

Available online at www.sciencedirect.com

Journal of Differential Equations

J. Differential Equations 196 (2004) 301-315

http://www.elsevier.com/locate/jde

The mesa problem for Neumann boundary value problem

Philippe Bénilan^{*} and Noureddine Igbida¹

LAMFA, CNRS-UMR 6140, Université de Picardie Jules Verne, 33 rue Saint Leu, Amiens 80038, France Received November 6, 2001; revised April 3, 2003

Abstract

In this paper, we study the singular limit of the Porous Medium equation $u_t = \Delta u^m + g(x,u)$, as $m \to \infty$, in a bounded domain with Neumann boundary condition. © 2003 Elsevier Inc. All rights reserved.

Keywords: Singular limit; Mesa problem; Nonlinear semi group theory; Accretive operator; Mild solution; Parbaolic problem; Elliptic problem

1. Introduction

The aim of this paper is to study the effects of a lower-order nonlinearity and Neumann boundary condition on the limit of the Porous Medium equation $u_t = \Delta u^m$, when the parameter m goes to ∞ . This is a particular case of an overall program of studying the so-called singular limit for nonlinear pdes, i.e., a perturbation problem where the perturbed problem is of totally different character than the unperturbed one. Recently, in light of Monge Kantorovich mass transfer theory, Evans et al. proved in [9] that the related problem of taking the limit $p \to \infty$, for the pde $u_t = \Delta_p u$ has turned out to be interesting. Our approach is different, it is based on the ideas we introduced in [6] (see also [10]) for the similar problem with Dirichlet boundary condition. However, in our case, i.e. Neumann boundary condition, the description of the limit is more delicate.

E-mail address: noureddine.igbida@u-picardie.fr (N. Igbida).

^{*} Philippe Bénilan sadly passed away last year.

¹The main results of this work were obtained when the second author was a Ph.D. student of Bénilan in Besançon (c.f. [10]).

Let Ω be a bounded open set in \mathbb{R}^N with smooth boundary $\partial \Omega$. For $m \ge 1$, we consider the problem

$$\begin{cases} \frac{\partial u}{\partial t} = \Delta u^m + g(u) & \text{on } Q = (0, T) \times \Omega, \\ \frac{\partial u^m}{\partial n} = 0 & \text{on } \Sigma = (0, T) \times \partial \Omega, \\ u(0, .) = u_0(.) & \text{on } \Omega, \end{cases}$$
(1)

where $g: \mathbb{R}_+ \to \mathbb{R}$ is continuous with

$$g(0) \geqslant 0, \quad \frac{dg}{dr} \leqslant K \text{ in } \mathscr{D}'(0, \infty), K \in \mathscr{C}(\mathbb{R}_+)$$
 (2)

and $u_0 \in L^{\infty}(\Omega)$ with

$$0 \leqslant u_0 \leqslant M_0$$
 a.e. on Ω . (3)

According to (2), for any $r \in \mathbb{R}_+$ there exists a unique maximal solution q(r, t) defined on the maximal interval [0, T(r)) of the o.d.e.

$$\frac{dq}{dt} = g(q) \text{ on } (0, T(r)), \quad q(0) = r.$$
 (4)

Choosing

$$0 < T < T(M_0) \tag{5}$$

it is easy to show that there exists a unique bounded weak solution u of (1) in the sense:

$$\begin{cases} u \in \mathscr{C}([0,T];L^{1}(\Omega)) \cap L^{\infty}(Q), \\ u \geqslant 0, \quad u^{m} \in L^{2}(0,T;H^{1}(\Omega)), \\ \int \int u\xi_{t} + \int \int g(u)\xi = \int \int Du^{m} D\xi + \int u_{0}\xi(0,.), \\ \forall \xi \in W^{1,1}(0,T;L^{1}(\Omega)) \cap L^{2}(0,T;H^{1}(\Omega)), \quad \xi(T,.) \equiv 0. \end{cases}$$
(6)

We denote by u_m this solution. By maximum principle, it is clear that

$$0 \leqslant u_m(t, x) \leqslant q(M_0, t) \quad \text{a.e. } (t, x) \in Q. \tag{7}$$

This paper describes the limit of u_m as m goes to ∞ . In the case $g \equiv 0$, it has been proved in [3] (c.f. Theorem 3) that $u_m(t) \rightarrow \underline{u}_0$ in $L^1(\Omega)$ for $t \in [0, T]$, where

$$\underline{u}_0 = \begin{cases} fu_0 \left(:= \frac{1}{|\Omega} \int_{\Omega} u_0 \right) & \text{if } fu_0 \ge 1, \\ u_0 \chi_{[w=0]} + \chi_{[w>0]} & \text{if } fu_0 < 1 \end{cases}$$
(8)

with $w \in H^1(\Omega)$ the unique solution of the "mesa problem"

$$w \in H^2(\Omega)$$
, $w \geqslant 0$, $0 \leqslant \Delta w + u_0 \leqslant 1$,

$$w(\Delta w + u_0 - 1) = 0$$
 a.e. Ω and $\frac{\partial w}{\partial n} = 0$ on Σ .

Following the same approach as in [6] for the similar problem, where the Neumann boundary condition was replaced by the Dirichlet boundary condition, we prove for a general g satisfying (2) that

$$u_m \to u_\infty$$
 in $\mathscr{C}((0,T); L^1(\Omega))$.

