# The mesa problem for Neumann boundary value problem 

Philippe Bénilan ${ }^{\text {w }}$ and Noureddine Igbida ${ }^{1}$

LAMFA, CNRS-UMR 6140, Université de Picardie Jules Verne, 33 rue Saint Leu, Amiens 80038, France
Received November 6, 2001; revised April 3, 2003


#### Abstract

In this paper, we study the singular limit of the Porous Medium equation $u_{t}=\Delta u^{m}+$ $g(x, u)$, as $m \rightarrow \infty$, in a bounded domain with Neumann boundary condition. (C) 2003 Elsevier Inc. All rights reserved.


Keywords: Singular limit; Mesa problem; Nonlinear semi group theory; Accretive operator; Mild solution; Parbaolic problem; Elliptic problem

## 1. Introduction

The aim of this paper is to study the effects of a lower-order nonlinearity and Neumann boundary condition on the limit of the Porous Medium equation $u_{t}=$ $\Delta u^{m}$, when the parameter $m$ goes to $\infty$. This is a particular case of an overall program of studying the so-called singular limit for nonlinear pdes, i.e., a perturbation problem where the perturbed problem is of totally different character than the unperturbed one. Recently, in light of Monge Kantorovich mass transfer theory, Evans et al. proved in [9] that the related problem of taking the limit $p \rightarrow \infty$, for the pde $u_{t}=\Delta_{p} u$ has turned out to be interesting. Our approach is different, it is based on the ideas we introduced in [6] (see also [10]) for the similar problem with Dirichlet boundary condition. However, in our case, i.e. Neumann boundary condition, the description of the limit is more delicate.

[^0]Let $\Omega$ be a bounded open set in $\mathbb{R}^{N}$ with smooth boundary $\partial \Omega$. For $m \geqslant 1$, we consider the problem

$$
\begin{cases}\frac{\partial u}{\partial t}=\Delta u^{m}+g(u) & \text { on } Q=(0, T) \times \Omega  \tag{1}\\ \frac{\partial u^{m}}{\partial n}=0 & \text { on } \Sigma=(0, T) \times \partial \Omega \\ u(0, .)=u_{0}(.) & \text { on } \Omega\end{cases}
$$

where $g: \mathbb{R}_{+} \rightarrow \mathbb{R}$ is continuous with

$$
\begin{equation*}
g(0) \geqslant 0, \quad \frac{d g}{d r} \leqslant K \text { in } \mathscr{D}^{\prime}(0, \infty), K \in \mathscr{C}\left(\mathbb{R}_{+}\right) \tag{2}
\end{equation*}
$$

and $u_{0} \in L^{\infty}(\Omega)$ with

$$
\begin{equation*}
0 \leqslant u_{0} \leqslant M_{0} \quad \text { a.e. on } \Omega \tag{3}
\end{equation*}
$$

According to (2), for any $r \in \mathbb{R}_{+}$there exists a unique maximal solution $q(r, t)$ defined on the maximal interval $[0, T(r))$ of the o.d.e.

$$
\begin{equation*}
\frac{d q}{d t}=g(q) \text { on }(0, T(r)), \quad q(0)=r \tag{4}
\end{equation*}
$$

Choosing

$$
\begin{equation*}
0<T<T\left(M_{0}\right) \tag{5}
\end{equation*}
$$

it is easy to show that there exists a unique bounded weak solution $u$ of (1) in the sense:

$$
\left\{\begin{array}{l}
u \in \mathscr{C}\left([0, T] ; L^{1}(\Omega)\right) \cap L^{\infty}(Q),  \tag{6}\\
u \geqslant 0, \quad u^{m} \in L^{2}\left(0, T ; H^{1}(\Omega)\right), \\
\iint u \xi_{t}+\iint g(u) \xi=\iint D u^{m} D \xi+\int u_{0} \xi(0, .), \\
\forall \xi \in W^{1,1}\left(0, T ; L^{1}(\Omega)\right) \cap L^{2}\left(0, T ; H^{1}(\Omega)\right), \quad \xi(T, .) \equiv 0
\end{array}\right.
$$

We denote by $u_{m}$ this solution. By maximum principle, it is clear that

$$
\begin{equation*}
0 \leqslant u_{m}(t, x) \leqslant q\left(M_{0}, t\right) \quad \text { a.e. }(t, x) \in Q . \tag{7}
\end{equation*}
$$

This paper describes the limit of $u_{m}$ as $m$ goes to $\infty$. In the case $g \equiv 0$, it has been proved in [3] (c.f. Theorem 3) that $u_{m}(t) \rightarrow \underline{u}_{0}$ in $L^{1}(\Omega)$ for $\left.t \in\right] 0, T$ ], where

$$
\underline{u}_{0}= \begin{cases}f u_{0}\left(:=\frac{1}{\mid \Omega} \int_{\Omega} u_{0}\right) & \text { if } f u_{0} \geqslant 1  \tag{8}\\ u_{0} \chi_{[w=0]}+\chi_{[w>0]} & \text { if } f u_{0}<1\end{cases}
$$

with $w \in H^{1}(\Omega)$ the unique solution of the "mesa problem"

$$
\begin{gathered}
w \in H^{2}(\Omega), \quad w \geqslant 0,0 \leqslant \Delta w+u_{0} \leqslant 1, \\
w\left(\Delta w+u_{0}-1\right)=0 \text { a.e. } \Omega \quad \text { and } \quad \frac{\partial w}{\partial n}=0 \text { on } \Sigma .
\end{gathered}
$$

Following the same approach as in [6] for the similar problem, where the Neumann boundary condition was replaced by the Dirichlet boundary condition, we prove for a general $g$ satisfying (2) that

$$
u_{m} \rightarrow u_{\infty} \quad \text { in } \mathscr{C}\left((0, T) ; L^{1}(\Omega)\right)
$$

But the description of the limit $u_{\infty}$ is more delicate. Indeed, we have the following cases:

Case 1: If $f u_{0} \geqslant 1$, then

$$
u_{\infty}(t, x)=q\left(f u_{0}, t\right) \quad \text { for a.a. }(t, x) \in Q
$$

Case 2: If $f u_{0}<1$ and $g(1) \leqslant 0$, then

$$
u_{\infty}(t, x)=q\left(\underline{u}_{0}(x), t\right) \quad \text { for a.a. }(t, x) \in Q
$$

