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Abstract

In this paper, we study the singular limit of the Porous Medium equation u, = Au™ +
g(x,u), as m— oo, in a bounded domain with Neumann boundary condition.
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1. Introduction

The aim of this paper is to study the effects of a lower-order nonlinearity and
Neumann boundary condition on the limit of the Porous Medium equation u, =
Au™, when the parameter m goes to oo. This is a particular case of an overall
program of studying the so-called singular limit for nonlinear pdes, ie., a
perturbation problem where the perturbed problem is of totally different character
than the unperturbed one. Recently, in light of Monge Kantorovich mass transfer
theory, Evans et al. proved in [9] that the related problem of taking the limit p — oo,
for the pde u;, = A,u has turned out to be interesting. Our approach is different, it is
based on the ideas we introduced in [6] (see also [10]) for the similar problem with
Dirichlet boundary condition. However, in our case, i.e. Neumann boundary
condition, the description of the limit is more delicate.
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Let Q be a bounded open set in RY with smooth boundary Q. For m>1, we
consider the problem

%:Au”urg(u) on Q=(0,T) x Q,
ou" _ (1)
8n_0 on 2= (0,T) x 0Q,

u(0,.) = uo(.) on Q,

where ¢g: R, — R is continuous with

g(0)=0, %gl( in 2'(0,0), Keb(Ry) (2)
and uge L™ (Q) with
0<uy<M, a.e. on Q. (3)

According to (2), for any re R, there exists a unique maximal solution ¢(r, ) defined
on the maximal interval [0, 7'(r)) of the o.d.e.

U 4(g) on (0.7T()), q0) =1 @

Choosing
0<T<T(My) (5)

it is easy to show that there exists a unique bounded weak solution u of (1) in the
sense:

ue®([0,T); L'(Q)) "L (Q),
u=0, u"el*0,T;H (Q)),

(6)
[ Jué+ [ [g)é= [ [Du" D+ [uoé(0,.),
Veée WHN0, T; LY(Q))nL*(0, T; HY(Q)), &(T,.) =0.
We denote by u,, this solution. By maximum principle, it is clear that
0<up(t,x)<q(My,t) ae. (t,x)eQ. (7)

This paper describes the limit of u,, as m goes to co. In the case g = 0, it has been
proved in [3] (c.f. Theorem 3) that u,,(f) > uy in L'(Q) for t€]0, T], where

1 .
quo <:_ mfg u0> if )cu()Zl,

MOX[W:O] + X[w>0] if quo <1

(8)

U =
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with we H'(Q) the unique solution of the “mesa problem”

weH*(Q), w=0, 0<Aw+up<l,

5}
w(Aw+uy—1)=0 a.e. Q and a—Z:O on X.

Following the same approach as in [6] for the similar problem, where the Neumann
boundary condition was replaced by the Dirichlet boundary condition, we prove for
a general g satisfying (2) that

Un—uy in 6((0,T); L1(Q)).

But the description of the limit u,, is more delicate. Indeed, we have the following
cases:

Case 1: If fup>1, then
Uy (t,x) = q(fuo,?)  for a.a. (t,x)€Q;
Case 2: If fug <1 and ¢(1)<0, then
Uy (t,x) = q(up(x), 1) for a.a. (¢,x)eQ;

Case 3: If fug<1 and g(1)>0, then there exists Ty (0, 7] such that

(a) uo is the unique solution on (0, Tp) x Q of

U €L®((0,Th) x Q), 0<uy, <1 ae. on (0,7)) x Q
there exists w., e L2 ([0, Tp); H'(Q)) such that

loc

Wo =20, wo (e, — 1) =0 a.e. on (0,Tp) x Q and

I Jo Gt + g(un )&+ fo €0, Juo = [ Jo, DE Diwee
Ve (0, Ty) x Q), ¢ compactly supported;

(b) uy(t,x) =q(1,t — Tp) for a.a. xeQ, for any t€[Ty, T'[;

Actually we will consider problem (1) with a reaction term g(u) = g(¢,x,u)
depending on (z,x); the exact assumptions and results will be precised in
Section 3. In Section 2, we will prepare the results by studying problem (1)
and its limit as m— oo, with g(u) replaced by a function A(z,x) independent
of u.
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2. The problem with reaction term independent of u

To apply abstract arguments of the nonlinear semigroups theory, we first consider

the elliptic problem

m

v=AV"+f on Q, P 0 on 0Q
on

with fe L'(Q). Applying Theorem 20 in [7], for any m >0, there exists a unique

solution v of

veLN(Q), v =[] lve W (Q),
[o DV DE = [,(f —v)E, VEe W (Q).