But the description of the limit u_{∞} is more delicate. Indeed, we have the following cases:

Case 1: If $\int u_0 \ge 1$, then

$$u_{\infty}(t,x) = q(\mathfrak{f}u_0,t)$$
 for a.a. $(t,x) \in Q$;

Case 2: If $\int u_0 < 1$ and $g(1) \le 0$, then

$$u_{\infty}(t,x) = q(\underline{u}_0(x),t)$$
 for a.a. $(t,x) \in Q$;

Case 3: If $\int u_0 < 1$ and g(1) > 0, then there exists $T_0 \in (0, T]$ such that

(a) u_{∞} is the unique solution on $(0, T_0) \times \Omega$ of

$$\begin{cases} u_{\infty} \in L^{\infty}((0,T_0) \times \Omega), & 0 \leqslant u_{\infty} \leqslant 1 \text{ a.e. on } (0,T_0) \times \Omega \\ \text{there exists } w_{\infty} \in L^2_{\mathrm{loc}}([0,T_0);H^1(\Omega)) \text{ such that} \\ w_{\infty} \geqslant 0, & w_{\infty}(u_{\infty}-1) = 0 \text{ a.e. on } (0,T_0) \times \Omega \text{ and} \\ \int_0^{T_0} \int_{\Omega} \xi_l u_{\infty} + g(u_{\infty})\xi + \int_{\Omega} \xi(0,.)\underline{u}_0 = \int_0^{T_0} \int_{\Omega} D\xi \, Dw_{\infty} \\ \forall \xi \in \mathscr{C}^1([0,T_0) \times \bar{\Omega}), & \xi \text{ compactly supported}; \end{cases}$$

(b)
$$u_{\infty}(t,x) = q(1,t-T_0)$$
 for a.a. $x \in \Omega$, for any $t \in [T_0,T]$;

Actually we will consider problem (1) with a reaction term g(u) = g(t, x, u) depending on (t, x); the exact assumptions and results will be precised in Section 3. In Section 2, we will prepare the results by studying problem (1) and its limit as $m \to \infty$, with g(u) replaced by a function h(t, x) independent of u.

2. The problem with reaction term independent of u

To apply abstract arguments of the nonlinear semigroups theory, we first consider the elliptic problem

$$v = \Delta v^m + f$$
 on Ω , $\frac{\partial v^m}{\partial n} = 0$ on $\partial \Omega$

with $f \in L^1(\Omega)$. Applying Theorem 20 in [7], for any m > 0, there exists a unique solution v of

$$\begin{cases} v \in L^{1}(\Omega), & v^{m} := |v|^{m-1}v \in W^{1,1}(\Omega), \\ \int_{\Omega} Dv^{m} D\xi = \int_{\Omega} (f - v)\xi, & \forall \xi \in W^{1,\infty}(\Omega). \end{cases}$$
(9)

If v, \hat{v} are the solutions corresponding to f, $\hat{f} \in L^1(\Omega)$ then

$$\int_{\Omega} (v - \hat{v})^{+} \leqslant \int_{\Omega} (f - \hat{f})^{+}. \tag{10}$$

One has the following result as $m \to \infty$:

Proposition 1. Let $f \in L^1(\Omega)$ and for m > 0, v_m be the unique solution of (9).

(1) (c.f. [5]). If |f| < 1, there exists a unique solution (v, w) of

$$\begin{cases} v \in L^{\infty}(\Omega), & w \in W^{1,1}(\Omega), \ v \in sign(w) \ a.e. \ on \ \Omega, \\ \int Dw \ D\xi = \int (f - v)\xi, & \forall \xi \in \mathscr{C}^{1}(\bar{\Omega}) \end{cases}$$
 (11)

and $(v_m, (v_m)^m) \rightarrow (v, w)$ in $L^1(\Omega) \times W^{1,1}(\Omega)$ as $m \rightarrow \infty$.

(2) If $|f| \ge 1$, then $v_m \to f$ in $L^1(\Omega)$ as $m \to \infty$.

Proof. Part (1) is a particular case of Theorem B in [5]. Let us prove part (2). Thanks to (10), it is enough to prove it for |f| > 1. Since the problem is odd, let us assume without loss of generality that f > 1. According to [5], we have

$$\{v_m\}_{m\geq 1}$$
 is relatively compact in $L^1(\Omega)$,

$$\{(v_m)^m - C_m\}_{m \ge 1}$$
 is relatively compact in $W^{1,1}(\Omega)$,

where $C_m = f(v_m)^m$. Let $m_k \to \infty$ such that $v_k := v_{m_k} \to v$ in $L^1(\Omega)$ and $\tilde{w}_k := (v_{m_k})^{m_k} - C_{m_k} \to \tilde{w}_\infty$ in $W^{1,1}(\Omega)$ and a.e. on Ω . Using $fv_k = ff > 1$, one has

$$f(v_k^+)^{m_k} \geqslant (fv_k^+)^{m_k} \geqslant (ff)^{m_k} \rightarrow \infty$$
.