Case 3: If $f u_{0}<1$ and $g(1)>0$, then there exists $T_{0} \in(0, T]$ such that
(a) $u_{\infty}$ is the unique solution on $\left(0, T_{0}\right) \times \Omega$ of

$$
\left\{\begin{array}{l}
u_{\infty} \in L^{\infty}\left(\left(0, T_{0}\right) \times \Omega\right), \quad 0 \leqslant u_{\infty} \leqslant 1 \text { a.e. on }\left(0, T_{0}\right) \times \Omega \\
\text { there exists } w_{\infty} \in L_{\mathrm{loc}}^{2}\left(\left[0, T_{0}\right) ; H^{1}(\Omega)\right) \text { such that } \\
w_{\infty} \geqslant 0, w_{\infty}\left(u_{\infty}-1\right)=0 \text { a.e. on }\left(0, T_{0}\right) \times \Omega \text { and } \\
\int_{0}^{T_{0}} \int_{\Omega} \xi_{t} u_{\infty}+g\left(u_{\infty}\right) \xi+\int_{\Omega} \xi(0, .) \underline{u}_{0}=\int_{0}^{T_{0}} \int_{\Omega} D \xi D w_{\infty} \\
\forall \xi \in \mathscr{C}^{1}\left(\left[0, T_{0}\right) \times \bar{\Omega}\right), \xi \text { compactly supported }
\end{array}\right.
$$

(b) $u_{\infty}(t, x)=q\left(1, t-T_{0}\right)$ for a.a. $x \in \Omega$, for any $t \in\left[T_{0}, T[\right.$;

Actually we will consider problem (1) with a reaction term $g(u)=g(t, x, u)$ depending on $(t, x)$; the exact assumptions and results will be precised in Section 3. In Section 2, we will prepare the results by studying problem (1) and its limit as $m \rightarrow \infty$, with $g(u)$ replaced by a function $h(t, x)$ independent of $u$.

## 2. The problem with reaction term independent of $u$

To apply abstract arguments of the nonlinear semigroups theory, we first consider the elliptic problem

$$
v=\Delta v^{m}+f \text { on } \Omega, \quad \frac{\partial v^{m}}{\partial n}=0 \text { on } \partial \Omega
$$

with $f \in L^{1}(\Omega)$. Applying Theorem 20 in [7], for any $m>0$, there exists a unique solution $v$ of

$$
\left\{\begin{array}{l}
v \in L^{1}(\Omega), \quad v^{m}:=|v|^{m-1} v \in W^{1,1}(\Omega)  \tag{9}\\
\int_{\Omega} D v^{m} D \xi=\int_{\Omega}(f-v) \xi, \quad \forall \xi \in W^{1, \infty}(\Omega)
\end{array}\right.
$$

If $v, \hat{v}$ are the solutions corresponding to $f, \hat{f} \in L^{1}(\Omega)$ then

$$
\begin{equation*}
\int_{\Omega}(v-\hat{v})^{+} \leqslant \int_{\Omega}(f-\hat{f})^{+} \tag{10}
\end{equation*}
$$

One has the following result as $m \rightarrow \infty$ :
Proposition 1. Let $f \in L^{1}(\Omega)$ and for $m>0, v_{m}$ be the unique solution of (9).
(1) (c.f. [5]). If $|f f|<1$, there exists a unique solution $(v, w)$ of

$$
\left\{\begin{array}{l}
v \in L^{\infty}(\Omega), \quad w \in W^{1,1}(\Omega), \quad v \in \operatorname{sign}(w) \text { a.e. on } \Omega,  \tag{11}\\
\int D w D \xi=\int(f-v) \xi, \quad \forall \xi \in \mathscr{C}^{1}(\bar{\Omega})
\end{array}\right.
$$

and $\left(v_{m},\left(v_{m}\right)^{m}\right) \rightarrow(v, w)$ in $L^{1}(\Omega) \times W^{1,1}(\Omega)$ as $m \rightarrow \infty$.
(2) If $|f f| \geqslant 1$, then $v_{m} \rightarrow f f$ in $L^{1}(\Omega)$ as $m \rightarrow \infty$.

Proof. Part (1) is a particular case of Theorem B in [5]. Let us prove part (2). Thanks to (10), it is enough to prove it for $|f f|>1$. Since the problem is odd, let us assume without loss of generality that $f f>1$. According to [5], we have

$$
\left\{v_{m}\right\}_{m \geqslant 1} \text { is relatively compact in } L^{1}(\Omega)
$$

$$
\left\{\left(v_{m}\right)^{m}-C_{m}\right\}_{m \geqslant 1} \text { is relatively compact in } W^{1,1}(\Omega)
$$

where $C_{m}=\mathrm{f}\left(v_{m}\right)^{m}$. Let $m_{k} \rightarrow \infty$ such that $v_{k}:=v_{m_{k}} \rightarrow v$ in $L^{1}(\Omega)$ and $\tilde{w}_{k}:=\left(v_{m_{k}}\right)^{m_{k}}-$ $C_{m_{k}} \rightarrow \tilde{w}_{\infty}$ in $W^{1,1}(\Omega)$ and a.e. on $\Omega$. Using $f v_{k}=f f>1$, one has

$$
f\left(v_{k}^{+}\right)^{m_{k}} \geqslant\left(f v_{k}^{+}\right)^{m_{k}} \geqslant(\mathrm{f} f)^{m_{k}} \rightarrow \infty
$$

Since

$$
C_{m_{k}} \frac{\left|\left\{v_{k}>0\right\}\right|}{|\Omega|} \geqslant f\left(v_{k}^{+}\right)^{m_{k}}-f\left|\tilde{w}_{k}\right|
$$

we have $C_{m_{k}} \rightarrow \infty$. Then $\frac{\tilde{w}_{k}}{C_{m_{k}}} \rightarrow 0$ a.e. and $\left(\frac{v_{k}}{C_{m_{k}}}\right)^{\frac{1}{m_{k}}}=\left(1+\frac{\tilde{w}_{k}}{C_{m_{k}}}\right)^{\frac{1}{m_{k}}} \rightarrow 1$ a.e. So $v=\lim _{m_{k} \rightarrow \infty} C_{m_{k}}^{\frac{1}{m_{k}}}$ a.e. is constant on $\Omega$ and equal to $f v=\mathrm{f} f$.