If v, ¥ are the solutions corresponding to f, fe L'(Q) then

[w-or< [ir-"

One has the following result as m— co:

Proposition 1. Let f e L'(Q) and for m>0, v, be the unique solution of (9).

(D) (e.f. [5). If }f| <1, there exists a unique solution (v, w) of

veL™(Q), weW'(Q), vesign(w) a.e. on Q,
I DwDé= [(f—v)é, VEe?d'(Q)

and (vy,, (v)™) = (v, w) in LY(Q) x WHH(Q) as m— oo.
() 1f|if|=1, then v, -1 in L'(Q) as m— oo

Proof. Part (1) is a particular case of Theorem B in [5]. Let us prove part (2). Thanks
to (10), it is enough to prove it for |ch‘| > 1. Since the problem is odd, let us assume

without loss of generality that /> 1. According to [5], we have

{Um}ns is relatively compact in L'(Q),

{(m)" — Cul}psy s relatively compact in whl(Q),

where C,, = }(v,,)". Let my — co such that vy = v, —vin L'(Q) and Wy = (v,,,)

Cpy, = Wo, in WH(Q) and a.e. on Q. Using fu; = §f > 1, one has

fof)™ = (Fof)™ = ()™ - 0.

my
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Since

[{ve >0} me g
ka T)J{(U;) k— ﬂwk|

R 1 o1
Wi Uk \my — Wi Yy,
we have C,, — oo. Then ka—>0 a.e. and (ka) = (1 +ka) -1 ae. So
1

v =lim,, -« C,’,'Tf a.e. is constant on 2 and equal to fo= ch O

Those results may be restated in terms of operators in L!(Q). For m>1, let A4,, be the
operator defined by

A v = —AV"  with

D(Ap) ={veL™(Q); V"eW"(Q), h=—-Av"eL'(Q)
and /Dv”’ D¢ = /hé v:gg'(g})}. (12)

Then A,, is m-accretive in L'(Q) and A4,, — 4., in the sense of graph, where 4, is the
multivalued m-accretive operator in L'(Q) defined by

v,ze LY(Q), fz =0 and
either v = p a.e. on Q with peR, |u|>1
zed,v <= or there exists we W1(Q) such that (13)

vesign(w) a.e. on Q and
[Dw D¢ = [zE Véeb' (Q).

Indeed, 4., being defined as above, for fe L'(Q), one has

veLl'(Q) [v= [f and

X either v =y a.e. Q with ueR, =1

v+ Ayvaf = H c ol 22 WL K l
or there exists w such that (v, w)

is the solution of (11),

so that according to Proposition 1, there exists a unique solution v of v+ A ,vf
and

v=lim (I 4+ 4,)"'f.

m— oo

Let 7>0 be fixed; set Q =[0,T) x  and let upe L'(Q) and he L'(Q) be given.
Using the general theory of evolution equation, for any m>1 there exists a unique
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mild solution (see [2,4,8]) u,,€%([0, T); L'(Q)) of

dup,
dt

+ Ayt ah on (0, T)  14,(0) = up. (14)

Assume 1y >0 a.e. on Q. Using [3, c.f. Theorem 3] and [6, c.f. Theorem 1], u,, > 1, in
%((0,T); L'(Q)) where u.,, is the unique mild solution of

du,
Z[ FApuysh on (0,T) u,(0) = up, (15)

and u, defined by (8) is (I + A..) 'up (and then e~“4=yy = uy). To translate this
result in terms of p.d.e. we characterize the mild solutions of (14) and (15). First, one
has the following result for (14):

Proposition 2. Let uge L* (Q) and he L'(Q) with

/T||h(t,.)||ocdt<oo. (16)
0

For any m>=1, there exists a unique solution u of the problem

uel”(0), u"eIX(0,T;H(Q))
J[&u+ [ [Eh+ [EO,. )ug = [ [ Du™ DE (17)
vee®'(0), &(T,.)=0.

