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Abstract. In this paper, we study existence and uniqueness of a solution for a nonlinear elliptic
problem subject to nonlocal boundary condition. Moreover, we prove the equivalence between
this kind of problem and nonlinear problem with very large diffusion around the boundary.

1. Introduction and assumptions

Let Ω be C1−open bounded domain in RN , (N ≥ 2), ∂Ω = ΓD ∪ ΓN with ΓD ∩ ΓN = ∅ and
β a maximal monotone graph in IR× IR. We consider the nonlinear elliptic problem

(1.1) β(u)−∇ · a(x,∇u) 3 f in Ω,

where a is a Leray-Lions operator and f is a function in L∞(Ω).

Equation (1.1) has been widely studied in the literature with standard boundary conditions
like Dirichlet, Neumann, Robin, etc. (see [5], [3,4] and the references therein). In contrast of
the standard case where the condition on the boundary is given on the local values of the flux,
nonlocal boundary conditions acts on the average of the flux on the boundary. More precisely,
we shall ask u to satisfy the condition

(1.2) ρ(u) +

∫
ΓN

a(.,∇u) · η 3 d on ΓN ,

where η is the unit outward normal vector on ∂Ω, d ∈ IR is given and ρ is a maximal monotone
graph in IR× IR. In addition, we’ll assume that u satisfies Dirichlet boundary on ΓD ; i.e.

(1.3) u = 0, on ΓD,

It is not difficult to see that under the conditions (1.3) and (1.2) the problem is ill-posed. To
close the problem, we ask u to be a constant function (unknown) on ΓN . Beside the mathematical
interest for the theoretical development of nonlinear PDE, nonlocal boundary condition appears
naturally in concrete situations where one can not reach the local values of the flux on the
boundary and neither can control it. For instance, this type of boundary condition appears
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in petroleum engineering model for well modeling in a 3D stratified petroleum reservoir with
arbitrary geometry (see [10] and [11] for details).

More precisely, our aim in this paper is to study existence and uniqueness of a solution to the
problem (1.1) subject to the boundary conditions (1.3) and (1.2) in the case where f ∈ L∞(Ω)
and the nonlinearities β and γ satisfy

(1.4) 0 ∈ β(0) ∩ ρ(0)

and

(1.5) D(β) = D(ρ) = Im(β) = Im(ρ) = R.

Moreover, we prove that the nonlocal boundary condition on ΓN is closely connected to the
problem where the domain Ω is extended around ΓD and the new extension region is subject to
a huge diffusion with an adequate local boundary condition.

In the papers [10] and [11], the authors considers the case of linear operator. Existence is
proved by Schauder theorem and the uniqueness is obtained under more restricted conditions. In
this paper, we study the general case of doubly-nonlinear elliptic problem. By using compactness
and monotonicity technics we prove existence and uniqueness of a solution. Moreover, we prove
that the problem can be handled by reorganizing the nonlocal boundary condition into a large
diffusion around the boundary ΓN .

This paper is organized as follows. In Section 2, we state our main results of existence and
uniqueness as well as the equivalence with the problem of large diffusion around ΓN . In Section 3,
we study a regular problem where we proceed by extending the domain Ω around ΓN , smoothing

the nonlinearities β and ρ, and parameterizing the diffusion outside Ω to be proportional to
1

ε
,

for a given ε > 0. In Section 3, we prove that letting ε → 0, we get the existence of a solution
to the original problem (1.1) subject to nonlocal boundary condition (1.2). At last, in Section 4,
we prove a L1−contraction principle to show the uniqueness.

2. Main results

Recall that a Leray-Lions type operator is a Caratheodory function a(x, ξ) : Ω×RN −→ RN
(i.e. a(x, ξ) is continuous in ξ for a.e. x ∈ Ω and measurable in x for every ξ ∈ RN ) satisfying,
there exists p ∈ (1,+∞) such that :

• There exists C > 0 such that, for any ξ ∈ RN

(2.1) |a(x, ξ)| ≤ C(j(x) + |ξ|p−1), for a.e. x ∈ Ω,

where j ∈ Lp′(Ω) with
1

p
+

1

p′
= 1.

• For any ξ, η ∈ RN , with ξ 6= η, we have

(2.2) (a(x, ξ)− a(x, η)) · (ξ − η) > 0, for a.e. x ∈ Ω.

• There exists C ′ > 0 such that, for any ξ ∈ RN

(2.3)
1

C ′
|ξ|p ≤ a(x, ξ).ξ for a.e. x ∈ Ω.
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Throughout the paper, we assume that β and γ are maximal monotone graphs in IR × IR
satisfying the conditions (1.4) and (1.5). Let us consider the problem

Sβ,ρf,d



β(u)−∇ · a(x,∇u) 3 f in Ω,

u = 0 on ΓD

ρ(u) +

∫
ΓN

a(.,∇u) · η 3 d

u ≡ cste

 on ΓN

where f ∈ L∞(Ω) and d ∈ IR are given. To study this problem we consider the following
functionals spaces :

W 1,p
D (Ω) =

{
ϕ ∈W 1,p(Ω)/ϕ = 0 on ΓD

}
and W 1,p

N (Ω) =
{
ϕ ∈W 1,p

D (Ω)/ϕ ≡ cste on ΓN

}
.

Moreover, for any v ∈W 1,p
N (Ω), we set

vN := v|ΓN
(in the sense of trace on ΓN ).

