Elliptic Problem Involving Non-Local
Boundary Conditions

Noureddine Igbida! and Soma Safimbat

ABSTRACT. In this paper, we study existence and uniqueness of a solution for a nonlinear elliptic
problem subject to nonlocal boundary condition. Moreover, we prove the equivalence between
this kind of problem and nonlinear problem with very large diffusion around the boundary.

1. Introduction and assumptions

Let Q be C'—open bounded domain in RY, (N>2),00=TpUly withTpNTx =0 and
£ a maximal monotone graph in R x R. We consider the nonlinear elliptic problem

(1.1) B(u) =V -a(x,Vu)> f in 0,
where a is a Leray-Lions operator and f is a function in L%(Q).

Equation has been widely studied in the literature with standard boundary conditions
like Dirichlet, Neumann, Robin, etc. (see [5], |34] and the references therein). In contrast of
the standard case where the condition on the boundary is given on the local values of the flux,
nonlocal boundary conditions acts on the average of the flux on the boundary. More precisely,
we shall ask u to satisfy the condition

(1.2) ,o(u)—l—/F a(.,Vu)-n>d on Iy,

where 7 is the unit outward normal vector on 02, d € R is given and p is a maximal monotone
graph in IR x IR. In addition, we’ll assume that u satisfies Dirichlet boundary on I'p ; i.e.

(1.3) u=0, onlp,

It is not difficult to see that under the conditions and the problem is ill-posed. To
close the problem, we ask u to be a constant function (unknown) on I'y. Beside the mathematical
interest for the theoretical development of nonlinear PDE, nonlocal boundary condition appears
naturally in concrete situations where one can not reach the local values of the flux on the
boundary and neither can control it. For instance, this type of boundary condition appears
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in petroleum engineering model for well modeling in a 3D stratified petroleum reservoir with
arbitrary geometry (see [10] and [11] for details).

More precisely, our aim in this paper is to study existence and uniqueness of a solution to the
problem (1.1)) subject to the boundary conditions (|1.3) and (|1.2) in the case where f € L>(Q)
and the nonlinearities 8 and ~ satisfy

(1.4) 0 € 8(0) N p(0)
and
(1.5) D(B) = D(p) = Im(8) = Im(p) = .

Moreover, we prove that the nonlocal boundary condition on I'y is closely connected to the
problem where the domain €2 is extended around I'p and the new extension region is subject to
a huge diffusion with an adequate local boundary condition.

In the papers [10] and [11], the authors considers the case of linear operator. Existence is
proved by Schauder theorem and the uniqueness is obtained under more restricted conditions. In
this paper, we study the general case of doubly-nonlinear elliptic problem. By using compactness
and monotonicity technics we prove existence and uniqueness of a solution. Moreover, we prove
that the problem can be handled by reorganizing the nonlocal boundary condition into a large
diffusion around the boundary T'j.

This paper is organized as follows. In Section 2, we state our main results of existence and
uniqueness as well as the equivalence with the problem of large diffusion around I' . In Section 3,
we study a regular problem where we proceed by extending the domain §2 around I' 7, smoothing

1
the nonlinearities 8 and p, and parameterizing the diffusion outside {2 to be proportional to —,

€
for a given € > 0. In Section 3, we prove that letting ¢ — 0, we get the existence of a solution
to the original problem ((1.1)) subject to nonlocal boundary condition ([1.2]). At last, in Section 4,
we prove a L'—contraction principle to show the uniqueness.