Moreover u is the mild solution u,, of (14).

Proof. This is a quite standard result (c.f. [2]). For completeness let us give the
arguments. We first show that the mild solution u of (14) satisfies (17). By definition
of a mild solution, u(7) = L' — lim u,(¢) uniformly for 7€[0, T), where for £>0, u, is
an  g¢-approximate  solution corresponding to a  subdivision #) =
O<ti<--<t,1<T<t,, with t;—t,1<e and hy,..h,el'(Q) with
> f;il [|h(2) — hil|;1 dt<e, defined by u,(0) = uou,(¢t) = u; for t€lt;_y,t;], where
u;e L'(Q) satisfies
u —

Ui—1
—+ Aui> hi;
1 — 1

that is
U = (l,‘ - li_l)A(M,')m + (l,‘ — li_l)h,' +ui_y on £

. m 18
Ou) =0 on 0Q. (18)
on
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We may choose h;e L (Q), with

n T
> =0l < [ Il de

i=1

It follows that ;e L*(Q) and
il oo <[luol] +Z i = G-D)lIll

SO

T
WMU@<Mw:wmw+A|W»mmm.

Then multiplying (18) by (u;)™, one gets

1 m+1 / m)2 / 1 / m—1
- . .t . <(t: — ¢ . - .
I / | + (8 —ti1) | |D)”|"<(t; — tic) My | |h] + I |e4;1]

SO
1
2 m+1
1000y <oy [l 4 M3l (19)

Let 4, be the function from [0,7,] into L'(Q) defined by #,(¢;) = u;, 4, is linear in
[ti—1, ;] and h, be defined by  h(t)=h; on |ty 4; for
Ee W0, T; LYN(Q))nL*(0, T; H'(Q)) with &(T,.) =0

//u;§,+hf+/u0€ //Du; ) (20)

Passing to the limit in (19) and (20) one gets that u is a solution of (17).

At last, we show uniqueness of the solution to (17). It follows from Lemma A in
the appendix: if wuj,u; are two solutions of (17), apply with
H=1L1*Q), V=HY(Q), alu,v)= [DuDv u=u; —ur, v= ()" — (wp)". O

We consider now problem (15).

Proposition 3. Let upe L' (Q) and he L*(Q). Set

u(t) = fug + /Ot(fgh(s)) ds (21)

and

I=1{te(0,T); u(r)<1}. (22)
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Assume that the mild solution uy, of (15) is nonnegative. Then u = uy, is the unique
solution of the following problem:

(i) ue ([0, T); L'(2)),  u(0) = uy,

(it) u(t) = pu(t) a.e. on Q for any te (0, T)\I

(iii) there exists we LS. (I; H'(Q)) such that ue sign(w) (23)
ae.on Qand [ [Eu+Eh= [ [DwDéE Véeb (I x Q),
compactly supported.

To prove this proposition we will use the following lemma:

Lemma 1. Let ¢>0, u, i, he L'(Q) and weH'(Q) such that uesign(w) a.e.
on Q, |i|<1 and

/(DwDuhf):/”;”g, VEe? ().

If Hlu| <1, then
C
w|| g <——|Al|1,
Il <= g e
where C is a constant depending only on Q.

