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1 Introduction and preliminaries

1.1 Introduction

In this paper our main goal is to show that a family of variational problems of p-Laplacian type allows us to
get the Kantorovich potentials and transport densities of the Monge—Kantorovich mass transport problem for
general Finsler costs. Moreover, this approach allows us to characterize the Euler-Lagrange equation associ-
ated to the variational Kantorovich problem. We will also give different characterizations of the Kantorovich
potentials, and a Benamou-Brenier formula of the optimal transport problem

The variational approach using p-Laplacian problems was introduced by Evans and Gangbo [18] to solve
the Monge transport problem for the cost given by the Euclidean distance. This limit procedure turned out to
be quite flexible and allowed us to deal with different transport problems in which the cost is given by the
Euclidean distance or variants of it; for example, optimal matching problems (here one deals with systems
of p-Laplacian type), optimal import/export problems (here one considers Dirichlet or Neumann boundary
conditions) and optimal transport with the help of a courier (this is related to the double obstacle problem
for the p-Laplacian). We refer to [10, 22-26]. Here we extend the previous results considering a more delicate
structure, that is given in terms of a Finsler metric that may change from one point to another in the domain
(this is what is called a Finsler structure in the literature). Our ideas can also be extended to manifolds but,
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2 —— N.lIgbida et al., Optimal mass transportation for Finsler costs DE GRUYTER

to simplify the presentation, we prefer to state and prove our results just in a bounded smooth domain Q
in RN. However, at the end of the paper we present how the obtained results read on a Riemannian manifold.

Now, let us introduce some terminology and general results from optimal mass transportation theory. The
Monge transportation problem consists in moving one distribution of mass into another minimizing a given
transport cost. In mathematical terms, the problem can be stated as follows. Let Q be an open bounded subset
of RY. Given two non-negative compactly supported functions f*, f~ € L(Q) with the same total mass, find
ameasurablemap T: Q —» Qsuchthat Tf* =f",i.e.,

j fr(x)dx = Jf‘(x) dx forall A ¢ Q measurable,
T-1(4) A

and in such a way that T minimizes the total transport cost, that is,

icuxﬂmv(de=§g}JCULNMV(mdL

where c: Q x Q — R is a given cost function. The map T is called an optimal transport map. The difficulties
of solving the above problem motivated Kantorovich to introduce a relaxed formulation, called the Monge—
Kantorovich problem, that consists in looking for plans, that is, non-negative Radon measures y in Q x Q
such that proj,(u) = f*(x) dx and proj, (i) = f~(y) dy. Denoting by II(f*, f7) the set of plans, the Monge-
Kantorovich problem consists in minimizing the total cost functional

xww=janw@mw
axQ

in II(f*, 7). If pu is a minimizer of the above problem we say that it is an optimal plan. When c is continuous,
it is well known that

inf ch,Tx *(x)dx= min K.(u).
Tf+=f-Q (6 TO))f(x) pehire ()

For notation and general results on Mass Transport Theory we refer to [1, 4, 17, 18, 33, 34]. Below we
summarize our main concern in this paper.

Here we will deal with a cost ¢ given by a Finsler distance (see Section 1.3 for a precise definition) that
can be non-symmetric. However, since the cost satisfies the triangular inequality, the following duality result
holds (see [33]):

min{K.(u) : u € I(f*, )} = sup{ Jv(f‘ -fH:ve KC(Q)}, (1.1)
Q
where
Ke(Q) :={u: Q- R:u(y) - ux) < clx,y)}.

Moreover, there exists u € K.(Q) such that

ju(f‘—er) =sup{ Jv(f‘—f*) ive KC(Q)}.

Q Q

Such maximizers are called Kantorovich potentials.
When c is symmetric, we have that

min{K.(u) : p € I(f*, )} = sup{ Jv(f* -f):ve I(C(Q)}, (1.2)

Q

since v € K.(Q) if and only if -v € K.(Q).