The concept of solution for Sβ,ρf,d is given as follow:

Definition 2.1. A solution of Sβ,ρf,d is a triplet (u,w, v) ∈W 1,p
N (Ω)× L1(Ω)× R satisfying

(2.4)



w ∈ β(u) a.e. in Ω, v ∈ ρ(uN ) and∫
Ω
a(x,∇u) · ∇ϕdx+

∫
Ω
wϕdx =

∫
Ω
fϕdx+

(
d− v

)
ϕN ,

for any ϕ ∈W 1,p
N (Ω) ∩ L∞(Ω).

Our first main result is the following theorem :

Theorem 2.1. For any f ∈ L∞(Ω) and d ∈ R the problem Sβ,ρf,d admits a solution (u,w, v)

in the sense of Definition 2.1. Moreover, if (u1, w1, v1) and (u2, w2, v2) are two solutions of Sβ,ρf,d ,
then  w1 = w2 a.e. in Ω,

v1 = v2.

Now, for a fixed arbitrary δ > 0, we consider the open bounded domain Ω̃ ⊃ Ω, given by

Ω̃ = Ω ∪
{
x ∈ RN/ dist(x,ΓN ) < δ

}
.

Here, we consider δ > 0 small enough such that ∂Ω̃ is Lipschitz and

(2.5) ΓD ⊂ ∂Ω̃.

Then, let us denote by
Γ̃N = ∂Ω̃ \ ΓD.
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In the extended domain Ω̃, we consider the following nonlinear elliptic problem with standard
(local) nonlinear boundary condition

Pε(β̃ε, ρ̃ε, f̃ , d̃)


β̃ε(x, uε)−∇ · ã(x,∇uε) = f̃ in Ω̃,

uε = 0 on ΓD

ρ̃ε(uε) + ã(x,∇uε).η = d̃ on Γ̃N ,

where the modified Leray-Lions operator is given by

ã(x, ξ) := a(x, ξ)χΩ(x) +
1

εp
|ξ|p−2ξχ

Ω̃\Ω(x), ∀(x, ξ) ∈ Ω̃× RN .

The non linearities β̃ε : Ω̃× IR→ IR and ρ̃ε : Ω̃× IR→ IR are given by

β̃ε(x, s) = βε(s)χΩ(x), ∀(x, s) ∈ Ω̃× R,

and

ρ̃ε(s) =
1

|Γ̃N |
ρε(s), ∀s ∈ R

where βε and ρε are the regularized Yosida approximation of β and ρ respectively, and |Γ̃N |
denotes the (N − 1)−Hausdorff measure of Γ̃N . The function d̃ ∈ L∞(Γ̃N ) is given such that

(2.6)
∫

Γ̃N

d̃ = d,

and f̃ is given by

f̃ = fχΩ.

Using standard arguments, one can prove that the problem Pε(β̃ε, ρ̃ε, f̃ , d̃) has at least one solution
uε in the sense that

(2.7)



uε ∈W 1,p
D (Ω̃), βε(uε) ∈ L1(Ω), ρ̃ε(uε) ∈ L1(ΓN ) and∫

Ω̃
ã(x,∇uε) · ∇ϕ̃dx+

∫
Ω
βε(uε)ϕ̃dx =

∫
Ω
fϕ̃dx+

∫
Γ̃N

(
d̃− ρ̃ε(uε)

)
ϕ̃

for any ϕ̃ ∈W 1,p
D (Ω̃) ∩ L∞(Ω).

Formally, one sees here that letting ε goes to 0, the nonlinearity aε becomes very large on
the region Ω̃ \ Ω, and forces u to be constant on this region. Thanks to (2.5), this implies that
u is a constant function on ΓN and we prove that u satisfies the condition (1.2). More precisely,
we have the following result
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Theorem 2.2. Let f ∈ L∞(Ω), d ∈ R and, for any ε > 0, let us consider uε a solution of
the problem Pε(β̃ε, ρ̃ε, f̃ , d̃). As ε→ 0, up to a subsequence if necessary, we have

uε
∗
⇀ u and βε(uε)

∗
⇀ w in L∞(Ω)

ρ̃ε(uε)
∗
⇀ ṽ in L∞(Γ̃N ),

and the triplet (u,w, v) is a solutions of Sβ,ρf,d where v :=

∫
Γ̃N

ṽdσ.

3. The approximated problem corresponding to Sβ,ρf,d

Our aim here is to study the problem Pε(β̃ε, ρ̃ε, f̃ , d̃) for a given fixed ε > and δ > 0. We
prove the following result

Proposition 3.1. For any f ∈ L∞(Ω) and ε > 0, the problem Pε(β̃ε, ρ̃ε, f̃ , d̃) has at least
one solution in the sense of (2.7). Moreover, we have

(3.1)


|βε(uε)| ≤ θ1 := max

{
‖f‖∞, (βε ◦ ρ−1

ε )
(
|Γ̃N |‖d̃‖∞

)}
a.e. in Ω

and
|ρ̃ε(uε)| ≤ θ2 := max

{
‖d̃‖∞, (ρ̃ε ◦ β−1

ε ) (‖f‖∞)
}

a.e. on Γ̃N .