Those results may be restated in terms of operators in $L^{1}(\Omega)$. For $m \geqslant 1$, let $A_{m}$ be the operator defined by

$$
\begin{gather*}
A_{m} v=-\Delta v^{m} \text { with } \\
\mathscr{D}\left(A_{m}\right)=\left\{v \in L^{m}(\Omega) ; v^{m} \in W^{1,1}(\Omega), h=-\Delta v^{m} \in L^{1}(\Omega)\right. \\
\text { and } \left.\int D v^{m} D \xi=\int h \xi \forall \xi \in \mathscr{C}^{1}(\bar{\Omega})\right\} . \tag{12}
\end{gather*}
$$

Then $A_{m}$ is m-accretive in $L^{1}(\Omega)$ and $A_{m} \rightarrow A_{\infty}$ in the sense of graph, where $A_{\infty}$ is the multivalued m -accretive operator in $L^{1}(\Omega)$ defined by

$$
z \in A_{\infty} v \Leftrightarrow\left\{\begin{array}{l}
v, z \in L^{1}(\Omega), f z=0 \text { and }  \tag{13}\\
\text { either } v=\mu \text { a.e. on } \Omega \text { with } \mu \in \mathbb{R},|\mu| \geqslant 1 \\
\text { or there exists } w \in W^{1,1}(\Omega) \text { such that } \\
v \in \operatorname{sign}(w) \text { a.e. on } \Omega \text { and } \\
\int D w D \xi=\int z \xi \forall \xi \in \mathscr{C}^{1}(\bar{\Omega}) .
\end{array}\right.
$$

Indeed, $A_{\infty}$ being defined as above, for $f \in L^{1}(\Omega)$, one has

$$
v+A_{\infty} v \ni f \Leftrightarrow\left\{\begin{array}{l}
v \in L^{1}(\Omega) \int v=\int f \text { and } \\
\quad \text { either } v=\mu \text { a.e. on } \Omega \text { with } \mu \in \mathbb{R},|\mu| \geqslant 1 \\
\text { or there exists } w \text { such that }(v, w) \\
\text { is the solution of (11), }
\end{array}\right.
$$

so that according to Proposition 1, there exists a unique solution $v$ of $v+A_{\infty} v \ni f$ and

$$
v=\lim _{m \rightarrow \infty}\left(I+A_{m}\right)^{-1} f
$$

Let $T>0$ be fixed; set $Q=[0, T) \times \Omega$ and let $u_{0} \in L^{1}(\Omega)$ and $h \in L^{1}(Q)$ be given. Using the general theory of evolution equation, for any $m \geqslant 1$ there exists a unique
mild solution (see $[2,4,8]) u_{m} \in \mathscr{C}\left([0, T) ; L^{1}(\Omega)\right)$ of

$$
\begin{equation*}
\frac{d u_{m}}{d t}+A_{m} u_{m} \ni h \text { on }(0, T) \quad u_{m}(0)=u_{0} \tag{14}
\end{equation*}
$$

Assume $u_{0} \geqslant 0$ a.e. on $\Omega$. Using [3, c.f. Theorem 3] and [6, c.f. Theorem 1], $u_{m} \rightarrow u_{\infty}$ in $\mathscr{C}\left((0, T) ; L^{1}(\Omega)\right)$ where $u_{\infty}$ is the unique mild solution of

$$
\begin{equation*}
\frac{d u_{\infty}}{d t}+A_{\infty} u_{\infty} \ni h \text { on }(0, T) \quad u_{\infty}(0)=\underline{u}_{0} \tag{15}
\end{equation*}
$$

and $\underline{u}_{0}$ defined by (8) is $\left(I+A_{\infty}\right)^{-1} u_{0}$ (and then $e^{-t A_{\infty}} \underline{u}_{0}=\underline{u}_{0}$ ). To translate this result in terms of p.d.e. we characterize the mild solutions of (14) and (15). First, one has the following result for (14):

Proposition 2. Let $u_{0} \in L^{\infty}(\Omega)$ and $h \in L^{1}(Q)$ with

$$
\begin{equation*}
\int_{0}^{T}\|h(t, .)\|_{\infty} d t<\infty \tag{16}
\end{equation*}
$$

For any $m \geqslant 1$, there exists a unique solution $u$ of the problem

$$
\left\{\begin{array}{l}
u \in L^{\infty}(Q), \quad u^{m} \in L^{2}\left(0, T ; H^{1}(\Omega)\right)  \tag{17}\\
\iint \xi_{t} u+\iint \xi h+\int \xi(0, .) u_{0}=\iint D u^{m} D \xi \\
\forall \xi \in \mathscr{C}^{1}(\bar{Q}), \quad \xi(T, .) \equiv 0 .
\end{array}\right.
$$

Moreover $u$ is the mild solution $u_{m}$ of (14).
Proof. This is a quite standard result (c.f. [2]). For completeness let us give the arguments. We first show that the mild solution $u$ of (14) satisfies (17). By definition of a mild solution, $u(t)=L^{1}-\lim u_{\varepsilon}(t)$ uniformly for $t \in[0, T)$, where for $\varepsilon>0, u_{\varepsilon}$ is an $\varepsilon$-approximate solution corresponding to a subdivision $t_{0}=$ $0<t_{1}<\cdots<t_{n-1}<T \leqslant t_{n}$, with $\quad t_{i}-t_{i-1}<\varepsilon \quad$ and $\quad h_{1}, \ldots h_{n} \in L^{1}(\Omega) \quad$ with $\sum_{i=1}^{n} \int_{t_{i-1}}^{t_{i}}\left\|h(t)-h_{i}\right\|_{L^{1}} d t \leqslant \varepsilon$, defined by $u_{\varepsilon}(0)=u_{0} u_{\varepsilon}(t)=u_{i}$ for $\left.\left.t \in\right] t_{i-1}, t_{i}\right]$, where $u_{i} \in L^{1}(\Omega)$ satisfies

$$
\frac{u_{i}-u_{i-1}}{t_{i}-t_{i-1}}+A_{m} u_{i} \ni h_{i}
$$

that is

$$
\left\{\begin{array}{l}
u_{i}=\left(t_{i}-t_{i-1}\right) \Delta\left(u_{i}\right)^{m}+\left(t_{i}-t_{i-1}\right) h_{i}+u_{i-1} \quad \text { on } \Omega  \tag{18}\\
\frac{\partial\left(u_{i}\right)^{m}}{\partial n}=0 \text { on } \partial \Omega .
\end{array}\right.
$$