In Section 1.4 we state precisely what is our cost function. In order to do this we introduce Finsler struc-
tures in Section 1.3, which grosso modo are extensions of norms. Basic references in Finsler geometry are [6]
and [31].
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1.2 Conditions on the data

From now on, Q will be a bounded smooth domain in RY and f*, f~ € L?(Q) are non-negative, compactly
supported functions with the same total mass. We also assume that supp(f*) u supp(f~) cc Q. Some of the
results we will obtain can be obtained for masses f* in larger spaces, e.g., M(Q). Nevertheless, since our
objective is to present how the limit procedure works, we will avoid technicalities that could appear with less
regular masses.

1.3 Finsler structures

We will denote by (¢; n) the Euclidean inner product between ¢ and 17 in RN and by || = +/(&, &) the Euclidean
norm in RV,

A Finsler function @ in RY is a function that is non-negative, continuous, convex and positively homo-
geneous of degree 1. In addition, it has the following property:

O(t8) = td(¢) foranyt>0,& € RV,
and vanishes only at 0. The dual function (or polar function) of a Finsler function @ is defined by
D*(&*) = sup{(£*; &) : d(&) <1} for &* e RV,

It is immediate to verify that ®* is also a Finsler function.
Observe that a Finsler function @ satisfies

alé] < d(&) < Blé| forany & e RY,

for some positive constants a, f3.

Finsler functions are extensions of norms. In fact, any norm in RY is a Finsler function, and any sym-
metric Finsler function is a norm. Moreover, for any Finsler function, convexity is equivalent to the triangular
inequality. In the literature the Finsler functions are also denominated as Minkowski norms.

Set

By :={¢{ e RN : (&) < 1}.

This is a closed bounded convex set with O € int(B). It is symmetric around the origin if ®@ is a norm. Con-
versely, for any closed bounded convex set K with O € int(K), ¢x(¢) := inf{a > 0 : & € aK}isaFinsler function
with By, = K; when K is centrally symmetric, we have a norm.

The dual function (or polar function) of a Finsler function @ is defined by

@*(&*) :=sup{(¢*;&) : & € By} for&* e RV,

It is immediate to verify that ®* is also a Finsler function; and a norm when @ is a norm. We also have

wipey o (8758)
PTE) = sup o)

Therefore, the following inequality of Cauchy-Schwarz type holds:

(€758 < DD (&7). (1.3)
If @ is a norm, we have
(&5 8| < DD (&), (1.4)

Now, for general Finsler functions inequality (1.4) is not true. An example of a Finsler function that is not
anorm in Ris given by ®(§) := aé~ + bé* with0 < a < b.
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It is not difficult to see that
O** (&) = d(&) forall & e RV,

Hence,

(8¢
D¢) = .
DR oE)

If we assume that the Finsler function @ is differentiable at &, then, by Euler’s theorem,
O(§) = (DD(4); ). (1.5)
Moreover, if we assume that @ is differentiable in K ¢ RY, then since @ is convex, it follows from (1.5) that
(DD(§);m) <@(nn) forallg,n ek, (1.6)
and consequently
KD®D(&); )| < sup{®@(n), ©(-n)} < BIn| forall&, n € K. (1.7)

If we assume that @ is differentiable in RY \ {0}, by Lagrange multipliers, from ®*(¢*) = SUP&)-1(45§7)s

we get that if ®(&) = 1 and @*(£*) = (&;&*), then there exists A € R such that £* = AD®(&). Now, by (1.5),
we have that

if O(£) = 1and ®*(£*) = (5¢%), then&* = " (&*)DD(). (1.8)

From (1.5) and (1.6), we also have
O*(DD(&) =1 forall £ 0. (1.9)

In this papet, a Finsler structure F on an open set D is a continuous function F: D x R¥ — R, such that
for any x € D, F(x, -) is a Finsler function in RN,
For a Finsler structure F on D, we define the dual structure F*: D x RV — R, by

F*(x, §) :==sup{(n; §) : F(x,n) < 1}.

Note that F* is also a Finsler structure.

Some important examples of Finsler structures are those of the form ®(B(x)¢&), where @ is a Finsler func-
tion and B(x) is a continuous symmetric N x N positive definite matrix. Such type of Finsler structures are
known as deformations of Minkowski norms.