Proof. First, by Kato inequality (c.f. [I, Theorem 2.4]), for any e W>!(Q) with
£=0, %: 0 on 0L, one has

[micaos [ (h S ) sign(w)

< / Eh sign(w)
w#0

< I€H = [1All -

Let &, be the solution of

—A& = [ul —flu| in @,
0&

o 0
cho = 0;

on 0Q,

one has & e W?(Q) for any 1<p< oo and

[1€0ll - < C[Jual = Hul|

L*

<C,
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where C is a constant depending only on Q. Set & = £, + C, one has £>0 and

[ il =) = [ ol
< [

< 2C|l]|

and since |uw| = |w| a.a. Q, one has

2C
wl| i <———||h]];1. O
[[wl] 1 l—quIH I

Firstly, we prove a particular case of Proposition 3 stated in the following lemma:

Lemma 2. Let uy and h be as in Proposition 3. Assume that u(t) defined by (21)
satisfies

u()y<1l for all te]0,T) (24)
and that the mild solution u ., of (15) is nonnegative. Then u., is the unique solution u of

ueL®(Q), there exists we L*(0, T; H'(Q))

such that uesign(w) a.e. Q and
JJ&u+ [ [Eh+ [0, )ug= [ [DwDE
vée?'(0), &(T..) =0.

(25)

Proof. For uniqueness of a solution u of (25), apply Lemma A in the appendix in the
same way as in the proof of Proposition 2. To prove that the mild solution u = u., of
(15) satisfies (25), consider as in the proof of Proposition 2, an g-approximate
solution u, corresponding to a subdivision fy<t;<---<t,_1<T<t, and
hi, ..., hy€ L2(Q) with Y0, [ [|h(t) — h||7> di<e. One has u,() = u; on Jt;_y, 1]
with (u;, w;) e L* (Q) x H?*(Q) solution of

U = uj_1 + (tj — ll',l)(AW,' + h,) on Q,

u;esign(w;) on Q, (26)
O
8v;, =0 on dQ

(using the convention for i = 1, u;_; = ug).

Since u,(t)—>u. () in L'(Q) as ¢—0 uniformly for ze[0, T], according to (24)
for £>0 small enough, one has flu;| <6 for i = 1, ...,n with <1 independent of e.
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Using Lemma 1,
lwillp < Cil|hil| fori=1,....n (27)

with C; independent of e.
Multiplying (26) by w;, one gets

Wil — Wildj—
/|DW,‘|2 = /W,‘hi — |l|—111
ti— i1

< lwill 2 Vil 2
Then, by Poincaré inequality and (27), one obtains

[[Dwi|

12 < Collhl| 2 (28)

with C, independent of e.

It follows from (27) and (28) that the function w, defined by w,(¢) = w; on ]t;_1, ;]
is bounded in L*(0,T;H'(Q)) as ¢—0. Let g—0 such that w,—w in
L*(0,T; H'(Q)). Since u, —u,, in L'(Q) and u,esign(w,) a.e. on Q, at the limit
Uy €sign(w) a.e. on Q. Using the function i, as in the proof of Proposition 2, one
ends up the proof of u = u,, satisfies (25). O

Proof of Proposition 3. Firstly, we prove uniqueness of a solution u of (23). By
definition, a solution u(z) of (23) is defined on ((0,7)\/)u{0}. Let (a,b) be a
component of . A solution u(z) of (23) is defined for 1 = a. Applying Lemma 2, for
a<o<f<b, u=u,on (x,ff) x Q where u, is the mild solution of‘il“; + A,u,oh on
(o0, ), uy(t) = u(ar). If uy, up are two solutions of (15), by the contraction property

for mild solutions,

et (1) = ()l 3 < lor () = (@)1, Va<a<i<b.

Since u; (o) — ua(a) >0 in L1(Q) as a—a, uy = us on (a,b) x Q.
Now let u = u,, be the mild solutions of (15). By assumption, u satisfies (231) and

u>0. Being a mild solution it is clear that u(7)<1 and fu(t) = u(t); then u satisfies
(23ii). At last by Lemma 2, u satisfies (231ii). [

Summing up the results of Propositions 1-3, according to the results of [6,3], one
has:

Corollary 1. Let upe L™ (Q), up=0 and he L* (0, T; L' (Q)) satisfying (16). For any
m=1, there exists a unique solution u,, of (17) and

un—u  in%((0,T); L"(Q)) as m— .