To simplify the presentation, we withdraw the subscript ε and δ throughout this section. To
prove Proposition 3.1, we consider the problem

Pk(β̃, ρ̃, f̃ , d̃)


Tk

(
β̃(x, uk)

)
−∇ · ã(x,∇uk) = f̃ in Ω̃,

uk = 0 on ΓD

Tk (ρ̃(uk)) + ã(x,∇uk).η = d̃ on Γ̃N

where the truncation function Tk is define as

∀s ∈ R, Tk(s) =

 −k if s < −k,
s if |s| ≤ k,
k if s > k.

We have

Proposition 3.2. Assume β̃, ρ̃, f̃ and d̃ as above. Then for any k > 0 the problem Pk(β̃, ρ̃, f̃ , d̃)

admits at least one solution uk in the sense that uk ∈W 1,p
D (Ω̃) and

(3.2)
∫

Ω̃
ã(x,∇uk).∇ϕ̃dx+

∫
Ω
Tk (β(uk)) ϕ̃dx =

∫
Ω
fϕ̃dx+

∫
Γ̃N

(
d̃− Tk (ρ̃(uk))

)
ϕ̃,

for any ϕ̃ ∈W 1,p
D (Ω̃). Furthermore, for any k large enough

(3.3) |β(uk)| ≤ θ1 a.e. in and |ρ̃(uk)| ≤ θ2 a.e. on Γ̃N .
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Proof. For any k > 0, let us introduce the following operator Λk : W 1,p
D (Ω̃) −→

(
W 1,p
D (Ω̃)

)′
given by, for any (u, v) ∈W 1,p

D (Ω̃)×W 1,p
D (Ω̃),

(3.4) 〈Λk(u), v〉 =

∫
Ω̃
ã(x,∇u).∇vdx+

∫
Ω
Tk (β(u)) vdx+

∫
Γ̃N

Tk (ρ̃(u)) vdσ.

Let us prove that, for any k > 0, Λk is surjective. To this aim, it is enough to show that
the operator Λk is bounded, coercive and of type M , that is if un ⇀ u in W 1,p

D (Ω̃), Λk(un) ⇀

χk in
(
W 1,p
D (Ω̃)

)′
, lim sup
n→+∞

〈Λk(un), un〉 and ≤ 〈χk, u〉 , then Λk(u) = χk.

(i) Boundedness of Λk. For any (u, v) ∈W 1,p
D (Ω̃)×W 1,p

D (Ω̃), using (2.1), we have∣∣∣ 〈Λk(u), v〉
∣∣∣ ≤ ∫

Ω̃
|ã(x,∇u)||∇v|dx+ k

∫
Ω
|v|dx+ k

∫
Γ̃N

|v|dσ.

≤
∫

Ω̃
|ã(x,∇u)||∇v|dx+ kC1(|Ω|, p)‖v‖Lp(Ω) + kC2(|Γ̃N |, p)‖v‖Lp(Γ̃N )

≤
∫

Ω̃
C
(
j(x) + |∇u|p−1

)
|∇v| dx+ kC1(|Ω|, p)‖v‖Lp(Ω)

+kC2(|Γ̃N |, p)‖v‖Lp(Γ̃N )

≤
∫

Ω̃
Cj(x)|∇v| dx+

∫
Ω̃
C|∇u|p−1|∇v| dx+ kC1(|Ω|, p)‖v‖Lp(Ω)

+kC2(|Γ̃N |, p)‖v‖Lp(Γ̃N )

≤ C3(j, p)‖∇v‖
Lp(Ω̃)

+ C4‖∇u‖Lp(Ω̃)
‖∇v‖

Lp(Ω̃)
+ kC1(|Ω|, p)‖v‖Lp(Ω)

+kC2(|Γ̃N |, p)‖v‖Lp(Γ̃N ).

Using the continuous injection of W 1,p
D (Ω̃) into Lp(Γ̃N ), we deduce that∣∣∣ 〈Λk(u), v〉

∣∣∣ ≤ C3(j, p)‖v‖
W 1,p

D (Ω̃)
+ C4‖u‖W 1,p

D (Ω̃)
‖v‖

W 1,p
D (Ω̃)

+ kC1(|Ω|, p)‖v‖
W 1,p

D (Ω̃)

+kC2(|Γ̃N |, p)‖v‖W 1,p
D (Ω̃)

≤
(
C3(j, p) + C4‖u‖W 1,p

D (Ω̃)
+ kC1(|Ω|, p) + kC2(|Γ̃N |, p)

)
‖v‖

W 1,p
D (Ω̃)

.

This implies that Λk maps bounded subsets ofW 1,p
D (Ω̃) to bounded subsets of

(
W 1,p
D (Ω̃)

)′
. Then

Λk is bounded on W 1,p
D (Ω̃).

(ii) Coerciveness of Λk. For any k > 0, let us prove that

〈Λk(u), u〉
‖u‖

W 1,p
D (Ω̃)

−→ +∞ as ‖u‖
W 1,p

D (Ω̃)
−→ +∞.
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For any u ∈W 1,p
D (Ω̃), we have

(3.5) 〈Λk(u), u〉 =

∫
Ω̃
a(x,∇u).∇udx+

∫
Ω
Tk (β(u))udx+

∫
Γ̃N

Tk (ρ̃(u))udσ.

In one hand, we see that the two last terms in the right hand side of (3.5) are nonnegative. On
the other hand, using the assumption (2.3), we obtain∫

Ω̃
a(x,∇u).∇udx ≥ 1

C ′
‖∇u‖p

Lp(Ω̃)

Therefore, (3.5) implies that

〈Λk(u), u〉 ≥ 1

C ′
‖∇u‖p

Lp(Ω̃)
.