Since

$$C_{m_k} \frac{|\{v_k > 0\}|}{|\Omega|} \geqslant \hat{f}(v_k^+)^{m_k} - \hat{f}|\tilde{w}_k|$$

we have $C_{m_k} \to \infty$. Then $\frac{\tilde{w}_k}{C_{m_k}} \to 0$ a.e. and $(\frac{v_k}{C_{m_k}})^{\frac{1}{m_k}} = (1 + \frac{\tilde{w}_k}{C_{m_k}})^{\frac{1}{m_k}} \to 1$ a.e. So $v = \lim_{m_k \to \infty} C_{m_k}^{\frac{1}{m_k}}$ a.e. is constant on Ω and equal to $\int v = \int f$. \square

Those results may be restated in terms of operators in $L^1(\Omega)$. For $m \ge 1$, let A_m be the operator defined by

$$A_m v = -\Delta v^m$$
 with

$$\mathscr{D}(A_m) = \left\{ v \in L^m(\Omega); \ v^m \in W^{1,1}(\Omega), \ h = -\Delta v^m \in L^1(\Omega) \right\}$$
and
$$\int Dv^m D\xi = \int h\xi \ \forall \xi \in \mathscr{C}^1(\bar{\Omega}) \right\}. \tag{12}$$

Then A_m is m-accretive in $L^1(\Omega)$ and $A_m \to A_\infty$ in the sense of graph, where A_∞ is the multivalued m-accretive operator in $L^1(\Omega)$ defined by

$$z \in A_{\infty} v \iff \begin{cases} v, z \in L^{1}(\Omega), \ f z = 0 \text{ and} \\ \text{either } v = \mu \text{ a.e. on } \Omega \text{ with } \mu \in \mathbb{R}, \ |\mu| \geqslant 1 \\ \text{or there exists } w \in W^{1,1}(\Omega) \text{ such that} \\ v \in sign(w) \text{ a.e. on } \Omega \text{ and} \\ \int Dw D\xi = \int z\xi \ \forall \xi \in \mathscr{C}^{1}(\bar{\Omega}). \end{cases}$$
(13)

Indeed, A_{∞} being defined as above, for $f \in L^1(\Omega)$, one has

$$v + A_{\infty}v \ni f \iff \begin{cases} v \in L^{1}(\Omega) \int v = \int f \text{ and} \\ \text{either } v = \mu \text{ a.e. on } \Omega \text{ with } \mu \in \mathbb{R}, \ |\mu| \geqslant 1 \\ \text{or there exists } w \text{ such that } (v, w) \\ \text{is the solution of } (11), \end{cases}$$

so that according to Proposition 1, there exists a unique solution v of $v + A_{\infty}v \ni f$ and

$$v = \lim_{m \to \infty} (I + A_m)^{-1} f.$$

Let T>0 be fixed; set $Q=[0,T)\times\Omega$ and let $u_0\in L^1(\Omega)$ and $h\in L^1(Q)$ be given. Using the general theory of evolution equation, for any $m\geqslant 1$ there exists a unique

mild solution (see [2,4,8]) $u_m \in \mathcal{C}([0,T); L^1(\Omega))$ of

$$\frac{du_m}{dt} + A_m u_m \ni h \text{ on } (0, T) \quad u_m(0) = u_0.$$
 (14)

Assume $u_0 \geqslant 0$ a.e. on Ω . Using [3, c.f. Theorem 3] and [6, c.f. Theorem 1], $u_m \rightarrow u_\infty$ in $\mathscr{C}((0,T); L^1(\Omega))$ where u_∞ is the unique mild solution of

$$\frac{du_{\infty}}{dt} + A_{\infty}u_{\infty} \ni h \text{ on } (0, T) \quad u_{\infty}(0) = \underline{u}_{0}, \tag{15}$$

and \underline{u}_0 defined by (8) is $(I + A_{\infty})^{-1}u_0$ (and then $e^{-tA_{\infty}}\underline{u}_0 = \underline{u}_0$). To translate this result in terms of p.d.e. we characterize the mild solutions of (14) and (15). First, one has the following result for (14):

Proposition 2. Let $u_0 \in L^{\infty}(\Omega)$ and $h \in L^1(Q)$ with

$$\int_0^T ||h(t,.)||_{\infty} dt < \infty.$$
 (16)

For any $m \ge 1$, there exists a unique solution u of the problem

$$\begin{cases} u \in L^{\infty}(Q), & u^{m} \in L^{2}(0, T; H^{1}(\Omega)) \\ \iint \zeta_{t} u + \iint \zeta h + \iint \zeta(0, .) u_{0} = \iint D u^{m} D \zeta \\ \forall \xi \in \mathscr{C}^{1}(\bar{Q}), & \xi(T, .) \equiv 0. \end{cases}$$

$$(17)$$

Moreover u is the mild solution u_m of (14).

Proof. This is a quite standard result (c.f. [2]). For completeness let us give the arguments. We first show that the mild solution u of (14) satisfies (17). By definition of a mild solution, $u(t) = L^1 - \lim u_{\varepsilon}(t)$ uniformly for $t \in [0, T)$, where for $\varepsilon > 0$, u_{ε} is an ε -approximate solution corresponding to a subdivision $t_0 = 0 < t_1 < \cdots < t_{n-1} < T \le t_n$, with $t_i - t_{i-1} < \varepsilon$ and $h_1, \dots h_n \in L^1(\Omega)$ with $\sum_{i=1}^n \int_{t_{i-1}}^{t_i} ||h(t) - h_i||_{L^1} dt \le \varepsilon$, defined by $u_{\varepsilon}(0) = u_0 u_{\varepsilon}(t) = u_i$ for $t \in]t_{i-1}, t_i]$, where $u_i \in L^1(\Omega)$ satisfies

$$\frac{u_i - u_{i-1}}{t_i - t_{i-1}} + A_m u_i \ni h_i;$$

that is

$$\begin{cases} u_i = (t_i - t_{i-1})\Delta(u_i)^m + (t_i - t_{i-1})h_i + u_{i-1} & \text{on } \Omega \\ \frac{\partial (u_i)^m}{\partial n} = 0 & \text{on } \partial\Omega. \end{cases}$$
(18)