If u=0, then u is the unique solution of (23).
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3. The general reaction—diffusion problem

We consider problem (1) with g depending on (¢, x). We assume g: Q x R; - R
satisfies

(i) for any reR,, g(.,r)e L*(0,T;L'(Q)) and
Sy lg(t, sl - di< 0,

(ii) for a.a. (t,x)eQ, ¢(t,x,.) is continuous on R, and
%
or

(29)
(t,x,.)<K(-) in Z'(0, o0)

with K :R"—R" continuous. Consequently, for any ueL®(Q) with u>=0, the
function & = g(.,u) is in L*(0, oo; L'(Q)) and satisfies (16); indeed

[uel] o, [uel]
g, llull,.) - / K(r)dr<g(,u)<g(.,0) + / K(r)dr.

In this section, we fix upe L* (Q) satisfying (3). We assume there is M e W'1(0, T),
o)

M'(t)=g(t,x,M(t)) for a.a. (t,x)eQ, M(0)=>M,. (30)
Applying Section 2, we have the following result:

Theorem 1. Under the above assumption, for any m=1, there exists a unique u,,
solution of

Un€L”(Q),  up=0, (u,)" L0, T;H(Q))
S Juméi + g um)é + [u€(0,.) = [ [ DED(upn)" (31)
vee?'(0), &(T,.) =0.

Moreover  u, €%([0,T); LY (Q)), un(t,x)<M(t) for aa. (t,x)€Q; wp—u in

%((0,T); LY(Q)) as m— oo and u is the unique function in L (Q) with u>0,
satisfying (23) with h = g(., u).

Proof. For R>0, let Fr be the map from [0, T') x L'(Q) into L'(Q) defined by
Fr(t,u) = g(t,.,u” AR).

With (29), Fy is integrable in t€ (0, T') uniformly for any ue L' (Q) and continuous in
ueL'(Q) for a.a. te(0, T); moreover (maxy g K)I — Fg(z,.) is accretive in L'(€Q).
Then (see for instance [6, Lemma 1]) there exists a unique mild solution of

du

i + A,us Fg(.,u) on (0,7), u(0)=u. (32)
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Let first u,, be a solution of (31) and fix R=||u|| ., -; Since h = g(., un) = Fr(., tm),
applying Proposition 2, u,, is a mild solution of (32). From uniqueness of a solution
to (32), follows uniqueness of a solution to (31). Conversely, let R = max( 7 M and
consider the mild solution u,, of (32). By Proposition 2, u,, is solution of (17) with
h=g(.,u} AR). We will prove that

0<uy(t,x)<M(t) fora.a. (t,x)eQ (33)

it will follow that & = g(., u,,) and then u,, is solution of (32). To prove (33), we use
the fact that, according to (10), the operator A4,, is T-accretive in L' (Q) (c.f. [2,4]). If
uy,uy are mild solutions of (15) corresponding to (hy,uo), (ha,up) in L'(Q) x
L'(Q) respectively, one has for all 0, T)

S =)< [an-u+ [ [ m=mr G

Apply with  wu, =u,, hy = Fr(.,uy), o =uy, u1 =0, hy =0, up; =0. Since
U, >0 and FR(-a”m)X[ums()] =¢(.,0)>0, one first obtains u, >0. Secondly, notice
that u, (¢, x) = M () is strong solution, and then mild solution of (15) with /iy (7, x) =
M'(1), as up = M(0). Using (29) and (30), one has

Fr(., ”171)X[zt,,,>M] =g(., tum A R)X[u,,,ZM]

Uy AR
< 90 M)t i) + L= m) /M k(r) dr

<M ax K - M)"

Aun> M) T (r[roljg? ) (4 )
and then, using (34), u,, <M. This proves first part of the theorem and u,, is the mild
solution of (32) with R = max|y 7; M. Using Theorem 1 in [6], with Proposition I,

U —uin €((0,T); L' (Q)) where u is the unique mild solution of
du

= HAxusFr(,u) on (0,7) u(0) = (I +A4,)  up.