2. Main results

Recall that a Leray-Lions type operator is a Caratheodory function a(z, &) :  x RY — RN
(ie. a(zx,&) is continuous in ¢ for a.e. z € Q and measurable in x for every & € RY) satisfying,
there exists p € (1, +00) such that :

e There exists C' > 0 such that, for any £ € RY
(2.1) la(z, &) < C(j(z) + |€)P7Y), forae z€Q,
' 1 1
where j € LP (Q) with — + — = 1.
p D
e For any &,n € RY, with € # 1, we have

(2.2) (a(z,&) —a(x,n))- (£ —n) >0, forae zell
e There exists C’ > 0 such that, for any ¢ € R

(2.3) %\ﬂp <a(z,§).£ forae xe€.
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Throughout the paper, we assume that § and v are maximal monotone graphs in R x R

satisfying the conditions (|1.4)) and (1.5]). Let us consider the problem
( B(u) =V -a(x,Vu) > f in ©,

u=20 onI'p

/87
S

p(u)—i—/F a(.,Vu)-n>d

u = cste

on FN

where f € L°(Q) and d € R are given. To study this problem we consider the following
functionals spaces :

Wé’p((l) = {go e WH(Q) /¢ =0 on FD} and WJ{[’p(Q) = {cp € W;)’p(Q)/go = cste on FN}.
Moreover, for any v € WyP(Q), we set
vy :=v|r, (in the sense of trace on I'y).

The concept of solution for S? 7 is given as follow:

DEFINITION 2.1. A solution of S?’g is a triplet (u,w,v) € W]{;p(ﬂ) x LY(Q) x R satisfying

w € B(u) a.e. inQ, veE puy) and

(2.4) /Qa(x,Vu)-Vgodx—i-/wgodx:/gfgpd:v—l—(d—v)g)]v,

Q

for any ¢ € WJ{,’p(Q) N L>(9).

\

Our first main result is the following theorem :

THEOREM 2.1. For any f € L*(2) and d € R the problem S?’g admits a solution (u,w,v)

in the sense of Definition . Moreover, if (u1,w1,v1) and (ug,we,v2) are two solutions of S?’C‘Z,

then
wy = wy a.e. in §,

v = V.
Now, for a fixed arbitrary § > 0, we consider the open bounded domain Qo Q, given by
Q=0QuU {x e RY/ dist(z,Ty) < 5}.
Here, we consider § > 0 small enough such that o0 is Lipschitz and

(2.5) I'p C 9Q.

Then, let us denote by _ _
'y =00\ TI'p.
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In the extended domain S~2, we consider the following nonlinear elliptic problem with standard
(local) nonlinear boundary condition

Belz,ue) — V- a(x, Vue) = f  in €,
Pe(Be, e, £, d) ue =0 on I'p

pe(ue) + a(z, Vu).p=d on Iy,

where the modified Leray-Lions operator is given by
~ 1 _ ~
a(2,€) := a(@, Oxalr) + SEFxg 0(2), ¥(,€) € A< RY.

The non linearities EE : xR — R and Pe - O xR — R are given by

BNE(.CL', 8) - 55(5))((2(-%')7 V(ZL‘, 8) € ﬁ X R,

and

7i(s) = ——pels), Vs € R
|N|

where . and p. are the regularized Yosida approximation of 8 and p respectively, and \fN|
denotes the (N — 1) — Hausdorff measure of I'y. The function d € L>(I'y) is given such that

(2.6) /F d=d,

and fis given by
f = Ixae.

Using standard arguments, one can prove that the problem P, (EE, Pes f, c?) has at least one solution
ue in the sense that

(ue € WEP(Q), Be(ue) € LHQ), pe(uc) € LY(Ty) and

(2.7) /Q a(z, Vue) - V(pdm—&—/ﬁe Ue @dx—/fapdac—i-/ (Elv— ﬁe(ue))sz

I'n

([ for any @ € W5P(Q) N L=(Q).

Formally, one sees here that letting € goes to 0, the nonlinearity a. becomes very large on
the region O \ ©, and forces u to be constant on this region. Thanks to 1.' this implies that
u is a constant function on Iy and we prove that u satisfies the condition (|1.2). More precisely,
we have the following result
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THEOREM 2.2. Let f € L™(R), d € R and, for any € > 0, let us consider ue a solution of
the problem P.(fBe, pe, f,d). Ase — 0, up to a subsequence if necessary, we have