Since u ∈W 1,p
D (Ω̃), by using Poincaré’s inequality, we deduce that Λk is coercive.

(iii)The operator Λk verifies the M-property. To this aim, we use the following known
lemma.

Lemma 3.1. (cf. [16])
Let A and B be two operators. If A is of type M and B is monotone and weakly continuous, then
A+ B is of type M .

We see that setting

〈Au, v〉 :=

∫
Ω̃
ã(x,∇u).∇vdx and 〈Bku, v〉 :=

∫
Ω
Tk (β(u)) vdx+

∫
Γ̃N

Tk (ρ̃(u)) vdσ,

we have
Λk = A+ Bk, for any k > 0.

In one hand, it is well known that the operator A is of the type M. On the other, using the
monotonicity of β, ρ̃ and the map Tk, it is clear that Bk is monotone, for any k > 0. Moreover,
for any sequence (un)n∈N ⊂ W 1,p

D (Ω̃) such that un ⇀ u in W 1,p
D (Ω̃), we see that Bkun ⇀

Bku, as n→ +∞, ∀k > 0. Thus the operator Bk is weakly continuous.
Indeed, let φ ∈W 1,p

D (Ω̃). In one hand, we have

(3.6) lim
n−→+∞

∫
Ω
Tk (β(un))φdx =

∫
Ω
Tk (β(u))φdx.

On the other hand, since un ⇀ u in W 1,p
D (Ω̃), up to a subsequence, we have un −→ u in Lp(∂Ω̃)

and a.e on ∂Ω̃ and we deduce

(3.7) lim
n−→+∞

∫
Γ̃N

Tk (ρ̃(un))φdσ =

∫
Γ̃N

Tk (ρ̃(u))φdσ.

From (3.6) and (3.7), it yields

∀k > 0, lim
n−→+∞

〈Bkun, φ〉 = 〈Bku, φ〉, which means that Bkun ⇀ Bku.

So, by using Lemma 3.1, we conclude that the operator Λk is the type M . This implies that, for
any L ∈

(
W 1,p
D (Ω̃)

)′
, there exists uk ∈ W 1,p

D (Ω̃) such that Λk(uk) = L. Taking L ∈
(
W 1,p
D (Ω̃)

)′
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defined by L(v) :=

∫
Ω
fvdx +

∫
Γ̃N

d̃v dσ, ∀v ∈ W 1,p
D (Ω̃), we deduce the existence of a solution

of Pk(β̃, ρ̃, f̃ , d̃). Now, let us prove (3.3).
Let us introduce the following function Hε for any ε > 0:

∀s ∈ R, Hε(s) =


0 if s < 0,
s

ε
if 0 ≤ s ≤ ε,

1 if s > ε.

In (3.2), we set ϕ̃ = Hε(uk −M), ε > 0 where M > 0 is a constant to be fixed later. We get

(3.8)

∫
Ω̃
ã(x,∇uk).∇Hε(uk −M)dx+

∫
Ω
Tk (β(uk))Hε(uk −M)dx =

∫
Ω
fHε(uk −M)dx

+

∫
Γ̃N

(
d̃− Tk (ρ̃(uk))

)
Hε(uk −M) dσ.

It is not difficult to see that the first term in (3.8) is non negative. This implies that∫
Ω
Tk (β(uk))Hε(uk −M)dx ≤

∫
Ω
fHε(uk −M)dx+

∫
Γ̃N

(
d̃− Tk (ρ̃(uk))

)
Hε(uk −M) dσ,

and∫
Ω

(
Tk (β(uk))− Tk (β(M))

)
Hε(uk −M)dx+

∫
Γ̃N

(
Tk (ρ̃(uk))− Tk (ρ̃(M))

)
Hε(uk −M) dσ

≤
∫

Ω

(
f − Tk (β(M))

)
Hε(uk −M)dx+

∫
Γ̃N

(
d̃− Tk (ρ̃(M))

)
Hε(uk −M) dσ.

Letting ε goes to 0, we get∫
Ω

(
Tk (β(uk))− Tk (β(M))

)
sign+

0 (uk −M)dx+

∫
Γ̃N

(
Tk (ρ̃(uk))− Tk (ρ̃(M))

)
sign+

0 (uk −M) dσ

≤
∫

Ω

(
f − Tk (β(M))

)
sign+

0 (uk −M)dx+

∫
Γ̃N

(
d̃− Tk (ρ̃(M))

)
sign+

0 (uk −M) dσ,

which is equivalent to∫
Ω

(
Tk (β(uk))− Tk (β(M))

)+
dx+

∫
Γ̃N

(
Tk (ρ̃(uk))− Tk (ρ̃(M))

)+
dσ

≤
∫

Ω

(
f − Tk (β(M))

)
sign+

0 (uk −M)dx+

∫
Γ̃N

(
d̃− Tk (ρ̃(M))

)
sign+

0 (uk −M) dσ.

Now, thanks to (1.5), we can take M = M0 := max
{
β−1(‖f‖∞), ρ−1

(
|Γ̃N |‖d̃‖∞

)}
. Then, for

any k > max
{
‖f‖∞, ‖d̃‖∞

}
, it follows that

(3.9)
∫

Ω

(
Tk (β(uk))− Tk (β(M0))

)+
dx+

∫
Γ̃N

(
Tk (ρ̃(uk))− Tk (ρ̃(M0))

)+
dσ ≤ 0.
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This yields

(3.10)


Tk (β(uk)) ≤ Tk (β(M0)) a.e. in Ω
and
Tk (ρ̃(uk)) ≤ Tk (ρ̃(M0)) a.e. on Γ̃N .