1.4 The cost function

Let us now introduce the cost function. Given a Finsler structure F on Q, we define the following cost function:

1
Cr(x,y) := in£ JF(O'(t),O"(t))dt forx,y € Q, (1.10)

o€ly,y o

where
Iy, :={o e C([0,1],Q), 0(0) = x, a(1) = y}.
We have that cr is a Finsler distance. We emphasize that cr is not necessary symmetric (i.e., we may have
cr(x,y) # cr(y, x)) because F is merely positively homogeneous.

Remark 1.1. In the particular case F(x, ¢) = ®(¢) and Q convex, we have that

cr(x,y) = D(y - x).

Q

In fact, given o € Ly

since @ is convex, applying Jensen’s inequality, we get

1 1
D(y - x) = q:( J o) dt) < j D0’ (1)) dt.
0 0
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Therefore, by taking the infimum, we get ®(y — x) < cp(x, y). On the other hand, if o(¢) = x + t(y — x), we have
1
crx,y) < [ ©(0'(1) dt = Dy - .
0

Let us remark that when cr is not symmetric, (1.2) is not true in general. For example, if ®(¢) := aé~+ bé*
with O < a < b, then for f* = x(0,1) and f~ = x(1,2), we have that an optimal transport map is T(x) = x + 1, so

min{Kc,(u) : p € L(F", )} = jc(x, TO))f (x) dx
- j O(T(x) - 0f (x) dx
= b= [0 00 - £00) dx,

where u(x) = bx is the Kantorovich potential. On the other hand, an optimal transport map for the transport
of f~ to f*is S(x) = x - 1, and consequently

sup{ J v(ft-fT):ve KcF(Q)} cr(x, SCO))f (x) dx
Q

J
= J D(S(x) - x))f " (x) dx
a

= ju(X)(f*(X) - f~(x)) dx,

where u(x) = —ax is a Kantorovich potential.

1.5 Main results

We will denote by M(ﬁ, RY) the set of all R¥-valued Radon measures in Q, which, by the Riesz representation
theorem, can be identified with the dual of the space C (Q, RY) endowed with the supremum norm.

Given a measure X € M(Q, RY), we define its total variation with respect to the Finsler structure F as
follows. For an open set A ¢ Q, we define

| X|F(A) := sup{ I O dX : D e C(Q, RY), supp(®) c A, O(x) € Bp+(x,.) forall x € Q}

Q

Its extension to every Borel set of Q is a Radon measure (see Lemma 3.6).
We will identify the elements € L*(Q, RV) as elements of M(Q, RV) by means of

n, @) := j<d>(x>,ﬁ<x)> dx,

Q

. {n(x) ifxeQ,

where

0 ifxeQ\Q.

We shall suppose that F is a Finsler structure in a bounded open set D with Q cc D. We will also suppose
the following convexity condition on Q:

1
cr(x,y) = cg(x, y) = ing JF(a(t), o'(t))dt forallx,y e Q. (1.11)
o€l o
Note that by the continuity of F we can suppose, taking a smaller D if necessary, that
alé| < F*(x, &) < B&] forany & € RN and x € D, (1.12)

where a, f are positive constants.
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6 —— N.lIgbida et al., Optimal mass transportation for Finsler costs DE GRUYTER

For the Poincaré disk, that is, the unit disk D, (0) with the Finsler structure
2|4
1-|x]2’
since we ask for supp(f*) u supp(f~) cc Q cc D, choosing Q ¢ D ¢ D(0) adequately, condition (1.11) is sat-
isfied. In this case, the distance cr is given by

F(x,¢&) =

2x -yl )
- X))@ -1y2)/°

Our main result reads as follows, remember we are under the data conditions given above and in Sec-
tion 1.2.

cr(x,y) = arcosh(l + a

Theorem 1.2. Suppose F*(x,-) € C1(RN \ {0}). The following hold true:
(1) Forp > N, there exists a solution u,, of the variational problem

- j [F*(x;)Du)]” )

ues,

w0,
Q
where Sy = fu € WHP(Q) : [, u =0}
(2) There exists a subsequence uy, that converges uniformly to a Lipschitz continuous function uc.