Since 0 <u<< M, with the above arguments, thanks to Proposition 3, « is the unique
function in L* (Q) with u>0 is solution of (23) with & = g(.,u). O

Now we will make more explicit the limit solution u in the case g(¢, x,u) = g(u)
(independent of (¢, x) € Q). Throughout the end of this section ¢g: R, — R is defined
by (2) and we assume (5), so M'(t) = ¢(t, M) satisfies (30). Then we have the
following characterization of the limit solution u.

Corollary 2. If g(t,x,u) = g(u) with g: R, - R satisfies (2), then the limit u of uy, is
defined as it is claimed in the introduction
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Case 1: If fug =1, then
u(t,x) = q(fuo, 1) for a.a. (t,x)eQ.
Case 2: If fuy <1 and g(1)<0, then
u(t,x) = q(ug(x),t) for a.a. (t,x)eQ.
Case 3: If fuy<1 and g(1)>0, then there exists Ty (0, T| such that

(a) u is the unique solution on (0, Ty) X Q of

ue L*((0,7T)) x Q), 0<u<1 a.e. on (0,Ty) x Q
there exists wo, € L2 ([0, To); H'(Q)) such that
Woo 20, wo, (u—1) =0 a.e. on (0,T)) x Q and
fO fQ Sug(u é+fQ (0, )up = ()TO fQDé Dw,
Ve ([0, Ty) x Q), & compactly supported

(®) u(t,x) =q(l,t — Ty) for a.a. xeQ, for any te[Ty, T|;

Proof. Recall that u is the unique function in L® (Q) with u>0 satisfying (23) with
h=g(u). In the case fuo>1, uy = fup; the function u(z, x) = q(fuo, t) is clearly the
solution of (23) with A(z,x) = g(q(fuo, 1)) = u,(t, x).

In the case fug<1, uy<1. If g(1)<0, one has u(t,x) = q(uo(x ) t)€[0,1] for a.a.
(z,x)e Q and then u is the solution of (23) with A(z,x) = u,(t,x), I =(0,T), w=0.
At last consider the case g(1)>0. If |a, b[ is a component of
{re (0, T);du(r)>1},
one has a>0, fu(a) = 1 and u(t) = fu(t) on [a, b). Further u(t) = ¢(1,¢ — a) on [a, b].

a
Since g(1)>0, one has ¢(1,b — a)>0 and then b = T. So I = (0, T) with Ty (0, T
and the result follows. [

Remarques.
(1) In Case 3, if M, <1, setting
Ty = max{re[0, T]; q(up,?)<1 a.e. on Q}
one has
To=T, and uy(f,x) = quo(x),t) for a.a. on (0,7}) x Q

In particular, if g(My)<0then To =T, = T.
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(i1) Still in case 3, define
T, = sup{t; q(fuo,t)<1}.

If g is concave (resp. convex) on [0, 1], then
—)cu (t)<(resp.>)g(fu(r)) for te(0, Tp).

Further fu(7) < (resp. =) q(fug, t) for 1€ (0, Ty) so Ty> (resp. <) Th.

Appendix

We give here a general lemma used to prove uniqueness. While this method is
classical, we did not find such statement in the literature.

Lemma A. Let V= H be Hilbert spaces with continuous injection and a:V x V- R
be continuous bilinear symmetric and nonnegative (a(v,v)>0)). Let ue L*(0,T; H),
we L*(0, T; V) satisfying

/ (u(t), & (1)), di = / a(w(t), &(1)

VEe W20, T; HYnL*(0,T; V) with E(T) =0 (A.1)
and
(u(t),w(t)) ;=0 ae. te(0,T) (A2)

then u = 0.

Proof. Let 0<t<T and apply (A.1) with &(¢) fIM s) ds. One gets

[ ww o= [ a0 a
0 0

Il
I
|
<
=
e
PAN
(=]
N~—
T
PAN
(=]
=
=

_%a(/of w(s) ds,/or w(s) ds).

Using (A.2), a( f; w(s) ds, [; w(s) ds) = 0 for any t€[0, T) and then a(w(t),v) = 0 for
any ve V and a.a. te(O 7). Usmg (A.1) again, u=0. 0O
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