Ue = u and Be(us) = w in L®(Q)
Pelue) 2T in L®(Ty),

and the triplet (u,w,v) is a solutions of S?’g where v : = /~ vdo.
) FN

3. The approximated problem corresponding to S?’C’l’

Our aim here is to study the problem Pe(ﬁl,ﬁe, ]7, (?) for a given fixed € > and § > 0. We
prove the following result

PROPOSITION 3.1. For any f € L°°(Q) and € > 0, the problem PE(BNS,,JE,]?,CT) has at least
one solution in the sense of . Moreover, we have

1Be(u)] < 01 := max { |/, (B0 ) (IEn 1]l ) } ace. in ©
(3.1) and

7e()] < 02 := max {|dll, (e B7) (I fllc) } ae on Ty,

To simplify the presentation, we withdraw the subscript € and § throughout this section. To
prove Proposition [3.1] we consider the problem

Tk (g(a:,uk)) —V-a(z,Vup) =f inQ,

Pk(gvﬁa.]?v(/i) ’LLk:O ODFD
Ty, (P(ug)) + a(x, Vug)n = d on 'y
where the truncation function T}, is define as
—kif s < —k,
Vs € R, Ti(s) =« sif|s| <k,
kif s > k.

We have

PROPOSITION 3.2. Assume B, 0, ]7 and d as above. Then for any k > 0 the problem P, (5, 0, f, J)
admits at least one solution ug in the sense that uy € Wllj’p(Q) and

62 [ aVa) Vet [ 13w ge = [ feaes [ (716w )

Q 'y

for any ¢ € Wé’p(ﬁ). Furthermore, for any k large enough

(3.3) 1B(ug)| < 61 ace. in and  |p(ug)| < 62 a.e. on Ty.
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~ ~ !/
PROOF. For any k > 0, let us introduce the following operator Ay : Wll)’p(Q) — (Wé’p(Q))
given by, for any (u,v) € Wllj’p(ﬁ) X Wé’p(ﬁ),
(3.4) (Ag(u),v) = /Na(m,Vu).Vvdx —l—/ Ty (B(u)) vdx —|—/~ Ty (p(u)) vdo.
Q Q Iy

Let us prove that, for any & > 0, Ay is surjective. To this aim, it is enough _to show that
the operator Ay is bounded, coercive and of type M, that is if u, — u in Wllj’p(Q), Ak (up) —

~ /
Xk in (W[l)’p(ﬂ)> , lim sup (Ag(un), upn) and < (xg,u), then Ag(u) = xk.

n——+o0o

(i) Boundedness of Ay. For any (u,v) € Wll)’p(ﬁ) X W})’p(ﬁ), using (12.1)), we have

[ (Mslw).0)| < /ﬁ|5(x,Vu)HVv|dx—|—k/Q|v\dx+k/~ v|do.

I'n
< [ fate. V)l elde + KC (9, ol + HCaErl. Dol
< [ o(it@)+ 19up=") Vel de -+ ka1 D)olloce
(T D)ol

/~ Cij(a)| Vo] dr + [0|Vu|p—1|wdx+k01<|9|,p>||vum<m
Q Q

IN

—|—k02(|fN|ap)||v||LP(fN)
Cali P IVl oy + Call Vel oI V0l vy + KO D)o
+k02(|fN|ap)”U”Lp(1~“N).

IN

Using the continuous injection of Wll)’p (€) into LP(Ty), we deduce that

IN

‘ (Ag(u),v) ‘ Cg(j,p)HUHW]lj,p(ﬁ) + C4””HWEP(§)||UHW;;P((~)) + kCl(IQ!,p)HU||W3p@)

ROl Pl e

< (Cs(j,P) + Callullyre gy + EC1 (|12, p) + kCQ(\fNI,P)) [ollyy2e -

~ ~ /
This implies that Ay maps bounded subsets of W})’p (©) to bounded subsets of (Wé’p (Q)> . Then
Ay is bounded on W5P(Q).