,

So, for any k > k0 := max
{
‖f‖∞, ‖d̃‖∞, β(M0), ρ̃(M0)

}
,

β(uk) ≤ β(M0) a.e. in Ω and ρ̃(uk) ≤ ρ̃(M0) a.e. on Γ̃N .

In particular, this implies that

(3.11)


β(uk) ≤ max

{
‖f‖∞, (β ◦ ρ−1)

(
|Γ̃N |‖d̃‖∞

)}
a.e. in Ω

and
ρ̃(uk) ≤ max

{
‖d̃‖∞, (ρ̃ ◦ β−1) (‖f‖∞)

}
a.e. on Γ̃N .

At last, one see that (−uk) is a solution of

Pk(β̂, ρ̂, f̂ , d̂ )


Tk

(
β̂(x, u)

)
−∇ · â(x,∇u) = f̂ in Ω̃,

u = 0 on ΓD

Tk (ρ̂(u)) + â(x,∇u).η = d̂ on Γ̃N .

where

â(x, ξ) = −ã(x,−ξ), β̂(x, s) = −β̃(x,−s), ρ̂(s) = −ρ̃(−s), f̂ = −f̃ and d̂ = −d̃.

So, using the same arguments we deduce that for k large enough, we have

(3.12)


β(uk) ≥ −max

{
‖f‖∞, (β ◦ ρ−1)

(
|Γ̃N |‖d̃‖∞

)}
a.e. in Ω

ρ̃(uk) ≥ −max
{
‖d̃‖∞, (ρ̃ ◦ β−1) (‖f‖∞)

}
a.e. on Γ̃N .

Thus (3.3). �

Proof of Proposition 3.2. Considering k = 1 + max{θ1, θ2}, and using (3.3) we see
that a solution uk of Pk(β̃, ρ̃, f̃ , d̃)

)
given by Proposition 3.2 is a solution of P (β̃, ρ̃, f̃ , d̃)

)
satis-

fying (3.1). This ends up the proof of Proposition 3.2.
�
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4. Large diffusion : letting ε→ 0

Now, coming back to the problem Pε(β̃ε, ρ̃ε, f̃ , d̃), our aim is to pass to the limit as ε → 0.

Thanks to Proposition 3.1, there exists a measurable function uε : Ω̃ −→ R such that

(4.1)



uε ∈W 1,p
D (Ω̃), βε(uε) ∈ L1(Ω) and ∀ϕ̃ ∈W 1,p

D (Ω̃) ∩ L∞(Ω),∫
Ω
a(x,∇uε).∇ϕ̃dx+

∫
Ω̃\Ω

1

εp
|∇uε|p−2∇uε.∇ϕ̃dx+

∫
Ω
βε(uε)ϕ̃dx

=

∫
Ω
fϕ̃dx+

∫
Γ̃N

(
d̃− ρ̃ε(uε)

)
ϕ̃ dσ.

Moreover by (3.3) we have

(4.2)


|βε(uε)| ≤ θ3 := max

{
‖f‖∞, (βε ◦ ρ−1

ε )
(
|Γ̃N |‖d̃‖∞

)}
a.e. in Ω

and
|ρ̃ε(uε)| ≤ θ4 := max

{
‖d̃‖∞,

(
ρ̃ε ◦ β−1

ε

) (
‖f‖∞

)}
a.e. on Γ̃N .

First, we see that

Lemma 4.2. There exists C1, C2, C3, C4 ∈ IR+ independent of ε, such that

(4.3)

 |βε(uε)| ≤ C1 a.e. in Ω and |ρ̃ε(uε)| ≤ C2 a.e. on Γ̃N

|uε| ≤ C3 a.e. in Ω and |uε| ≤ C4 a.e. on Γ̃N .

Proof. Thanks to the assumption (1.5), it clear that θ3 = (βε ◦ ρ−1
ε )

(
|Γ̃N |‖d̃‖∞

)
and

θ4 =
(
ρ̃ε ◦ β−1

ε

) (
‖f‖∞

)
are bounded. This follows from the fact that the assumptions (1.5)

implies that ρ−1
ε and β−1

ε are bounded in bounded sets of IR. Using the same arguments combined
with the fact that

(4.4)


|uε| ≤ θ5 := max

{
β−1
ε (M1),−β−1

ε (−M1)
}

a.e. in Ω

|uε| ≤ θ6 := max
{
ρ̃−1
ε (M2),−ρ̃−1

ε (−M2)
}

a.e. on Γ̃N

where M1 := max {‖f‖∞, C1} and M2 := max
{
‖d̃‖∞, C2

}
, we deduce the result of the lemma.

�

Remark 4.1. If uε is a solution of Pε(β̃ε, ρ̃ε, f̃ , d̃), then, by using test functions ϕ̃ ∈W 1,p
N (Ω)∩

L∞(Ω) such that ϕ̃ ≡ cste on Ω̃ \ Ω, we see that

(4.5)
∫

Ω
a(x,∇uε).∇ϕ̃dx+

∫
Ω
βε(uε)ϕ̃dx =

∫
Ω
fϕ̃dx+

(
d−

∫
Γ̃N

ρ̃ε(uε)dσ
)
ϕ̃N .