We may choose $h_{i} \in L^{\infty}(\Omega)$, with

$$
\sum_{i=1}^{n}\left(t_{i}-t_{i-1}\right)\left\|h_{i}\right\|_{\infty} \leqslant \int_{0}^{T}\|h(t, .)\|_{L^{\infty}} d t
$$

It follows that $u_{i} \in L^{\infty}(\Omega)$ and

$$
\left\|u_{i}\right\|_{\infty} \leqslant\left\|u_{0}\right\|_{\infty}+\sum_{j=1}^{i}\left(t_{j}-t_{j-1}\right)\left\|h_{j}\right\|_{\infty}
$$

so

$$
\left\|u_{\varepsilon}\right\|_{L^{\infty}(Q)} \leqslant M_{1}:=\left\|u_{0}\right\|_{\infty}+\int_{0}^{T}\|h(t, .)\|_{L^{\infty}} d t .
$$

Then multiplying (18) by $\left(u_{i}\right)^{m}$, one gets

$$
\frac{1}{m+1} \int\left|u_{i}\right|^{m+1}+\left(t_{i}-t_{i-1}\right) \int\left|D\left(u_{i}\right)^{m}\right|^{2} \leqslant\left(t_{i}-t_{i-1}\right) M_{1} \int\left|h_{i}\right|+\frac{1}{m+1} \int\left|u_{i-1}\right|^{m-1}
$$

so

$$
\begin{equation*}
\left\|D u_{\varepsilon}^{m}\right\|_{L^{2}(Q)}^{2} \leqslant \frac{1}{m+1} \int\left|u_{0}\right|^{m+1}+M_{1}\|h\|_{L^{1}(Q)} \tag{19}
\end{equation*}
$$

Let $\tilde{u}_{\varepsilon}$ be the function from $\left[0, t_{n}\right]$ into $L^{1}(\Omega)$ defined by $\tilde{u}_{\varepsilon}\left(t_{i}\right)=u_{i}, \tilde{u}_{\varepsilon}$ is linear in $\left[t_{i-1}, t_{i}\right]$ and $h_{\varepsilon}$ be defined by $h_{\varepsilon}(t)=h_{i}$ on $] t_{i-1}, t_{i}[$; for $\xi \in W^{1,1}\left(0, T ; L^{1}(\Omega)\right) \cap L^{2}\left(0, T ; H^{1}(\Omega)\right)$ with $\xi(T,.) \equiv 0$

$$
\begin{equation*}
\iint \tilde{u}_{\varepsilon} \xi_{t}+h_{\varepsilon} \xi+\int u_{0} \xi(0, .)=\iint D\left(u_{\varepsilon}\right)^{m} D \xi \tag{20}
\end{equation*}
$$

Passing to the limit in (19) and (20) one gets that $u$ is a solution of (17).
At last, we show uniqueness of the solution to (17). It follows from Lemma A in the appendix: if $u_{1}, u_{2}$ are two solutions of (17), apply with $H=L^{2}(\Omega), \quad V=H^{1}(\Omega), a(u, v)=\int D u D v u=u_{1}-u_{2}, v=\left(u_{1}\right)^{m}-\left(u_{2}\right)^{m}$.

We consider now problem (15).
Proposition 3. Let $u_{0} \in L^{1}(\Omega)$ and $h \in L^{2}(Q)$. Set

$$
\begin{equation*}
\mu(t)=f u_{0}+\int_{0}^{t}\left(f_{\Omega} h(s)\right) d s \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
I=\{t \in(0, T) ; \mu(t)<1\} . \tag{22}
\end{equation*}
$$

Assume that the mild solution $u_{\infty}$ of (15) is nonnegative. Then $u=u_{\infty}$ is the unique solution of the following problem:

$$
\left\{\begin{array}{l}
\text { (i) } u \in \mathscr{C}\left([0, T) ; L^{1}(\Omega)\right), \quad u(0)=\underline{u}_{0}  \tag{23}\\
\text { (ii) } u(t) \equiv \mu(t) \text { a.e. on } \Omega \text { for any } t \in(0, T) \backslash I \\
\text { (iii) there exists } w \in L_{\mathrm{loc}}^{\infty}\left(I ; H^{1}(\Omega)\right) \text { such that } u \in \operatorname{sign}(w) \\
\quad \text { a.e. on } \Omega \text { and } \iint \xi_{t} u+\xi h=\iint D w D \xi, \forall \xi \in \mathscr{C}^{1}(I \times \bar{\Omega}), \\
\quad \text { compactly supported. }
\end{array}\right.
$$

To prove this proposition we will use the following lemma:
Lemma 1. Let $\varepsilon>0, u, \hat{u}, h \in L^{1}(\Omega)$ and $w \in H^{1}(\Omega)$ such that $u \in \operatorname{sign}(w)$ a.e. on $\Omega,|\hat{u}| \leqslant 1$ and

$$
\int(D w D \xi+h \xi)=\int \frac{u-\hat{u}}{\varepsilon} \xi, \quad \forall \xi \in \mathscr{C}^{1}(\bar{\Omega})
$$

If $\mathrm{f}|u|<1$, then

$$
\|w\|_{L^{1}} \leqslant \frac{C}{1-f|u|}\|h\|_{L^{\prime}},
$$

where $C$ is a constant depending only on $\Omega$.
Proof. First, by Kato inequality (c.f. [1, Theorem 2.4]), for any $\xi \in W^{2,1}(\Omega)$ with $\xi \geqslant 0, \frac{\partial \xi}{\partial n}=0$ on $\partial \Omega$, one has

$$
\begin{aligned}
\int|w|(-\Delta \xi) & \leqslant \int_{w \neq 0} \xi\left(h-\frac{u-\hat{u}}{\varepsilon}\right) \operatorname{sign}(w) \\
& \leqslant \int_{w \neq 0} \xi h \operatorname{sign}(w) \\
& \leqslant\|\xi\|_{L^{\infty}}\|h\|_{L^{1}} .
\end{aligned}
$$