We may choose $h_i \in L^{\infty}(\Omega)$, with

$$\sum_{i=1}^{n} (t_i - t_{i-1}) ||h_i||_{\infty} \leq \int_0^T ||h(t, .)||_{L^{\infty}} dt.$$

It follows that $u_i \in L^{\infty}(\Omega)$ and

$$||u_i||_{\infty} \leq ||u_0||_{\infty} + \sum_{j=1}^{i} (t_j - t_{j-1})||h_j||_{\infty},$$

so

$$||u_{\varepsilon}||_{L^{\infty}(\mathcal{Q})} \leqslant M_1 \coloneqq ||u_0||_{\infty} + \int_0^T ||h(t,.)||_{L^{\infty}} dt.$$

Then multiplying (18) by $(u_i)^m$, one gets

$$\frac{1}{m+1} \int |u_i|^{m+1} + (t_i - t_{i-1}) \int |D(u_i)^m|^2 \leq (t_i - t_{i-1}) M_1 \int |h_i| + \frac{1}{m+1} \int |u_{i-1}|^{m-1} dt$$

so

$$||Du_{\varepsilon}^{m}||_{L^{2}(Q)}^{2} \leq \frac{1}{m+1} \int |u_{0}|^{m+1} + M_{1}||h||_{L^{1}(Q)}. \tag{19}$$

Let \tilde{u}_{ε} be the function from $[0, t_n]$ into $L^1(\Omega)$ defined by $\tilde{u}_{\varepsilon}(t_i) = u_i$, \tilde{u}_{ε} is linear in $[t_{i-1}, t_i]$ and h_{ε} be defined by $h_{\varepsilon}(t) = h_i$ on $]t_{i-1}, t_i[$; for $\xi \in W^{1,1}(0, T; L^1(\Omega)) \cap L^2(0, T; H^1(\Omega))$ with $\xi(T, ...) \equiv 0$

$$\int \int \tilde{u}_{\varepsilon} \xi_{t} + h_{\varepsilon} \xi + \int u_{0} \xi(0, .) = \int \int D(u_{\varepsilon})^{m} D\xi.$$
 (20)

Passing to the limit in (19) and (20) one gets that u is a solution of (17).

At last, we show uniqueness of the solution to (17). It follows from Lemma A in the appendix: if u_1, u_2 are two solutions of (17), apply with $H = L^2(\Omega)$, $V = H^1(\Omega)$, $a(u, v) = \int Du Dv \ u = u_1 - u_2$, $v = (u_1)^m - (u_2)^m$. \square

We consider now problem (15).

Proposition 3. Let $u_0 \in L^1(\Omega)$ and $h \in L^2(Q)$. Set

$$\mu(t) = \int u_0 + \int_0^t (f_\Omega h(s)) ds \tag{21}$$

and

$$I = \{ t \in (0, T); \ \mu(t) < 1 \}. \tag{22}$$

Assume that the mild solution u_{∞} of (15) is nonnegative. Then $u = u_{\infty}$ is the unique solution of the following problem:

$$\begin{cases} (\mathrm{i}) \ u \in \mathscr{C}([0,T);L^1(\Omega)), \quad u(0) = \underline{u}_0, \\ (\mathrm{ii}) \ u(t) \equiv \mu(t) \quad a.e. \ on \ \Omega \ for \ any \ t \in (0,T) \backslash I \\ (\mathrm{iii}) \ there \ exists \ w \in L^{\infty}_{\mathrm{loc}}(I;H^1(\Omega)) \ such \ that \ u \in \ sign(w) \\ a.e. \ on \ \Omega \ and \ \int \int \xi_I u + \xi h = \int \int Dw \ D\xi, \ \forall \xi \in \mathscr{C}^1(I \times \bar{\Omega}), \\ compactly \ supported. \end{cases}$$
 (23)

To prove this proposition we will use the following lemma:

Lemma 1. Let $\varepsilon > 0$, u, \hat{u} , $h \in L^1(\Omega)$ and $w \in H^1(\Omega)$ such that $u \in sign(w)$ a.e. on Ω , $|\hat{u}| \leq 1$ and

$$\int (Dw D\xi + h\xi) = \int \frac{u - \hat{u}}{\varepsilon} \xi, \quad \forall \xi \in \mathscr{C}^1(\bar{\Omega}).$$

If $\int |u| < 1$, then

$$||w||_{L^{1}} \leq \frac{C}{1 - \frac{1}{2}|u|} ||h||_{L^{1}},$$

where C is a constant depending only on Ω .