The next result gives us a priori estimates on the solution uε of the problem Pε(β̃ε, ρ̃ε, f̃ , d̃).
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Lemma 4.3. Let uε be a solution of Pε(β̃ε, ρ̃ε, f̃ , d̃). Then the following statements hold to be true:

(i)

∫
Ω
|∇uε|p dx +

1

εp

∫
Ω̃\Ω
|∇uε|pdx ≤ C ×

(
‖d̃‖

L1(Γ̃N )
+ ‖f‖L1(Ω)

)
, where C is a positive

constant independent of ε.

(ii)

∫
Ω
|βε(uε)| dx+

∫
Γ̃N

|ρ̃ε(uε)| dσ ≤ ‖d̃‖L1(Γ̃N )
+ ‖f‖L1(Ω).

Proof. First, we see that taking ϕ̃ = uε in (4.1), we have

(4.6)

∫
Ω
a(x,∇uε).∇uεdx+

∫
Ω̃\Ω

1

εp
|∇uε|p−2∇uε.∇uεdx+

∫
Ω
βε(uε)uεdx

=

∫
Ω
fuεdx+

∫
Γ̃N

(
d̃− ρ̃ε(uε)

)
uε dσ.

(i) Obviously, we have
∫

Ω
βε(uε)uεdx ≥ 0,

∫
Ω̃\Ω

1

εp
|∇uε|p−2∇uε.∇uεdx ≥ 0 and∫

Ω
fuεdx ≤ C3‖f‖L1(Ω). For the last term in (4.6) we have∫

Γ̃N

(
d̃− ρ̃ε(uε)

)
uε dσ =

∫
Γ̃N

d̃uε dσ −
∫

Γ̃N

ρ̃ε(uε)uε dσ

≤
∫

Γ̃N

d̃uε dσ

≤
∫

Γ̃N

|d̃||uε| dσ

≤ C4‖d̃‖L1(Γ̃N )
.

Having in mind the relation a(x, ξ).ξ ≥ 1

C ′
|ξ|p we get∫

Ω
a(x,∇uε).∇uεdx ≥

1

C ′

∫
Ω
|∇uε|p dx.

So, using the inequalities above and (4.3), we deduce the first part of the lemma.
(ii) We set ϕ̃ = Tk(uε), k > 0 in (4.1) to get

(4.7)

∫
Ω
a(x,∇uε).∇Tk(uε)dx+

∫
Ω̃\Ω

1

εp
|∇uε|p−2∇uε.∇Tk(uε)dx+

∫
Ω
βε(uε)Tk(uε)dx

+

∫
Γ̃N

ρ̃ε(uε)Tk(uε) dσ =

∫
Ω
fTk(uε)dx+

∫
Γ̃N

d̃Tk(uε) dσ.

The two first terms in (4.7) are nonnegative. For the term in the right hand side of (4.7), we
have ∫

Ω
fTk(uε)dx+

∫
Γ̃N

d̃Tk(uε) dσ ≤ k

(∫
Ω
|f |dx+

∫
Γ̃N

|d̃| dσ.
)
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= k
(
‖d̃‖

L1(Γ̃N )
+ ||f ||L1(Ω)

)
Then, from (4.7), we have∫

Ω
βε(uε)Tk(uε)dx+

∫
Γ̃N

ρ̃ε(uε)Tk(uε) dσ ≤ k
(
‖d̃‖

L1(Γ̃N )
+ ||f ||L1(Ω)

)
.

We divide by k and let k goes to zero, we get∫
Ω
|βε(uε)|dx+

∫
Γ̃N

|ρ̃ε(uε)| dσ ≤
(
‖d̃‖

L1(Γ̃N )
+ ||f ||L1(Ω)

)
�

Now, we state our convergences results.

Lemma 4.4. There exists u ∈W 1,p
N (Ω̃), such that, up to a subsequence if necessary, as ε→ 0

(4.8) uε ⇀ u in W 1,p
D (Ω̃) and uε −→ u a.e. in Ω̃ and a.e. on Γ̃N .

Moreover,

u ∈W 1,p
N (Ω) and a(x,∇uε) ⇀ a(x,∇u) in

(
Lp

′
(Ω)
)N

.

Proof. First, we see that∫
Ω̃
|∇uε|p dx =

∫
Ω
|∇uε|p dx +

∫
Ω̃\Ω
|∇uε|pdx

≤
∫

Ω
|∇uε|p dx +

∫
Ω̃\Ω

1

εp
|∇uε|pdx,

for any 0 < ε < 1. Then thanks to Proposition 4.3-(i), the sequence (∇uε)ε>0 is bounded in
Lp(Ω̃)N . This implies that there exists u ∈ W 1,p

N (Ω̃) such that (4.8) is fulfilled. Thanks to

Lemma 4.3,
∫

Ω̃\Ω

1

εp
|∇uε|pdx is bounded. Then, it is clear that u is a constant function in

Ω̃ \ Ω. Thus u ∈ W 1,p
N (Ω). For the last part of the lemma, we recall that uε is bounded in

W 1,p
D (Ω). So, (a(x,∇uε))ε>0 is bounded in

(
Lp

′
(Ω)
)N

and, we can extract a subsequence such

that a(x,∇uε) ⇀ Φ in
(
Lp

′
(Ω)
)N

. Using standard monotonicity arguments, one can see that

Φ = a(x,∇u) a.e. in Ω.