Let $\xi_{0}$ be the solution of

$$
\begin{cases}-\Delta \xi_{0}=|u|-f|u| & \text { in } \Omega \\ \frac{\partial \xi_{0}}{\partial n}=0 & \text { on } \partial \Omega \\ f \xi_{0}=0 & \end{cases}
$$

one has $\xi_{0} \in W^{2, p}(\Omega)$ for any $1<p<\infty$ and

$$
\begin{aligned}
\left\|\xi_{0}\right\|_{L^{\infty}} & \leqslant C| ||u|-f|u| \|_{L^{\infty}} \\
& \leqslant C
\end{aligned}
$$

where $C$ is a constant depending only on $\Omega$. Set $\xi=\xi_{0}+C$, one has $\xi \geqslant 0$ and

$$
\begin{aligned}
\int|w|(|u|-f|u|) & =\int|w|(-\Delta \xi) \\
& \leqslant \int \xi|h| \\
& \leqslant 2 C| | h \|_{L^{1}}
\end{aligned}
$$

and since $|u w|=|w|$ a.a. $\Omega$, one has

$$
\|w\|_{L^{1}} \leqslant \frac{2 C}{1-f|u|}\|h\|_{L^{1}}
$$

Firstly, we prove a particular case of Proposition 3 stated in the following lemma:
Lemma 2. Let $u_{0}$ and $h$ be as in Proposition 3. Assume that $\mu(t)$ defined by (21) satisfies

$$
\begin{equation*}
\mu(t)<1 \quad \text { for all } t \in[0, T] \tag{24}
\end{equation*}
$$

and that the mild solution $u_{\infty}$ of $(15)$ is nonnegative. Then $u_{\infty}$ is the unique solution $u$ of

$$
\left\{\begin{array}{l}
u \in L^{\infty}(Q), \text { there exists } w \in L^{2}\left(0, T ; H^{1}(\Omega)\right)  \tag{25}\\
\quad \text { such that } u \in \operatorname{sign}(w) \text { a.e. } \Omega \text { and } \\
\iint \xi_{t} u+\iint \xi h+\int \xi(0, .) u_{0}=\iint D w D \xi \\
\forall \xi \in \mathscr{C}^{1}(\bar{Q}), \xi(T, .) \equiv 0
\end{array}\right.
$$

Proof. For uniqueness of a solution $u$ of (25), apply Lemma A in the appendix in the same way as in the proof of Proposition 2. To prove that the mild solution $u=u_{\infty}$ of (15) satisfies (25), consider as in the proof of Proposition 2, an $\varepsilon$-approximate solution $u_{\varepsilon}$ corresponding to a subdivision $t_{0}<t_{1}<\cdots<t_{n-1}<T \leqslant t_{n}$ and $h_{1}, \ldots, h_{n} \in L^{2}(\Omega)$ with $\sum_{i=1}^{n} \int_{t_{i-1}}^{t_{i}}\left\|h(t)-h_{i}\right\|_{L^{2}}^{2} d t \leqslant \varepsilon$. One has $u_{\varepsilon}(t)=u_{i}$ on $\left.] t_{i-1}, t_{i}\right]$ with $\left(u_{i}, w_{i}\right) \in L^{\infty}(\Omega) \times H^{2}(\Omega)$ solution of

$$
\left\{\begin{array}{l}
u_{i}=u_{i-1}+\left(t_{i}-t_{i-1}\right)\left(\Delta w_{i}+h_{i}\right) \quad \text { on } \Omega  \tag{26}\\
u_{i} \in \operatorname{sign}\left(w_{i}\right) \text { on } \Omega \\
\frac{\partial w_{i}}{\partial n}=0 \quad \text { on } \partial \Omega
\end{array}\right.
$$

(using the convention for $i=1, u_{i-1}=\underline{u}_{0}$ ).
Since $u_{\varepsilon}(t) \rightarrow u_{\infty}(t)$ in $L^{1}(\Omega)$ as $\varepsilon \rightarrow 0$ uniformly for $t \in[0, T]$, according to (24) for $\varepsilon>0$ small enough, one has $\mathrm{f}\left|u_{i}\right| \leqslant \theta$ for $i=1, \ldots, n$ with $\theta<1$ independent of $\varepsilon$.

Using Lemma 1,

$$
\begin{equation*}
\left\|w_{i}\right\|_{L^{1}} \leqslant C_{1}\left\|h_{i}\right\|_{L^{1}} \quad \text { for } i=1, \ldots, n \tag{27}
\end{equation*}
$$

with $C_{1}$ independent of $\varepsilon$.
Multiplying (26) by $w_{i}$, one gets

$$
\begin{aligned}
\int\left|D w_{i}\right|^{2} & =\int w_{i} h_{i}-\int \frac{\left|w_{i}\right|-w_{i} u_{i-1}}{t_{i}-t_{i-1}} \\
& \leqslant\left\|w_{i}\right\|_{L^{2}}\left\|h_{i}\right\|_{L^{2}}
\end{aligned}
$$

Then, by Poincaré inequality and (27), one obtains

$$
\begin{equation*}
\left\|D w_{i}\right\|_{L^{2}} \leqslant C_{2}\left\|h_{i}\right\|_{L^{2}} \tag{28}
\end{equation*}
$$

with $C_{2}$ independent of $\varepsilon$.
It follows from (27) and (28) that the function $w_{\varepsilon}$ defined by $w_{\varepsilon}(t)=w_{i}$ on $] t_{i-1}, t_{i}[$, is bounded in $L^{2}\left(0, T ; H^{1}(\Omega)\right)$ as $\varepsilon \rightarrow 0$. Let $\varepsilon_{k} \rightarrow 0$ such that $w_{\varepsilon_{k}} \rightharpoonup w$ in $L^{2}\left(0, T ; H^{1}(\Omega)\right)$. Since $u_{\varepsilon} \rightarrow u_{\infty}$ in $L^{1}(Q)$ and $u_{\varepsilon} \in \operatorname{sign}\left(w_{\varepsilon}\right)$ a.e. on $Q$, at the limit $u_{\infty} \in \operatorname{sign}(w)$ a.e. on $Q$. Using the function $\tilde{u}_{\varepsilon}$ as in the proof of Proposition 2, one ends up the proof of $u=u_{\infty}$ satisfies (25).