(ii) Coerciveness of A;. For any k > 0, let us prove that

(A (u), u)

— 400 as |
||u||W$’P(§)

|u||WBp(§) — +00.
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For any u € WSP(Q), we have

(3.5) (Ag(u), u) = /ﬁ o, V). Vuda + /

Q

T (5(u) ude + [T (3(w) ud:

NN

In one hand, we see that the two last terms in the right hand side of (3.5 are nonnegative. On
the other hand, using the assumption (2.3)), we obtain

/~a(x,Vu) Vudzx > —||Vu”p
Q

Therefore, (3.5) implies that
1
(e > L Ivul?, o

Since u € Wllj’p (@), by using Poincaré’s inequality, we deduce that Ay is coercive.

(iii) The operator Ay verifies the M-property. To this aim, we use the following known
lemma.

Lemma 3.1. (¢f. [16])
Let A and B be two operators. If A is of type M and B is monotone and weakly continuous, then
A+ B is of type M.

We see that setting

(Au, v) = /{~2 a(z, V). Vodz and (Byu, v) = /

Q

Ty (B(u)) vdx + /~ T (p(u)) vdo,

'y
we have
A=A+ B, foranyk > 0.

In one hand, it is well known that the operator A is of the type M. On the other, using the
monotonicity of 5, p and the map Tk, it is clear that By, is monotone, for any k > 0. Moreover,
for any sequence (up)ney C W ’p(Q) such that u, — win W ’p(Q), we see that Bpu, —
Bru, as n — 400, Yk > 0. Thus the operator By is weakly continuous.

Indeed, let ¢ € Wll)’p (Q). In one hand, we have

(3.6) i [ T3 (3u) oo = [ T (5(u) o
Q Q

n—> —+00

On the other hand, since u,, — u in W})’p(ﬁ), up to a subsequence, we have u, — u in LP(9Q)
and a.e on 0f2 and we deduce

(3.7) lim T (p(un)) pdo = /f Ty (p(u)) pdo.

n—-4oo fN

From ({3.6) and (3.7)), it yields
vk > 0, irri (Brun, ®) = (Bru, ¢), which means that Bgu, — Bpu.

So, by using Lemma we conclude that the operator Ay is the type M. This implies that, for
~ !/ ~ ~ /
any L € (WL]‘)’p(Q)> , there exists u, € W5P(Q) such that Ay (uy) = L. Taking L € (Wll)’p(Q))
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defined by L(v) := / fvdx + /~ dv do, Vv € Wé’p (Q), we deduce the existence of a solution
Q Ty

of Pk(g, Dy jf,c?) Now, let us prove (3.3)).

Let us introduce the following function H, for any € > O:
0if s <0,
Vs € R, H(s) = zifogsge,
lif s >e.
In , we set ¢ = He(ug, — M), € > 0 where M > 0 is a constant to be fixed later. We get

/~ (e, V).V H. (ug — M)da + / Ty (B(un)) Ho(up — M)dar = / FH. (g — M)da
(38 Q Q Q

[ (A= @) ) e = M) do
It is not difﬁc]\lfﬂt to see that the first term in is non negative. This implies that

/QTk (B(ug)) He(ur, — M)dx < /QfHe(uk — M)dx + /T‘N (giv— T (p(ug)) )Hg(uk — M) do,
and

[ (7 (30)) = B (5O ) o= M)+ [ (Ta (Fw)) = T GO ) Hil = M) o

'y

< [ (=100 )it = Mo + [ (T=T (GO ) Helu = 20) do

'y
Letting € goes to 0, we get

(7 (30000) = T (300 s (= M+ [ (T o)) = T (M) sz s = M) o

'n

< /Q (f ~ Ty (B(M)) )signg(uk — M)dz + /~ (J— Ty (3(M)) )signg(uk — M) do,

I'n
which is equivalent to

[ (33 - 1300 o+ [ (T3t - 72 (60 ) dor

I'n
< [ (7= Do) Jsni (o = Myda + [ (=T 50D )signg (. = M) o
INY;
Now, thanks to |i we can take M = My := max {ﬁ_l(HfHoo),p_l <|fN|||£lv\|oo)} Then, for
any k > max{||f||oo, ||£lvl\oo}, it follows that

39 [ (B -1600) ) de+ [ (T - T 60h)) " do <o,

'y
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This yields

Ty, (B(ug)) < Ty (B(Mp)) a.e. in Q
(3.10) and

Tk (ﬁ(uk)) S Tk (ﬁ(Mo)) a.e. on f]v.