Proof. First, by Kato inequality (c.f. [1, Theorem 2.4]), for any $\xi \in W^{2,1}(\Omega)$ with $\xi \geqslant 0$, $\frac{\partial \xi}{\partial n} = 0$ on $\partial \Omega$, one has

$$\int |w|(-\Delta\xi) \leqslant \int_{w\neq 0} \xi \left(h - \frac{u - \hat{u}}{\varepsilon}\right) sign(w)$$

$$\leqslant \int_{w\neq 0} \xi h \, sign(w)$$

$$\leqslant ||\xi||_{L^{\infty}} ||h||_{L^{1}}.$$

Let ξ_0 be the solution of

$$\begin{cases} -\Delta \xi_0 = |u| - \mathfrak{f}|u| & \text{in } \Omega, \\ \frac{\partial \xi_0}{\partial n} = 0 & \text{on } \partial \Omega, \\ \mathfrak{f} \xi_0 = 0; \end{cases}$$

one has $\xi_0 \in W^{2,p}(\Omega)$ for any 1 and

$$||\xi_0||_{L^{\infty}} \leq C ||u| - \frac{1}{2}|u||_{L^{\infty}}$$

$$\leq C,$$

where C is a constant depending only on Ω . Set $\xi = \xi_0 + C$, one has $\xi \geqslant 0$ and

$$\int |w| (|u| - f|u|) = \int |w| (-\Delta \xi)$$

$$\leq \int \xi |h|$$

$$\leq 2C||h||_{L^1}$$

and since |uw| = |w| a.a. Ω , one has

$$||w||_{L^1} \le \frac{2C}{1-\frac{1}{2}|u|} ||h||_{L^1}.$$

Firstly, we prove a particular case of Proposition 3 stated in the following lemma:

Lemma 2. Let u_0 and h be as in Proposition 3. Assume that $\mu(t)$ defined by (21) satisfies

$$\mu(t) < 1 \quad for \ all \ t \in [0, T] \tag{24}$$

and that the mild solution u_{∞} of (15) is nonnegative. Then u_{∞} is the unique solution u of

$$\begin{cases} u \in L^{\infty}(Q), & \text{there exists } w \in L^{2}(0, T; H^{1}(\Omega)) \\ & \text{such that } u \in sign(w) \text{ a.e. } \Omega \text{ and} \\ & \int \int \xi_{t} u + \int \int \xi h + \int \xi(0, .) u_{0} = \int \int Dw D\xi \\ & \forall \xi \in \mathscr{C}^{1}(\bar{Q}), \ \xi(T, .) \equiv 0. \end{cases}$$

$$(25)$$

Proof. For uniqueness of a solution u of (25), apply Lemma A in the appendix in the same way as in the proof of Proposition 2. To prove that the mild solution $u = u_{\infty}$ of (15) satisfies (25), consider as in the proof of Proposition 2, an ε -approximate solution u_{ε} corresponding to a subdivision $t_0 < t_1 < \cdots < t_{n-1} < T \le t_n$ and $h_1, \ldots, h_n \in L^2(\Omega)$ with $\sum_{i=1}^n \int_{t_{i-1}}^{t_i} ||h(t) - h_i||_{L^2}^2 dt \le \varepsilon$. One has $u_{\varepsilon}(t) = u_i$ on $]t_{i-1}, t_i]$ with $(u_i, w_i) \in L^{\infty}(\Omega) \times H^2(\Omega)$ solution of

$$\begin{cases}
 u_{i} = u_{i-1} + (t_{i} - t_{i-1})(\Delta w_{i} + h_{i}) & \text{on } \Omega, \\
 u_{i} \in sign(w_{i}) & \text{on } \Omega, \\
 \frac{\partial w_{i}}{\partial n} = 0 & \text{on } \partial \Omega
\end{cases}$$
(26)

(using the convention for i = 1, $u_{i-1} = \underline{u}_0$).

Since $u_{\varepsilon}(t) \to u_{\infty}(t)$ in $L^{1}(\Omega)$ as $\varepsilon \to 0$ uniformly for $t \in [0, T]$, according to (24) for $\varepsilon > 0$ small enough, one has $\int |u_{i}| \leq \theta$ for i = 1, ..., n with $\theta < 1$ independent of ε .

Using Lemma 1,

$$||w_i||_{L^1} \le C_1 ||h_i||_{L^1} \quad \text{for } i = 1, \dots, n$$
 (27)

with C_1 independent of ε .

Multiplying (26) by w_i , one gets

$$\int |Dw_i|^2 = \int w_i h_i - \int \frac{|w_i| - w_i u_{i-1}}{t_i - t_{i-1}}$$

$$\leq ||w_i||_{L^2} ||h_i||_{L^2}.$$

Then, by Poincaré inequality and (27), one obtains

$$||Dw_i||_{L^2} \leqslant C_2 ||h_i||_{L^2} \tag{28}$$

with C_2 independent of ε .

It follows from (27) and (28) that the function w_{ε} defined by $w_{\varepsilon}(t) = w_i$ on $]t_{i-1}, t_i[$, is bounded in $L^2(0, T; H^1(\Omega))$ as $\varepsilon \to 0$. Let $\varepsilon_k \to 0$ such that $w_{\varepsilon_k} \to w$ in $L^2(0, T; H^1(\Omega))$. Since $u_{\varepsilon} \to u_{\infty}$ in $L^1(Q)$ and $u_{\varepsilon} \in sign(w_{\varepsilon})$ a.e. on Q, at the limit $u_{\infty} \in sign(w)$ a.e. on Q. Using the function \tilde{u}_{ε} as in the proof of Proposition 2, one ends up the proof of $u = u_{\infty}$ satisfies (25). \square