Proof of Proposition 3. Firstly, we prove uniqueness of a solution $u$ of (23). By definition, a solution $u(t)$ of (23) is defined on $((0, T) \backslash I) \cup\{0\}$. Let $(a, b)$ be a component of $I$. A solution $u(t)$ of (23) is defined for $t=a$. Applying Lemma 2, for $a<\alpha<\beta<b, u=u_{\alpha}$ on $(\alpha, \beta) \times \Omega$ where $u_{\alpha}$ is the mild solution of $\frac{d u_{\alpha}}{d t}+A_{\infty} u_{\alpha} \ni h$ on $(\alpha, \beta), u_{\alpha}(\alpha)=u(\alpha)$. If $u_{1}, u_{2}$ are two solutions of (15), by the contraction property for mild solutions,

$$
\left\|u_{1}(t)-u_{2}(t)\right\|_{L^{1}} \leqslant\left\|u_{1}(\alpha)-u_{2}(\alpha)\right\|_{L^{1}}, \quad \forall a<\alpha \leqslant t<b
$$

Since $u_{1}(\alpha)-u_{2}(\alpha) \rightarrow 0$ in $L^{1}(\Omega)$ as $\alpha \rightarrow a, u_{1}=u_{2}$ on $(a, b) \times \Omega$.
Now let $u=u_{\infty}$ be the mild solutions of (15). By assumption, $u$ satisfies (23i) and $u \geqslant 0$. Being a mild solution it is clear that $u(t) \leqslant 1$ and $f u(t)=\mu(t)$; then $u$ satisfies (23ii). At last by Lemma 2, $u$ satisfies (23iii).

Summing up the results of Propositions 1-3, according to the results of $[6,3]$, one has:

Corollary 1. Let $u_{0} \in L^{\infty}(\Omega), u_{0} \geqslant 0$ and $h \in L^{\infty}\left(0, T ; L^{1}(\Omega)\right)$ satisfying (16). For any $m \geqslant 1$, there exists a unique solution $u_{m}$ of (17) and

$$
u_{m} \rightarrow u \quad \text { in } \mathscr{C}\left((0, T) ; L^{1}(\Omega)\right) \text { as } m \rightarrow \infty .
$$

If $u \geqslant 0$, then $u$ is the unique solution of (23).

## 3. The general reaction-diffusion problem

We consider problem (1) with $g$ depending on $(t, x)$. We assume $g: Q \times \mathbb{R}_{+} \rightarrow \mathbb{R}$ satisfies

$$
\left\{\begin{array}{l}
\text { (i) for any } r \in \mathbb{R}_{+}, g(., r) \in L^{\infty}\left(0, T ; L^{1}(\Omega)\right) \text { and }  \tag{29}\\
\int_{0}^{T}\|g(t, ., r)\|_{L^{\infty}} d t<\infty, \\
\text { (ii) for a.a. }(t, x) \in Q, g(t, x, .) \text { is continuous on } \mathbb{R}_{+} \text {and } \\
\frac{\partial g}{\partial r}(t, x, .) \leqslant K(\cdot) \text { in } \mathscr{D}^{\prime}(0, \infty)
\end{array}\right.
$$

with $K: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$continuous. Consequently, for any $u \in L^{\infty}(Q)$ with $u \geqslant 0$, the function $h=g(., u)$ is in $L^{\infty}\left(0, \infty ; L^{1}(\Omega)\right)$ and satisfies (16); indeed

$$
g\left(.,\|u\|_{\infty}\right)-\int_{0}^{\|u\|_{\infty}} K(r) d r \leqslant g(., u) \leqslant g(., 0)+\int_{0}^{\|u\|_{\infty}} K(r) d r
$$

In this section, we fix $u_{0} \in L^{\infty}(\Omega)$ satisfying (3). We assume there is $M \in W^{1,1}(0, T)$, so

$$
\begin{equation*}
M^{\prime}(t) \geqslant g(t, x, M(t)) \quad \text { for a.a. }(t, x) \in Q, \quad M(0) \geqslant M_{0} . \tag{30}
\end{equation*}
$$

Applying Section 2, we have the following result:
Theorem 1. Under the above assumption, for any $m \geqslant 1$, there exists a unique $u_{m}$ solution of

$$
\left\{\begin{array}{l}
u_{m} \in L^{\infty}(Q), \quad u_{m} \geqslant 0, \quad\left(u_{m}\right)^{m} \in L^{2}\left(0, T ; H^{1}(\Omega)\right)  \tag{31}\\
\iint u_{m} \xi_{t}+g\left(., u_{m}\right) \xi+\int u_{0} \xi(0, .)=\iint D \xi D\left(u_{m}\right)^{m} \\
\forall \xi \in \mathscr{C}^{1}(\bar{Q}), \quad \xi(T, .)=0
\end{array}\right.
$$

Moreover $\quad u_{m} \in \mathscr{C}\left([0, T) ; L^{1}(\Omega)\right), u_{m}(t, x) \leqslant M(t) \quad$ for $\quad$ a.a. $\quad(t, x) \in Q ; u_{m} \rightarrow u \quad$ in $\mathscr{C}\left((0, T) ; L^{1}(\Omega)\right)$ as $m \rightarrow \infty$ and $u$ is the unique function in $L^{\infty}(Q)$ with $u \geqslant 0$, satisfying (23) with $h=g(., u)$.

Proof. For $R>0$, let $F_{R}$ be the map from $[0, T) \times L^{1}(\Omega)$ into $L^{1}(\Omega)$ defined by

$$
F_{R}(t, u)=g\left(t, ., u^{+} \wedge R\right)
$$

With (29), $F_{R}$ is integrable in $t \in(0, T)$ uniformly for any $u \in L^{1}(\Omega)$ and continuous in $u \in L^{1}(\Omega)$ for a.a. $t \in(0, T)$; moreover $\left(\max _{[0, R]} K\right) I-F_{R}(t,$.$) is accretive in L^{1}(\Omega)$. Then (see for instance [6, Lemma 1]) there exists a unique mild solution of

$$
\begin{equation*}
\frac{d u}{d t}+A_{m} u \ni F_{R}(., u) \text { on }(0, T), \quad u(0)=u_{0} \tag{32}
\end{equation*}
$$