Indeed, taking ϕ̃ = uε − u as a test function in (4.1), we have

(4.9)

∫
Ω
a(x,∇uε).∇(uε − u)dx+

∫
Ω̃\Ω

1

εp
|∇uε|p−2∇uε.∇(uε − u)dx+

∫
Ω
βε(uε)(uε − u)dx

+

∫
Γ̃N

ρ̃ε(uε)(uε − u) dσ =

∫
Ω
f(uε − u)dx+

∫
Γ̃N

d̃(uε − u) dσ.

So, using the first part and Lebesgue dominated convergence Theorem, we obtain
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(4.10) lim sup
ε→0

∫
Ω
a(x,∇uε).∇ (uε − u) dx ≤ 0.

Then, by using standard monotonicity arguments, this implies that Φ = a(x,∇u) a.e. in Ω. For
completeness let us give the arguments. Let ϕ ∈ D(Ω) and λ ∈ R∗. Using (4.10) and (2.2), we
get

λ lim
ε→0

∫
Ω
a(x,∇uε).∇ϕdx ≥ lim sup

ε→0

∫
Ω
a(x,∇uε).∇

(
uε − u+ λϕ

)
dx

≥ lim sup
ε→0

∫
Ω
a(x,∇(u− λϕ)).∇

(
uε − u+ λϕ

)
dx.

Hence

(4.11) λ lim
ε→0

∫
Ω
a(x,∇uε).∇ϕdx ≥ λ

∫
Ω
a(x,∇(u− λϕ)).∇ϕdx.

Dividing (4.11) by λ > 0 and by λ < 0 respectively, passing to the limit with λ → 0 it follows
that

lim
ε→0

∫
Ω
a(x,∇uε).∇ϕdx =

∫
Ω
a(x,∇u).∇ϕdx.

This means that
∫

Ω
Φ.∇ϕdx =

∫
Ω
a(x,∇u).∇ϕdx and so div(Φ) = div a(x,∇u) in D′(Ω).

Hence Φ = a(x,∇u) a.e. in Ω and we have a(x,∇uε) ⇀ a(x,∇u) in
(
Lp

′
(Ω)
)N

as ε→ 0.
�

Proof of Theorem 2.2. Thanks to Lemma 4.4, we know that there exists u ∈W 1,p
N (Ω),

such that, up to a subsequence if necessary, as ε→ 0

uε ⇀ u in W 1,p
D (Ω̃) and a(x,∇uε) ⇀ a(x,∇u) in

(
Lp

′
(Ω)
)N

.

Using moreover (4.3), we can assert that u ∈ L∞(Ω) and there exists w ∈ L∞(Ω) and ṽ ∈ L∞(Γ̃N )
such that as ε→ 0

(4.12)

 βε(uε)
∗
⇀ w in L∞(Ω)

and
ρ̃ε(uε)

∗
⇀ ṽ in L∞(Γ̃N ).

Thanks to Remark 4.1

(4.13)
∫

Ω
a(x,∇uε).∇ϕdx+

∫
Ω
βε(uε)ϕdx =

∫
Ω
fϕdx+

(
d−

∫
Γ̃N

ρ̃ε(uε) dσ

)
ϕN ,

for any ϕ ∈W 1,p
N (Ω) ∩ L∞(Ω). So, letting ε→ 0, we get∫

Ω
a(x,∇u).∇ϕdx+

∫
Ω
wϕdx =

∫
Ω
fϕdx+ (d− v)ϕN .
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where v :=

∫
Γ̃N

ṽdσ ∈ R. Recall that βε and ρ̃ε converge to β and
1

|Γ̃N |
ρ, in the sense of

graphs, respectively. So, since uε −→ u in Lp(Ω) as ε → 0, βε(uε)
∗
⇀ w in L∞(Ω) and

ρ̃ε(uε)⇀ṽ in Lp(Γ̃N ) as ε→ 0, we deduce that (cf. [8]) that

w ∈ β(u) a.e. in Ω and v ∈ ρ(uN ) a.e. on Γ̃N .

At last, since uN ∈ IR, v ∈ ρ(uN ) a.e. on Γ̃N and ρ(uN ) is an interval, we deduce that v ∈ ρ(uN ).
This ends up the proof of the existence of a solution. �

5. Uniqueness

The uniqueness concerning the solution of Sβ,ρf,d is a straightforward consequence of the con-
traction property in the following lemma :

Lemma 5.5. Assume that (u1, w1, v1) and (u2, w2, v2) are two solutions of the problems
Sβ,ρf1,d1 and Sβ,ρf2,d2 , respectively. Then

(5.1)
∫

Ω
(w1 − w2)+ dx+ (v1 − v2)+ ≤

∫
Ω

(f1 − f2)+ dx+ (d1 − d2)+ .

Proof. Recall that, for i = 1, 2, we have wi ∈ β(ui) a.e. in Ω, vi ∈ ρ
(
(ui)N

)
and

(5.2)
∫

Ω
a(x,∇ui).∇ϕdx+

∫
Ω
wiϕdx =

∫
Ω
fiϕdx+ (di − vi)ϕN

for any ϕ ∈W 1,p
N (Ω) ∩ L∞(Ω).