Proof of Proposition 3. Firstly, we prove uniqueness of a solution u of (23). By definition, a solution u(t) of (23) is defined on $((0,T)\backslash I)\cup\{0\}$. Let (a,b) be a component of I. A solution u(t) of (23) is defined for t=a. Applying Lemma 2, for $a<\alpha<\beta< b,\ u=u_\alpha$ on $(\alpha,\beta)\times\Omega$ where u_α is the mild solution of $\frac{du_\alpha}{dt}+A_\infty u_\alpha\ni h$ on $(\alpha,\beta),\ u_\alpha(\alpha)=u(\alpha)$. If $u_1,\ u_2$ are two solutions of (15), by the contraction property for mild solutions,

$$||u_1(t) - u_2(t)||_{I^1} \le ||u_1(\alpha) - u_2(\alpha)||_{I^1}, \quad \forall a < \alpha \le t < b.$$

Since $u_1(\alpha) - u_2(\alpha) \rightarrow 0$ in $L^1(\Omega)$ as $\alpha \rightarrow a$, $u_1 = u_2$ on $(a, b) \times \Omega$.

Now let $u = u_{\infty}$ be the mild solutions of (15). By assumption, u satisfies (23i) and $u \ge 0$. Being a mild solution it is clear that $u(t) \le 1$ and $\frac{1}{2}u(t) = \mu(t)$; then u satisfies (23ii). At last by Lemma 2, u satisfies (23iii). \square

Summing up the results of Propositions 1–3, according to the results of [6,3], one has:

Corollary 1. Let $u_0 \in L^{\infty}(\Omega)$, $u_0 \geqslant 0$ and $h \in L^{\infty}(0, T; L^1(\Omega))$ satisfying (16). For any $m \geqslant 1$, there exists a unique solution u_m of (17) and

$$u_m \rightarrow u$$
 in $\mathscr{C}((0,T); L^1(\Omega))$ as $m \rightarrow \infty$.

If $u \ge 0$, then u is the unique solution of (23).

3. The general reaction-diffusion problem

We consider problem (1) with g depending on (t, x). We assume $g: Q \times \mathbb{R}_+ \to \mathbb{R}$ satisfies

$$\begin{cases} \text{(i) for any } r \in \mathbb{R}_+, \ g(.,r) \in L^{\infty}(0,T;L^1(\Omega)) \text{ and} \\ \int_0^T ||g(t,.,r)||_{L^{\infty}} dt < \infty, \\ \text{(ii) for a.a. } (t,x) \in Q, \ g(t,x,.) \text{ is continuous on } \mathbb{R}_+ \text{ and} \\ \frac{\partial g}{\partial r}(t,x,.) \leqslant K(\cdot) \text{ in } \mathscr{D}'(0,\infty) \end{cases}$$
 (29)

with $K: \mathbb{R}^+ \to \mathbb{R}^+$ continuous. Consequently, for any $u \in L^{\infty}(Q)$ with $u \geqslant 0$, the function h = g(., u) is in $L^{\infty}(0, \infty; L^1(\Omega))$ and satisfies (16); indeed

$$g(.,||u||_{\infty}) - \int_{0}^{||u||_{\infty}} K(r) dr \leq g(.,u) \leq g(.,0) + \int_{0}^{||u||_{\infty}} K(r) dr.$$

In this section, we fix $u_0 \in L^{\infty}(\Omega)$ satisfying (3). We assume there is $M \in W^{1,1}(0,T)$, so

$$M'(t) \ge g(t, x, M(t))$$
 for a.a. $(t, x) \in Q$, $M(0) \ge M_0$. (30)

Applying Section 2, we have the following result:

Theorem 1. Under the above assumption, for any $m \ge 1$, there exists a unique u_m solution of

$$\begin{cases} u_{m} \in L^{\infty}(Q), & u_{m} \geqslant 0, \ (u_{m})^{m} \in L^{2}(0, T; H^{1}(\Omega)) \\ \int \int u_{m} \xi_{t} + g(., u_{m}) \xi + \int u_{0} \xi(0, .) = \int \int D \xi D(u_{m})^{m} \\ \forall \xi \in \mathscr{C}^{1}(\bar{Q}), & \xi(T, .) = 0. \end{cases}$$
(31)

Moreover $u_m \in \mathcal{C}([0,T);L^1(\Omega)), \ u_m(t,x) \leq M(t)$ for a.a. $(t,x) \in Q; \ u_m \to u$ in $\mathcal{C}((0,T);L^1(\Omega))$ as $m \to \infty$ and u is the unique function in $L^{\infty}(Q)$ with $u \geq 0$, satisfying (23) with h = g(.,u).

Proof. For R>0, let F_R be the map from $[0,T)\times L^1(\Omega)$ into $L^1(\Omega)$ defined by

$$F_R(t,u) = g(t,.,u^+ \wedge R).$$

With (29), F_R is integrable in $t \in (0, T)$ uniformly for any $u \in L^1(\Omega)$ and continuous in $u \in L^1(\Omega)$ for a.a. $t \in (0, T)$; moreover $(\max_{[0,R]} K)I - F_R(t, .)$ is accretive in $L^1(\Omega)$. Then (see for instance [6, Lemma 1]) there exists a unique mild solution of

$$\frac{du}{dt} + A_m u \ni F_R(., u) \text{ on } (0, T), \quad u(0) = u_0.$$
 (32)