Let first $u_{m}$ be a solution of (31) and fix $R \geqslant\left\|u_{m}\right\|_{\infty}$; Since $h:=g\left(., u_{m}\right)=F_{R}\left(., u_{m}\right)$, applying Proposition 2, $u_{m}$ is a mild solution of (32). From uniqueness of a solution to (32), follows uniqueness of a solution to (31). Conversely, let $R=\max _{[0, T]} M$ and consider the mild solution $u_{m}$ of (32). By Proposition 2, $u_{m}$ is solution of (17) with $h=g\left(., u_{m}^{+} \wedge R\right)$. We will prove that

$$
\begin{equation*}
0 \leqslant u_{m}(t, x) \leqslant M(t) \quad \text { for a.a. }(t, x) \in Q \tag{33}
\end{equation*}
$$

it will follow that $h=g\left(., u_{m}\right)$ and then $u_{m}$ is solution of (32). To prove (33), we use the fact that, according to (10), the operator $A_{m}$ is T-accretive in $L^{1}(\Omega)$ (c.f. [2,4]). If $u_{1}, u_{2}$ are mild solutions of (15) corresponding to $\left(h_{1}, u_{01}\right),\left(h_{2}, u_{02}\right)$ in $L^{1}(Q) \times$ $L^{1}(\Omega)$ respectively, one has for all $t \in[0, T)$

$$
\begin{equation*}
\int\left(u_{1}(t)-u_{2}(t)\right)^{+} \leqslant \int\left(u_{01}-u_{02}\right)^{+}+\int_{0}^{t} \int_{\left[u_{1} \geqslant u_{2}\right]}\left(h_{1}-h_{2}\right)^{+}, \tag{34}
\end{equation*}
$$

Apply with $u_{2}=u_{m}, h_{2}=F_{R}\left(., u_{m}\right), u_{02}=u_{0}, u_{1}=0, h_{1}=0, u_{01}=0$. Since $u_{m} \geqslant 0$ and $F_{R}\left(., u_{m}\right) \chi_{\left[u_{m} \leqslant 0\right]}=g(., 0) \geqslant 0$, one first obtains $u_{m} \geqslant 0$. Secondly, notice that $u_{2}(t, x)=M(t)$ is strong solution, and then mild solution of (15) with $h_{2}(t, x)=$ $M^{\prime}(t)$, as $u_{02}=M(0)$. Using (29) and (30), one has

$$
\begin{aligned}
F_{R}\left(., u_{m}\right) \chi_{\left[u_{m} \geqslant M\right]} & =g\left(., u_{m} \wedge R\right) \chi_{\left[u_{m} \geqslant M\right]} \\
& \leqslant g(., M) \chi_{\left[u_{m} \geqslant M\right]}+\chi_{\left[u_{m} \geqslant M\right]} \int_{M}^{u_{m} \wedge R} k(r) d r \\
& \leqslant M^{\prime} \chi_{\left[u_{m} \geqslant M\right]}+\left(\max _{[0, R]} K\right)\left(u_{m}-M\right)^{+}
\end{aligned}
$$

and then, using (34), $u_{m} \leqslant M$. This proves first part of the theorem and $u_{m}$ is the mild solution of (32) with $R=\max _{[0, T]} M$. Using Theorem 1 in [6], with Proposition 1, $u_{m} \rightarrow u$ in $\mathscr{C}\left((0, T) ; L^{1}(\Omega)\right)$ where $u$ is the unique mild solution of

$$
\frac{d u}{d t}+A_{\infty} u \ni F_{R}(., u) \text { on }(0, T) \quad u(0)=\left(I+A_{\infty}\right)^{-1} u_{0}
$$

Since $0 \leqslant u \leqslant M$, with the above arguments, thanks to Proposition $3, u$ is the unique function in $L^{\infty}(Q)$ with $u \geqslant 0$ is solution of (23) with $h=g(., u)$.

Now we will make more explicit the limit solution $u$ in the case $g(t, x, u)=g(u)$ (independent of $(t, x) \in Q)$. Throughout the end of this section $g: \mathbb{R}_{+} \rightarrow \mathbb{R}$ is defined by (2) and we assume (5), so $M^{\prime}(t)=q\left(t, M_{0}\right)$ satisfies (30). Then we have the following characterization of the limit solution $u$.

Corollary 2. If $g(t, x, u)=g(u)$ with $g: \mathbb{R}_{+} \rightarrow \mathbb{R}$ satisfies (2), then the limit $u$ of $u_{m}$ is defined as it is claimed in the introduction

Case 1: If $f u_{0} \geqslant 1$, then

$$
u(t, x)=q\left(f u_{0}, t\right) \quad \text { for } a . a .(t, x) \in Q
$$

Case 2: If $f u_{0}<1$ and $g(1) \leqslant 0$, then

$$
u(t, x)=q\left(\underline{u}_{0}(x), t\right) \quad \text { for a.a. }(t, x) \in Q .
$$

Case 3: If $f u_{0}<1$ and $g(1)>0$, then there exists $T_{0} \in(0, T]$ such that
(a) $u$ is the unique solution on $\left(0, T_{0}\right) \times \Omega$ of

$$
\left\{\begin{array}{l}
u \in L^{\infty}\left(\left(0, T_{0}\right) \times \Omega\right), 0 \leqslant u \leqslant 1 \text { a.e. on }\left(0, T_{0}\right) \times \Omega \\
\text { there exists } w_{\infty} \in L_{\mathrm{loc}}^{2}\left(\left[0, T_{0}\right) ; H^{1}(\Omega)\right) \text { such that } \\
w_{\infty} \geqslant 0, w_{\infty}(u-1)=0 \text { a.e. on }\left(0, T_{0}\right) \times \Omega \text { and } \\
\int_{0}^{T_{0}} \int_{\Omega} \xi_{t} u+g(u) \xi+\int_{\Omega} \quad \xi(0, .) \underline{u}_{0}=\int_{0}^{T_{0}} \int_{\Omega} D \xi D w_{\infty} \\
\forall \xi \in \mathscr{C}^{1}\left(\left[0, T_{0}\right) \times \bar{\Omega}\right), \xi \text { compactly supported }
\end{array}\right.
$$

(b) $u(t, x)=q\left(1, t-T_{0}\right)$ for a.a. $x \in \Omega$, for any $t \in\left[T_{0}, T[\right.$;

Proof. Recall that $u$ is the unique function in $L^{\infty}(Q)$ with $u \geqslant 0$ satisfying (23) with $h=g(u)$. In the case $f u_{0} \geqslant 1, \underline{u}_{0}=f u_{0}$; the function $u(t, x)=q\left(f u_{0}, t\right)$ is clearly the solution of (23) with $h(t, x)=g\left(q\left(f u_{0}, t\right)\right)=u_{t}(t, x)$.