)

So, for any k > ko := maX{HfHoo, \Iélvl\oo,ﬁ(Mo)7ﬁ(Mo)}7

B(ug) < B(Mp) ae. in @  and  pluy) < p(Mo) ae. on I'y.

In particular, this implies that

Bur) < masc{ || floes (80 p™") (ITnlId]ls) } aue. in €
(3.11) and

plur) < max {||dloo, (70 87) (| fllc) } ae. on Ty,

At last, one see that (—ug) is a solution of
T (B, w) -V -a@,Va) = i 8,
Pk(ﬁaﬁvfad) u=0 OHFD

Ty, (p(w)) + @z, Vu).n = d on I'y.

where

~

a(ZE,f) = _a(x7_£)7 ﬁ(l’,S) = —g(l‘, _S)a Z)\(S) = _:5(_5)’ ]/C\: _}: and C/Z\: _J
So, using the same arguments we deduce that for k large enough, we have

Blur) 2 —max {[Ifl, (80 p7") ([P Ildllc) | ae. in Q2
(3.12)

plug) = —max {dlloc; (50 87) (| llc) } acc. on Ty.

Thus (3.3)). O

PROOF oF PRoPOSITION [3.2] Considering k = 1 + max{#1,6>}, and using (3.3 we see
that a solution uy of Pk.(g, 0, f, J)) given by Proposition is a solution of P(E, 0, f, @) satis-

fying (3.1]). This ends up the proof of Proposition
O
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4. Large diffusion : letting ¢ — 0

Now, coming back to the problem PE(EE,,EE, f, c?), our aim is to pass to the limit as € — 0.
Thanks to Proposition there exists a measurable function u, : 2 — R such that

(uc € WEP(Q), B-(ue) € LHQ) and V& € WP (Q) N L=(Q),
~ 1 . ~
/ a(x,Vue).Vodr + /~ — | VP2 Vu. Vada +/ Be (ue) pdx
Q oo € Q

— [ ot [ (detu))7 don
Q I'n
Moreover by (3.3) we have

1B ()| < 3 = mac { || fllocs (8- 0 ) (IEw[ ]l ) } ave. in ©2
(4.2) and

=) < 04 1= max { o, (70 57) (Ifl1o) } ae. on .

(4.1)

First, we see that
Lemma 4.2. There exists C1,Cy,Cs,Cy € IR independent of €, such that

1B-(ue)| < Cy ave. in Q and |p-(us)| < Ca a.e. on Ty
(4.3) N
lue| < C5 a.e. in Q and |ue| < Cy a.e. on Ty.

ProOF. Thanks to the assumption |) it clear that 63 = (B. 0 p ') (|fN|||£lv\\oo> and
0y = (p-0 521 (|| f ||OO> are bounded. This follows from the fact that the assumptions 1'

implies that p;l and 2 ! are bounded in bounded sets of R. Using the same arguments combined
with the fact that

lue| < 05 := max{ﬁe_l(Ml), —Be_l(—Ml)} a.e. in
(4.4) ~

[ue| < 0 := max {p_ " (M>), —ﬁ;l(—Mg)} a.e. on I'y

where M; := max {|| f]|oo, C1} and My := max{||(ﬂ|oo, Cg}, we deduce the result of the lemma.

