classical theory of nonlinear semigroup governed
by maximal monotone graphs in Hilbert space (cf. [14]).

To end up the proof of Theorem 3.1, we consider the case

lim
k→∞

d (k)

r(k)
= ∞. (49)

i.e.; the diffusion is more competitive than the reaction.

Lemma 3.15 Under the assumption (49), ud,r → c in C((0, T ); L1(Ω)), where c is the
mild solution of the Cauchy problem





ct + G(c) 3 f in (0, T )

c(0) = m0∨(

∫
−
Ω

u0∧M0).
(50)

Proof : Thanks to [7], it is not difficult to see that A + ε B → A, as ε → 0, in the sense
of resolvent. So, using Theorem 2.5, we need to consider the operator

d (k)

r(k)
A + B =: Bk.

Since
d (k)

r(k)
→∞, then Corollary 3.4 implies that

Bk → A∞,1.



On the other hand, remember that lim
t→∞

e−tAu0 =

∫
−
Ω

u0 and

∫
−
Ω

u0 /∈ D(A∞). So, we need

to consider the Cauchy problem





ut +A∞,1u 3 0 in (0,∞)

u(0) =

∫
−
Ω

u0.
(51)

Since the mild solution of (51) is the mild solution of





ct + g(c) = 0 in (0,∞)

c(0) =

∫
−
Ω

u0,

then, using Lemma 3.7, the proof is complete.
.
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