In the case $f u_{0}<1, \underline{u}_{0} \leqslant 1$. If $g(1) \leqslant 0$, one has $u(t, x)=q\left(\underline{u}_{0}(x), t\right) \in[0,1]$ for a.a. $(t, x) \in Q$ and then $u$ is the solution of (23) with $h(t, x)=u_{t}(t, x), I=(0, T), w \equiv 0$.

At last consider the case $g(1)>0$. If $] a, b[$ is a component of

$$
\{t \in(0, T) ; f u(t)>1\}
$$

one has $a>0, f u(a)=1$ and $u(t) \equiv f u(t)$ on $[a, b]$. Further $u(t) \equiv q(1, t-a)$ on $[a, b]$. Since $g(1)>0$, one has $q(1, b-a)>0$ and then $b=T$. So $I=\left(0, T_{0}\right)$ with $T_{0} \in(0, T]$ and the result follows.

## Remarques.

(i) In Case 3 , if $M_{0}<1$, setting

$$
T_{1}=\max \left\{t \in[0, T] ; q\left(u_{0}, t\right) \leqslant 1 \text { a.e. on } \Omega\right\}
$$

one has

$$
T_{0} \geqslant T_{1} \quad \text { and } \quad u_{\infty}(t, x)=q\left(u_{0}(x), t\right) \text { for a.a. on }\left(0, T_{1}\right) \times \Omega .
$$

In particular, if $g\left(M_{0}\right) \leqslant 0$ then $T_{0}=T_{1}=T$.
(ii) Still in case 3, define

$$
T_{2}=\sup \left\{t ; q\left(f u_{0}, t\right)<1\right\} .
$$

If $g$ is concave (resp. convex) on $[0,1]$, then

$$
\frac{d}{d t} f u(t) \leqslant(\operatorname{resp} . \geqslant) g(f u(t)) \quad \text { for } t \in\left(0, T_{0}\right)
$$

Further $f u(t) \leqslant($ resp. $\geqslant) q\left(f u_{0}, t\right)$ for $t \in\left(0, T_{0}\right)$ so $T_{0} \geqslant($ resp. $\leqslant) T_{2}$.

## Appendix

We give here a general lemma used to prove uniqueness. While this method is classical, we did not find such statement in the literature.

Lemma A. Let $V \subseteq H$ be Hilbert spaces with continuous injection and $a: V \times V \rightarrow \mathbb{R}$ be continuous bilinear symmetric and nonnegative $(a(v, v) \geqslant 0)$ ). Let $u \in L^{2}(0, T ; H)$, $w \in L^{2}(0, T ; V)$ satisfying

$$
\begin{gather*}
\int\left(u(t), \xi^{\prime}(t)\right)_{H} d t=\int a(w(t), \xi(t)) \\
\forall \xi \in W^{1,2}(0, T ; H) \cap L^{2}(0, T ; V) \quad \text { with } \xi(T)=0 \tag{A.1}
\end{gather*}
$$

and

$$
\begin{equation*}
(u(t), w(t))_{H} \geqslant 0 \quad \text { a.e. } t \in(0, T) \tag{A.2}
\end{equation*}
$$

then $u \equiv 0$.

Proof. Let $0 \leqslant \tau \leqslant T$ and apply (A.1) with $\xi(t)=\int_{t \wedge \tau}^{\tau} w(s) d s$. One gets

$$
\begin{aligned}
\int_{0}^{\tau}(u(t), w(t))_{H} d t & =\int_{0}^{T} a\left(\xi^{\prime}(t), \xi(t)\right) d t \\
& =-\frac{1}{2} a(\xi(0), \xi(0)) \\
& =-\frac{1}{2} a\left(\int_{0}^{\tau} w(s) d s, \int_{0}^{\tau} w(s) d s\right)
\end{aligned}
$$

Using (A.2), $a\left(\int_{0}^{\tau} w(s) d s, \int_{0}^{\tau} w(s) d s\right)=0$ for any $\tau \in[0, T)$ and then $a(w(t), v)=0$ for any $v \in V$ and a.a. $t \in(0, T)$. Using (A.1) again, $u \equiv 0$.

## References

[1] W. Arendt, Characterization of positive semigroups on banach lattices, in: R. Nagel (Ed.), One Parameter Semigroups of Positive Operators, Lecture Notes in Mathematics, Springer, Berlin, 1986.
[2] Ph. Bénilan, Équation d'Évolution dans un Espace de Banach Quelconque et Applications, Thesis, Orsay, 1972.
[3] Ph. Bénilan, L. Boccardo, M. Herrero, On the limit of solution of $u_{t}=\Delta u^{m}$ as $m \rightarrow \infty$, in: M. Bertch et al. (Eds.), Some Topics in Nonlinear PDE's, Proceedings of the International Conference, Torino, 1989.
[4] Ph. Bénilan, M.G. Crandall, A. Pazy, Evolution Equation Governed by Accretive Operators, to appear.
[5] Ph. Bénilan, M.G. Crandall, P. Sacks, Some $L^{1}$ existence and dependence result for semilinear elliptic equation under nonlinear boundary conditions, Appl. Math. Optim. 17 (1988) 203-224.
[6] Ph. Bénilan, N. Igbida, Singular limit for perturbed nonlinear semigroup, Comm. Appl. Nonlinear Anal. 3 (4) (1996) 23-42.
[7] H. Brezis, W. Strauss, Semilinear elliptic equations in $L^{1}$, J. Math. Soc. Japan 25 (1973) 565-590.
[8] M.G. Crandall, An introduction to evolution governed by accretive operators, in: J. Hale, J. LaSalle, L. Cesari (Eds.), Dynamical Systems-An International Symposium, Academic Press, New York, 1976, pp. 131-165.
[9] L.C. Evans, M. Feldmanm, R.F. Gariepy, Fast/slow diffusion and collapsing sandpiles, J. Differential Equations 137 (1997) 166-209.
[10] N. Igbida, Limite singulière de problèmes d'évolution non linéaires, Thèse de doctorat, Université de Franche-Comté, Juin, 1997.


[^0]:    E-mail address: noureddine.igbida@u-picardie.fr (N. Igbida).
    ${ }^{\text {F }}$ Philippe Bénilan sadly passed away last year.
    ${ }^{1}$ The main results of this work were obtained when the second author was a Ph.D. student of Bénilan in Besançon (c.f. [10]).