(3) The function uy, is a Kantorovich potential for the mass transport problem of f* to f~ with cost given by the
Finsler distance cy given in (1.10). Moreover, for

1 OF*
0§
there exists a subsequence Xp,, converging weakly* as measures in Q to X, € M(Q, RY) such that

J(f* = JDV dXe, forallv e CY(Q).
Q Q

Xp = [F* (x, Dup(x))1P~

(x, Dup(x)),

(4) We have that
Xoolp(Q) = j Uoo(f~ — f) = min{&Ke, () : p € TI(FH FO)).
Q

(5) Let u be the measure F(x, Xoo). If F* (X, Dylioo(x)) < 1 p-a.e.in Q, then

oF* _
I(f’ Cfry= I S (- Dyted) - Dvan forally < €' (@)
Q Q
and
F*(x,Dyu(x)) =1 p-ae.in Q,
where Dyuc, is the tangential gradient of u, with respect to u. The measure p is known as a transport
density.

For the particular case of quadratic cost c(x, y) = |x — y|2, Benamou and Brenier [8] introduced the Eulerian
point of view of the mass transport problem and obtained what is usually known as Benamou—Brenier for-
mula. This point of view has been generalized in different directions (see, for instance, [1, 3, 14]). Following
Brenier, see [14], we consider the paths f: [0, 1] — M(Q, R)* and the vector fields E: [0, 1] — M(Q, RY)
satisfying
dit j b df() + pr dE(t) =0 inD'(0,1)forall ¢ € C'(Q),
5 = (1.13)

flO)=f*" and f(1)=f".
Given a solution (f, E) of (1.13), we define its energy by

1
Jr(f, E) = JIE(t)Ip(ﬁ) dt.
0
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We have the following relation between the Monge—Kantorovich problem and the equation (1.13) that
provides a Benamou—Brenier formula for this kind of transport problems.

Theorem 1.3. Assume that F*(x,-) € C' (RN \ {0}) and consider X, the flux given in Theorem 1.2. Then, given
f(t) :=f* + t(f~ = f*)and E(t) := X, for t € [0, 1], we have that (f, E) is a solution of problem (1.13). Moreover,
min{Jr(f, E) : (f, E) is a solution of (1.13)} = min{XK, (u) : p € I(f*, f)}.

The paper is organized as follows. In Section 2 we introduce the p-Laplacian problems that we use to approx-
imate a Kantorovich potential of our mass transport problem, and we prove that we can take limitsas p — oo
along subsequences of the solutions, obtaining in the limit a Lipschitz function. In Section 3 we show that
this limit is in fact a Kantorovich potential for our problem and, moreover, we find a PDE, involving a transport
density, that is verified by the limit. In Section 4 we see that the results obtained in Section 3 characterize the
Kantorovich potentials for the transport problem we study. Section 5 is devoted to get a Benamou-Brenier
formula for the problem. Finally, in Section 6 we briefly comment on the extension of our results to a general
Riemannian manifold.

2 A p-Laplacian problem

We assume the data conditions stated in Section 1.2 and that F and Q satisfy condition (1.11).
For p > N, we consider the variational problem

minJ w - J uf. (2.1)
Q

ues, p
where f € L2(Q), J'Qf =0,and Sy = {u e WHP(Q) : JQ u = 0}.
As remarked above we work with f € L?(Q) to avoid technicalities in the p-Laplacian approach.
Lemma 2.1. For p > N, there exists a continuous solution u,, to the variational problem (2.1).
This lemma implies statement (1) of Theorem 1.2.
Proof. Note that under the conditions on F*, we have
a|Du| < F*(-, Du) < B|Dul. (2.2)

Hence, for every u € WhP(Q),

s

p * p p
“J [Du| < J [F*(x, Du)] SBJ |Du|
p p p
Q
and therefore the functional

F*(x, Du)]?
0,4 () = J[ (Xp u)] ‘J“f’

Q Q

is well defined in the set S, which is convex, weakly closed and non empty. On the other hand, using the
Poincaré inequality, one can prove that 0, f is coercive, bounded below and lower semicontinuous in S,.
Then, there exists a minimizing sequence u, € S, WbP(Q) such that u, — u € Sp and

irgf Op,f = lrilmjnf Op,r(un) = BOp r(u).