Let ξ ∈W 1,p
N (Ω). Taking ϕ = Hε(u1−u2 +εξ) as a test function for each i = 1, 2 and subtracting

the resulting equations we get

(5.3)

∫
Ω

(
a(x,∇u1)− a(x,∇u2)

)
.∇Hε(u1 − u2 + εξ)dx+

∫
Ω

(w1 − w2)Hε(u1 − u2 + εξ)dx

+ (v1 − v2) (Hε(u1 − u2 + εξ))N =

∫
Ω

(f1 − f2)Hε(u1 − u2 + εξ)dx

+ (d1 − d2) (Hε(u1 − u2 + εξ))N .

It is clear that,∫
Ω

(f1 − f2)Hε(u1−u2 +εξ)dx+(d1 − d2) (Hε(u1 − u2 + εξ))N ≤
∫

Ω
(f1 − f2)+ dx+(d1 − d2)+ .

Moreover, thanks to (2.2), the first term in (5.3) satisfies

lim sup
ε→0

∫
Ω

(
a(x,∇u1)− a(x,∇u2)

)
.∇Hε(u1 − u2 + εξ)dx ≥ 0.

Indeed, we have∫
Ω

(
a(x,∇u1)− a(x,∇u2)

)
.∇Hε(u1 − u2 + εξ)dx
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=
1

ε

∫
Ω∩[0≤u1−u2+εξ≤ε]

(
a(x,∇u1)− a(x,∇u2)

)
. (∇u1 −∇u2) dx

+

∫
Ω∩[0≤u1−u2+εξ≤ε]

(
a(x,∇u1)− a(x,∇u2)

)
.∇ξdx

≥
∫

Ω∩[0≤u1−u2+εξ≤ε]

(
a(x,∇u1)− a(x,∇u2)

)
.∇ξdx,

and letting ε→ 0, we have

lim sup
ε→0

∫
Ω

(
a(x,∇u1)− a(x,∇u2)

)
.∇Hε(u1 − u2 + εξ)dx

≥ lim
ε→0

∫
Ω∩[0≤u1−u2+εξ≤ε]

(
a(x,∇u1)− a(x,∇u2)

)
.∇ξdx.

=

∫
Ω∩[u1=u2]

(
a(x,∇u1)− a(x,∇u2)

)
.∇ξdx

= 0.

So, from (5.3) we obtain

(5.4)

lim sup
ε→0

∫
Ω

(w1 − w2)Hε(u1 − u2 + εξ)dx+ lim sup
ε→0

(v1 − v2) (Hε(u1 − u2 + εξ))N

≤
∫

Ω
(f1 − f2)+ dx+ (d1 − d2)+ .

See that, for any a, b ∈ IR, as ε→ 0,

Hε(a− b+ εξ)→ sign+
0 (a− b) + ξχ[a=b].

So, by using Lebesgue dominated convergence Theorem, we obtain

lim
ε→0

∫
Ω

(w1 − w2)Hε(u1 − u2 + εξ)dx =

∫
Ω

(w1 − w2) ξχ[u1=u2]dx

+

∫
Ω

(w1 − w2) sign+
0 (u1 − u2)χ[u1 6=u2]dx

and
lim
ε→0

(
(v1)N − (v2)N

)
(Hε(u1 − u2 + εξ))N = (v1 − v2) ξNχ[(u1)N=(u2)N ]

+ (v1 − v2) sign+
0 ((u1)N − (u2)N )χ[(u1)N 6=(u2)N ].

So, (5.4) implies that

(5.5)

∫
Ω

(w1 − w2) ξχ[u1=u2]dx+

∫
Ω

(w1 − w2) sign+
0 (u1 − u2)χ[u1 6=u2]dx

+ (v1 − v2) ξNχ[(u1)N=(u2)N ] + (v1 − v2) sign+
0 ((u1)N − (u2)N )χ[(u1)N 6=(u2)N ]

≤
∫

Ω
(f1 − f2)+ dx+ (d1 − d2)+ .
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By density, we can take the function ξ0 defined by :

ξ0 =


sign+

0 (w1 − w2) in Ω

sign+
0 (v1 − v2) on ΓN

0 in RN \ Ω.

as a test function in (5.5). This implies that∫
Ω

(w1 − w2) sign+
0 (w1 − w2)χ[u1=u2]dx+

∫
Ω

(w1 − w2) sign+
0 (u1 − u2)χ[u1 6=u2]dx

+ (v1 − v2) sign+
0 (v1 − v2)χ[(u1)N=(u2)N ] + (v1 − v2) sign+

0 ((u1)N − (u2)N )χ[(u1)N 6=(u2)N ]

≤
∫

Ω
(f1 − f2)+ dx+ (d1 − d2)+

and then ∫
Ω

(w1 − w2)+ χ[u1=u2]dx+

∫
Ω

(w1 − w2)+ χ[u1 6=u2]dx

+ (v1 − v2)+ χ[(u1)N=(u2)N ] + (v1 − v2)+ χ[(u1)N 6=(u2)N ]

≤
∫

Ω
(f1 − f2)+ dx+ (d1 − d2)+ .

Thus ∫
Ω

(w1 − w2)+ dx+ (v1 − v2)+ ≤
∫

Ω
(f1 − f2)+ dx+ (d1 − d2)+ .

�

Proof of Theorem 2.1. It is clear that the existence is a consequence of Theorem 2.2.
The uniqueness follows from the L1-comparaison principle in Lemma 5.5. �
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