(]

REMARK 4.1. Ifu, is a solution of P (55, ey g), then, by using test functions ¢ € WJ{,’p(Q)ﬂ
L>°(Q) such that ¢ = cste on Q\ Q, we see that

(4.5) /Q o, V).V 3ds + /Q B. () pda = /Q fda+ (d - /ﬁ p-(uc)do ) B

N

The next result gives us a priori estimates on the solution u,. of the problem Pa(ge, Des f, c?)
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Lemma 4.3. Let u. be a solution ofpe(ﬁg, Pe, f, J) Then the following statements hold to be true:

1 ~
(2) /Q |Vu|P dz + - /ﬁ\ﬂ |VuelPdr < C x (HdHLl(fN) + HfHL1(Q)), where C'is a positive
constant independent of €.

(i) / 1Be(uue) i + / ()| do < [l gy + 171121,
N
PRrROOF. First, we see that taking ¢ = u. in ( , we have

/a(x,VuE).Vuedx+/ —|Vu6|p 2Vu,. Vueder/ Be (ue)uedz
Q o\ €

:/quedaﬂ—/fN (4 5-() ) e do

(7) Obviously, we have / Be(ue)uedx > 0, / \Vug\p 2Vue.Vuedr > 0 and
9) o\Q €

/ fuedr < O3 f|l11(q). For the last term in we have
Q

/~ (J_ ,”ovs(us)>ue do = /~ du, da—/~ Pe(ue)ue do
FN FN FN

(4.6)

< /~ givugda
I'n

< [ i do
Ty

< C4Hd||L1(f )

1
Having in mind the relation a(z,&).£ > —/|§|p we get

/ a(xz, Vue).Vuedr > / V|’ dx.
Q

So, using the inequalities above and , we deduce the first part of the lemma.
(13) We set @ = Tx(uc), k> 01in |) to get

/Q o, Vi) .V T (ue)dz + /

o € —\Vue|p* Vue. VT (ue)dx —|—/ Be (ue) T (ue)dx

(4.7)
+/fN 5 (1) Te(ue) da—/ka ue)dx—k/FN AT (ue) do.

The two first terms in (4.7)) are nonnegative. For the term in the right hand side of (4.7, we

have
/ T (ue da:—i—/ JTk(ue) do < k </ \f]dm+/~ ]cﬂ da.)
FN Q l_‘N
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= 5 (1l gy + 122 )
Then, from (4.7), we have

[ pewotingde + [ T do < k (15, + 11l

We divide by k£ and let k goes to zero, we get

J et [ 1wl do < (1l + 51l
Now, we state our convergences results.
Lemma 4.4. There exists u € WJ{,’p(ﬁ), such that, up to a subsequence if necessary, ase — 0
(4.8) Ue — U N W;’p(ﬁ) and  uc — u a.e. in Q and a.e. on Dy.
Moreover,
ue WyP(Q) and alz, Vue) — a(z, Vu) in <LPI(Q)>N.

PrROOF. First, we see that

/|Vu6|pdm = /|Vu€|pdx +/ |Vue|Pdx
Q Q O\Q

1
/|Vu6|pdaz +/~ —p|Vu6|pd:U,
Q Q\Q €

for any 0 < ¢ < 1. Then thanks to Proposition (), the sequence (Vue)eso is bounded in
LP(Q)N. This implies that there exists u € W?(Q) such that (4.8) is fulfilled. Thanks to

1
Lemma /~ —p|Vu€|de is bounded. Then, it is clear that w is a constant function in
o\Q €

IN

Q\ Q. Thus u € W]{,’p(Q). For the last part of the lemma, we recall that u. is bounded in
, N
Wll)’p(Q). So, (a(x, Vue)),s( is bounded in <Lp (Q)) and, we can extract a subsequence such

, N
that a(x, Vue) — @ in (Lp (Q)) . Using standard monotonicity arguments, one can see that

® = a(x, Vu) a.e. in Q.
Indeed, taking @ = u. — u as a test function in (4.1]), we have
1
/ a(x, Vue).V(ue — u)dx +/~ | Vue|P2Vue. V(ue — u)dz + / Be(ue) (ue — u)dx
Q o\Q €P Q
(4.9)

+/fN Pe(ue)(ue — u) da—/gf(ug—u)da:—i—ﬁ d(ue — u) do.