Let first u_m be a solution of (31) and fix $R \ge ||u_m||_{\infty}$.; Since $h := g(., u_m) = F_R(., u_m)$, applying Proposition 2, u_m is a mild solution of (32). From uniqueness of a solution to (32), follows uniqueness of a solution to (31). Conversely, let $R = \max_{[0,T]} M$ and consider the mild solution u_m of (32). By Proposition 2, u_m is solution of (17) with $h = g(., u_m^+ \land R)$. We will prove that

$$0 \leqslant u_m(t, x) \leqslant M(t) \quad \text{for a.a. } (t, x) \in Q$$
 (33)

it will follow that $h = g(., u_m)$ and then u_m is solution of (32). To prove (33), we use the fact that, according to (10), the operator A_m is T-accretive in $L^1(\Omega)$ (c.f. [2,4]). If u_1, u_2 are mild solutions of (15) corresponding to (h_1, u_{01}) , (h_2, u_{02}) in $L^1(Q) \times L^1(\Omega)$ respectively, one has for all $t \in [0, T)$

$$\int (u_1(t) - u_2(t))^+ \le \int (u_{01} - u_{02})^+ + \int_0^t \int_{[u_1 \ge u_2]} (h_1 - h_2)^+, \tag{34}$$

Apply with $u_2 = u_m$, $h_2 = F_R(., u_m)$, $u_{02} = u_0$, $u_1 = 0$, $h_1 = 0$, $u_{01} = 0$. Since $u_m \ge 0$ and $F_R(., u_m)\chi_{[u_m \le 0]} = g(., 0) \ge 0$, one first obtains $u_m \ge 0$. Secondly, notice that $u_2(t, x) = M(t)$ is strong solution, and then mild solution of (15) with $h_2(t, x) = M'(t)$, as $u_{02} = M(0)$. Using (29) and (30), one has

$$\begin{split} F_R(.,u_m)\chi_{[u_m\geqslant M]} &= g(.,u_m \land R)\chi_{[u_m\geqslant M]} \\ &\leqslant g(.,M)\chi_{[u_m\geqslant M]} + \chi_{[u_m\geqslant M]} \int_M^{u_m \land R} k(r) \, dr \\ &\leqslant M'\chi_{[u_m\geqslant M]} + \left(\max_{[0,R]} K\right)(u_m - M)^+ \end{split}$$

and then, using (34), $u_m \le M$. This proves first part of the theorem and u_m is the mild solution of (32) with $R = \max_{[0,T]} M$. Using Theorem 1 in [6], with Proposition 1, $u_m \to u$ in $\mathcal{C}((0,T); L^1(\Omega))$ where u is the unique mild solution of

$$\frac{du}{dt} + A_{\infty}u \ni F_R(.,u)$$
 on $(0,T)$ $u(0) = (I + A_{\infty})^{-1}u_0$.

Since $0 \le u \le M$, with the above arguments, thanks to Proposition 3, u is the unique function in $L^{\infty}(Q)$ with $u \ge 0$ is solution of (23) with h = g(., u). \square

Now we will make more explicit the limit solution u in the case g(t, x, u) = g(u) (independent of $(t, x) \in Q$). Throughout the end of this section $g: \mathbb{R}_+ \to \mathbb{R}$ is defined by (2) and we assume (5), so $M'(t) = q(t, M_0)$ satisfies (30). Then we have the following characterization of the limit solution u.

Corollary 2. If g(t, x, u) = g(u) with $g: \mathbb{R}_+ \to \mathbb{R}$ satisfies (2), then the limit u of u_m is defined as it is claimed in the introduction

Case 1: If $\int u_0 \ge 1$, then

$$u(t,x) = q(\mathfrak{f}u_0,t)$$
 for a.a. $(t,x) \in Q$.

Case 2: If $\int u_0 < 1$ and $g(1) \leq 0$, then

$$u(t,x) = q(\underline{u}_0(x), t)$$
 for $a.a.$ $(t,x) \in Q$.

Case 3: If $\mathfrak{f}u_0 < 1$ and g(1) > 0, then there exists $T_0 \in (0, T]$ such that

(a) u is the unique solution on $(0, T_0) \times \Omega$ of

$$\left\{ \begin{array}{l} u\!\in\!L^{\infty}((0,T_0)\times\Omega),\ 0\!\leqslant\!u\!\leqslant\!1\ a.e.\ on\ (0,T_0)\times\Omega\\ there\ exists\ w_{\infty}\!\in\!L^2_{\mathrm{loc}}([0,T_0);H^1(\Omega))\ such\ that\\ w_{\infty}\!\geqslant\!0,\ w_{\infty}(u-1)=0\ a.e.\ on\ (0,T_0)\times\Omega\ and\\ \int_0^{T_0}\int_{\Omega}\xi_lu+g(u)\xi+\int_{\Omega}\quad\xi(0,.)\underline{u}_0=\int_0^{T_0}\int_{\Omega}D\xi\ Dw_{\infty}\\ \forall\xi\!\in\!\mathscr{C}^1([0,T_0)\times\bar\Omega),\ \xi\ compactly\ supported \end{array} \right.$$

(b)
$$u(t,x) = q(1, t - T_0)$$
 for a.a. $x \in \Omega$, for any $t \in [T_0, T]$;

Proof. Recall that u is the unique function in $L^{\infty}(Q)$ with $u \ge 0$ satisfying (23) with h = g(u). In the case $\mathfrak{f}u_0 \ge 1$, $\underline{u}_0 = \mathfrak{f}u_0$; the function $u(t, x) = q(\mathfrak{f}u_0, t)$ is clearly the solution of (23) with $h(t, x) = g(q(\mathfrak{f}u_0, t)) = u_t(t, x)$.

$$\big\{t\!\in\!(0,T); {}^{\mbox{\scriptsize f}} u(t)\!>\!1\big\},$$

one has a > 0, $\int u(a) = 1$ and $u(t) \equiv \int u(t)$ on [a, b]. Further $u(t) \equiv q(1, t - a)$ on [a, b]. Since g(1) > 0, one has q(1, b - a) > 0 and then b = T. So $I = (0, T_0)$ with $T_0 \in (0, T]$ and the result follows. \square

Remarques.