Hence, the minimum of ©, r in S, is attained. O

Remark 2.2. When F*(x, -) is strictly convex, the uniqueness of the solution u, to (2.1) directly follows from
the constraint [, u, = 0.

Brought to you by | Universidad de Valencia
Authenticated
Download Date | 1/4/18 11:21 AM
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Assuming that F*(x, -) € C}(RN \ {0}), then, via standard arguments like the ones used in [7], we have that
up is a weak solution of the following problem of p-Laplacian type:

—div([F*(x,Du(x))]p a—é,(x,Du(x))) f inQ, .

(7 0 Duo) P (O on 3.

Here 7 is the exterior normal vector on 0Q and "aig is the gradient of F*(x, &) with respect to the second
variable &.

Let @ be a Finsler function and A(x) be a symmetric N x N positive definite matrix that depends smoothly
on x. If F(x, &) = ®(A(x)¢), then (2.3) becomes

{ —div([®* (A" Dw)P A DD®* (A 'Du) = f inQ, (2.4)
[@*(A"'Du)]P" 1A' DD* (A 1Du);n) =0  onoQ.
Note that in the particular case ®(&) = |¢| (the Euclidean norm), (2.4) reads
—div(|A"'DulP?2A?Du)=f inQ,
{ A1 DulP2(A"2Du;n) =0 onoQ.
Finally, for A = I, (2.4) becomes
-Npo:u=f in Q,
{ [@*(Dw)]P"(D®*(Du);n) =0 onoQ,

where

HMZ

Dpo-tt := ai([ob ) 5% S (o).

In particular, for ®* an ¢£9-norm, that is,

1

N q
D" (&) = ||€llg == ( Zw) :
k=1

the operator Ay ¢+ becomes

ou |” 2 9u
ax,-

Ap@*u—iaxlq z‘a)(k' ]

and consequently, for g = 2, we get the classical p-Laplacian operator

Apu := div(|DuP~2Du).

Now, let us see that we can extract a sequence of solutions to (2.1) {uy,}; with p; — oo that converges
uniformly as j — co.

Lemma 2.3. Let u,, be a solution to (2.1) indexed by p with p > N. Then, there exists a subsequence p; — co
such that u,, = U, uniformly in Q. Moreover, the limit u, is Lipschitz continuous.

From this lemma statement (2) of Theorem 1.2 follows.

Proof. Along this proof we will denote by C a constant independent of p that may change from one line to
another.

Our first aim is to prove that the LP-norm of the gradient of u, is bounded independently of p.

Let v be a fixed Lipschitz function with F*(x, Dv(x)) < 1 for a.e. x € Q and IQ v = 0. Then we have that
v € Sp. Hence, since u,, is a minimizer of the functional 0, f in Sp, we have

j [F*(x, Zup(x))]p _ J fup < J [F*(x, ?v(x))]p _ J fr < J % _ j .
Q Q Q Q Q
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Consequently,
! g J [F* (x, Duy(x))]P

> S%IQI—va+qup.

Q Q
For this calculation, taking v = 0 should be enough, nevertheless we will use this later on.
Now, thanks to the fact that fQ up = 0 and that the constant in the inequality |upllz»(q) < CllDupllrr(q) can
be chosen independent of p (see the proof of [23, Theorem 3.5]), we get

jfup < Cluplr(y < ClDuUplo(ay,
Q
and then we obtain

[F* (x, Dup(x))]P
J i Rter A P ClDuplirr(q)-
Q

p
Then, by (2.2), we get

j[F*(x,Dupm)]p < pC+pC( j[F*(x,Dupm)]p)p.
Q Q

From this inequality we can obtain that there exists C, independent of p, such that

1

( J[F*(X,Dup(x))]p>p < (Cp)¥t. (2.5)

Q
Then, from (2.2), we obtain that there exists C, independent of p, such that

(qupv’); <C.