I'n
So, using the first part and Lebesgue dominated convergence Theorem, we obtain
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(4.10) lim sup/ a(z, Vue).V (ue — u) dz < 0.
Q

e—0

Then, by using standard monotonicity arguments, this implies that ® = a(x, Vu) a.e. in Q. For
completeness let us give the arguments. Let ¢ € D(2) and A € R*. Using (4.10) and (2.2), we
get

Alim [ a(z,Vue).Vedr > lim sup/ a(x, VuJ.V(ue —u+ )x(p) dx
Q

e—0 Jo e—0

> limsup/ a(z,V(u— A@)).V(Ue —u+ A(p) dx.
e—0 Q
Hence
(4.11) Aim [ a(z,Vue).Veodr > )\/ a(z,V(u— Ap)).Vedz.
e—0 QO 0

Dividing (4.11) by A > 0 and by A < 0 respectively, passing to the limit with A — 0 it follows
that

lim a(m,VuE).Vgodx—/a(a;,Vu).thdx.
e—0 QO [¢)

This means that /
Q

, N
Hence ® = a(z, Vu) a.e. in 2 and we have a(x, Vu,) = a(x, Vu) in (Lp (Q)) as e — 0.

d.Vodr = / a(z, Vu).Vedr and so div(®) = div a(z, Vu) in D'(Q).
Q
U

PROOF OF THEOREM [2.2] Thanks to Lemma we know that there exists u € Wy (),
such that, up to a subsequence if necessary, as € — 0

_ ) N
U — u in W})’p(Q) and a(z,Vue) — a(z, Vu) in (Lp (Q)) .

Using moreover (1.3)), we can assert that u € L>(£2) and there exists w € L>®(€2) and 7 € L>®(T'y)
such that as ¢ = 0

Be(ue) =w in L¥(Q)
(4.12) and
pe(uc) 2T in L®(Ty).

Thanks to Remark [.1]

(4.13) /a(q:,Vue).Vgodl‘Jr/ Be(ue) pdx = / fedr + <d/~ Pe(ue) da) ©N,
Q Q Q Ty

for any ¢ € WP () N L=(Q). So, letting € — 0, we get

/a(:n,Vu).chda:—}—/wcpdx = /fgpd:n—i—(d—v)cp]v.
Q Q Q
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- ~ 1 :
where v = /~ vdo € R. Recall that . and p. converge to S and ﬁp, in the sense of
Ty N
graphs, respectively. So, since u. — u in LP(Q) as ¢ — 0, Be(u:) = w in L*°(Q) and
pe(us)—v in LP(I'y) as e — 0, we deduce that (cf. [8]) that

w € B(u) ae. inQ and v e p(uy) a.c. on Ly.

At last, since uy € R, v € p(uy) a.c. on I'y and p(uy) is an interval, we deduce that v € p(uy).
This ends up the proof of the existence of a solution. O

5. Uniqueness

The uniqueness concerning the solution of Sf 7 is a straightforward consequence of the con-

traction property in the following lemma :

Lemma 5.5. Assume that (u1,wi,v1) and (ug,ws,v) are two solutions of the problems
S?fpdl and S?fdy respectively. Then

(51) / (w1 — w2)+ dzx + (’Ul — U2)+ < / (fl — f2)+ dzx + (d1 — d2)+ .
Q Q
PROOF. Recall that, for i = 1,2, we have w; € 5(u;) a.e. in Q, v; € p((ul)N) and
(5.2) / a(x,Vu;).Vedr + / wipdr = / fiedz + (d; — vi) pN
Q Q Q

for any ¢ € WJ{,’Z’(Q) N L>(9).
Let € € W]{,’p(Q). Taking ¢ = H.(u1 —uz+¢€) as a test function for each i = 1,2 and subtracting
the resulting equations we get