(i) In Case 3, if $M_0 < 1$, setting

$$T_1 = \max\{t \in [0, T]; \ q(u_0, t) \leq 1 \text{ a.e. on } \Omega\}$$

one has

$$T_0 \geqslant T_1$$
 and $u_\infty(t,x) = q(u_0(x),t)$ for a.a. on $(0,T_1) \times \Omega$.

In particular, if $g(M_0) \leq 0$ then $T_0 = T_1 = T$.

(ii) Still in case 3, define

$$T_2 = \sup\{t; \ q(\mathfrak{f}u_0, t) < 1\}.$$

If g is concave (resp. convex) on [0, 1], then

$$\frac{d}{dt} \int u(t) \leq (\text{resp.} \geq) g(\int u(t)) \quad \text{for } t \in (0, T_0).$$

Further $\mathfrak{f}u(t) \leqslant \text{(resp.} \geqslant) \ q(\mathfrak{f}u_0,t) \text{ for } t \in (0,T_0) \text{ so } T_0 \geqslant \text{(resp.} \leqslant) \ T_2.$

Appendix

We give here a general lemma used to prove uniqueness. While this method is classical, we did not find such statement in the literature.

Lemma A. Let $V \subseteq H$ be Hilbert spaces with continuous injection and $a: V \times V \to \mathbb{R}$ be continuous bilinear symmetric and nonnegative $(a(v,v) \geqslant 0)$. Let $u \in L^2(0,T;H)$, $w \in L^2(0,T;V)$ satisfying

$$\int (u(t), \xi'(t))_H dt = \int a(w(t), \xi(t))$$

$$\forall \xi \in W^{1,2}(0, T; H) \cap L^2(0, T; V) \quad with \ \xi(T) = 0$$
 (A.1)

and

$$(u(t), w(t))_{H} \geqslant 0$$
 a.e. $t \in (0, T)$ (A.2)

then $u \equiv 0$.

Proof. Let $0 \le \tau \le T$ and apply (A.1) with $\xi(t) = \int_{t \wedge \tau}^{\tau} w(s) ds$. One gets

$$\begin{split} \int_0^\tau (u(t), w(t))_H \, dt &= \int_0^T a(\xi'(t), \xi(t)) \, dt \\ &= -\frac{1}{2} a(\xi(0), \xi(0)) \\ &= -\frac{1}{2} a \bigg(\int_0^\tau w(s) \, ds, \int_0^\tau w(s) \, ds \bigg). \end{split}$$

Using (A.2), $a(\int_0^{\tau} w(s) ds, \int_0^{\tau} w(s) ds) = 0$ for any $\tau \in [0, T)$ and then a(w(t), v) = 0 for any $v \in V$ and a.a. $t \in (0, T)$. Using (A.1) again, $u \equiv 0$. \square

References

- [1] W. Arendt, Characterization of positive semigroups on banach lattices, in: R. Nagel (Ed.), One Parameter Semigroups of Positive Operators, Lecture Notes in Mathematics, Springer, Berlin, 1986.
- [2] Ph. Bénilan, Équation d'Évolution dans un Espace de Banach Quelconque et Applications, Thesis, Orsay, 1972.
- [3] Ph. Bénilan, L. Boccardo, M. Herrero, On the limit of solution of $u_t = \Delta u^m$ as $m \to \infty$, in: M. Bertch et al. (Eds.), Some Topics in Nonlinear PDE's, Proceedings of the International Conference, Torino, 1989
- [4] Ph. Bénilan, M.G. Crandall, A. Pazy, Evolution Equation Governed by Accretive Operators, to appear.
- [5] Ph. Bénilan, M.G. Crandall, P. Sacks, Some L¹ existence and dependence result for semilinear elliptic equation under nonlinear boundary conditions, Appl. Math. Optim. 17 (1988) 203–224.
- [6] Ph. Bénilan, N. Igbida, Singular limit for perturbed nonlinear semigroup, Comm. Appl. Nonlinear Anal. 3 (4) (1996) 23–42.
- [7] H. Brezis, W. Strauss, Semilinear elliptic equations in L¹, J. Math. Soc. Japan 25 (1973) 565–590.
- [8] M.G. Crandall, An introduction to evolution governed by accretive operators, in: J. Hale, J. LaSalle, L. Cesari (Eds.), Dynamical Systems—An International Symposium, Academic Press, New York, 1976, pp. 131–165.
- [9] L.C. Evans, M. Feldmanm, R.F. Gariepy, Fast/slow diffusion and collapsing sandpiles, J. Differential Equations 137 (1997) 166–209.
- [10] N. Igbida, Limite singulière de problèmes d'évolution non linéaires, Thèse de doctorat, Université de Franche-Comté, Juin, 1997.