/ (a(x, Vui) — a(z, Vug)) VH.(u; —ug + ef)dx + / (w1 — wy) He(u1 — ug + €)dx
Q Q

(5.3) + (v1 — v2) (He(ug —ug +€€)) y = /Q (f1 — f2) He(u1 — ug +§)dx

+ (di — d2) (He(u1 —up +€€)) -
It is clear that,
/ (f1 = f2) He(u1 —up+e§)dz+(di — d2) (He(ur — uz + £§)) y < / (fi = fo) T da4(dy — d2)™ .
Q Q
Moreover, thanks to , the first term in (5.3)) satisfies

lim sup/ (a(:c, Vui) — al(z, Vu2)>.VHa(u1 —ug +€€)dx > 0.
Q

e—0

Indeed, we have

/Q (a(@ Vuy) — a(z, VUQ)).VHE(Ul — ug + £€)da
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1
= / (a(x, Vui) — a(z, Vu2)>. (Vuy — Vug) dz
QN[0<ui—u2+ef<e]

5
+/ (a(:r, Vup) — a(z, Vu2)>.V§dac
QN[0<ui—uz+ef<e]

>

/ (a(:v,Vul) —a(z, VuQ)>.V§dx,
QN[0<ui—uz+ef<e]

and letting € — 0, we have

lim sup/ (a(:n, Vui) — a(z, VUQ)) VH.(u; —ug + &f)dzx
Q

e—0

> lim <a(x, Vui) — a(z, Vu2)>.V§d1:.
e—0 QN[0<u; —uz+e€<e]

= / <a(az, Vui) — a(z, Vuz)).V§d$
Qﬂ[u1:u2]
=0.
So, from ({5.3) we obtain

limsup/ (w1 — we) He(u1 — ug + €€)dx + limsup (v — v2) (He(u1 —u2 +€£)) 5
e—0 Q e—0
(5.4)
< [ (h= )t ot (- o)
Q
See that, for any a,b € IR, as ¢ — 0,
Hc(a — b+ €f) — signd (a — b) + EX[a=b)-

So, by using Lebesgue dominated convergence Theorem, we obtain

lim [ (w1 —w2) Ho(up —ug +€€)dx = / (w1 — wa) EX[ur=uz] AT
e—0 Q Q

+/ (w1 — wa) signg (U1 — U2) X[y, ) AT
Q
and

lim ((v1) = (v2) ) (He(un = uz +6))y = (01 = 02) ENX [ y=(ua]

e—0

+ (v1 — w2) signg ((u1) N — (U2) M) X[(ur) £(uz) ]
So, (5.4]) implies that

/Q (w1 — w2) EX[uy—up)dT + /Q (w1 — wa) signg (U1 — U2) X [uy 2u,] 42
(5.5) + (01 = V2) ENX[(ur ) w=(us) ] T (V1 — v2) signg ((u1) N — (U2)N) X[(ur)w £(uz) w]

< / (fi = fo) T do+ (di — d2) ™.
0

15
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By density, we can take the function &y defined by :

sign(‘)F (w1 —wz) in Q
€0 =1 signd (v —v2) on T'y
0 in RV \ Q.
as a test function in ([5.5). This implies that

/ (w1 — ws) signg (w1 — W2) X [y =uz] AT +/ (w1 — we) signg (ug — U2) X[y £uz] AT
Q Q

+ (v1 — v2) signd (V1 — v2) X[(u)y=(uz)n] T (V1 — v2) signg ((u1)n — (U2)N) X[(ur) n £ (uz) n]

< / (fi— fo) " dz + (dy — d2)*
0

and then
/Q (w1 —wa) " X[u1=uz] 4% + /Q (w1 —w2)™ X[ur #u2) 4
+ (01 = 02) " X ) w=(un)w] F (01 = 02) T X[(ur) w(u2) )
< / (fi—fo) de+ (dy —do)™.
Q
Thus

/ (’LU1 — w2)+ dx + (Ul — ’U2)+ < / (fl — f2)+ dx + (dl — d2)+ .
Q Q

O

PRrROOF OF THEOREM [2.7] It is clear that the existence is a consequence of Theorem [2.2]

The uniqueness follows from the L!-comparaison principle in Lemma O
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