Q

Now, using this uniform bound, we prove uniform convergence of a sequence u p;- I fact, for m such that
N < m < p, we have .

IDUp () < 1917 1DUpllLr(o)-

Then {up}p> is bounded in W*™(Q), and since we know that |, u,, = 0, we can obtain a sequence up, — Ue, €
whm(Q) with pj — +oo. Since WH™(Q) — C>%(Q) (note that a does not depend on p) and up, — ue €
Wm(Q), we obtain up, — U in C%%(Q), and in particular up, = U, uniformly in Q. As uy, € C(Q), we have
that uq, € C(Q).

Finally, let us show that the limit function u, is Lipschitz. In fact, we proved that

( ju)umv") < liminf< j|Du,,,.|'") < ClQF < C.
pj—+00
Q Q

Now, we take m — oo, to obtain | Ducllz(q) < C. So, we have proved uq, € W (Q), that is, u, is a Lipschitz
function. O

Remark 2.4. All the results of this section remain true if we assume that f = f, and

fp —f weaklyin L*(Q).

3 Mass transport interpretation of the limit

3.1 Kantorovich potentials

The goal of this section is to show that for f = f~ — f*, the limit u, of uj, (that we proved to exist in the previous
section), up to a subsequence, is a Kantorovich potential for the mass transport problem of f* to f~ with the
cost given by the Finsler distance cg(x, y) defined by (1.10).

The key idea is contained in the following result.
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10 — N.Igbida et al., Optimal mass transportation for Finsler costs DE GRUYTER

Proposition 3.1. If F satisfies the conditions given in Section 1.5, then we have the following characterization:
ue Wh®(Q) < Lip(u, cr) < 0o,

where
u(y) - u(x)

X,y eQ, x# }
cr(x,y) Y Y

Lip(u, cf) := sup{

Moreover,
esssup F* (x, Du(x)) = Lip(u, cf).

xeQ

To prove this result we need the following approximation lemma.

Lemma 3.2. Let u € WH°(Q) be such that F*(x, Du(x)) < 1 for a.e. x € Q. There exists u. € C1(Q) such that
U — u uniformly in any compact subset K of Q and

limsup F*(x, Due(x)) <1 forany x € Q.

e—0

Proof. By means of convolution, let us consider u. := p = u, where u is extended to O outside Q. Then it is
clear that for any x € Q and x € w cc Q, there exists €y > 0 such that

supp(pe(x—-)) ¢ Q foranyO < € < €.

This implies that
F*(y, Du(y))pe(x - y) < pe(x —y) foranyy e RV.

Then, by Jensen’s inequality, for 0 < € < €p, we have

F*(x, Duc(x)) < jF*(x, Du()pe(x — y) dy

O, O ©

F* (x, Du(y))pe(x - y) dy - j F*(y, Du(y))pe(x - y) dy + j F* (v, Du(y))pe(x - y) dy
Q Q

<

(F*(x, Du(y)) — F*(y, Du(y)))pe(x — y) dy + 1.

Letting € — 0, we deduce that
limsup F* (x, Due(x)) < 1. O

e—0
Proof of Proposition 3.1. The first assertion is an easy consequence of (1.12).
First, let us consider u € W1*°(Q). Then, for a.e. x € Q,

(Du(x); &) _ lim u(x + hé) —u(x)
F(x, &) h—0* F(x, h¢)
cr(x, x + hé)
F(x, h¢)
1
JF(X + the, hé) dt

0

< Lip(u, cp) liminf
h—0*
< Lip(u, cp) liminf !
= LPUL CR B B x, he)
= Lip(u, cF).
Consequently, we get the inequality

esssup F*(x, Du(x)) < Lip(u, cF).

xeQ

Let us prove the last inequality in the other direction, which is equivalent to show

esssup F*(x, Du(x)) <1 = u(x)—u(y) < cr(y,x) foranyx,ye Q.
xeQ
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DE GRUYTER N. Igbida et al., Optimal mass transportation for Finsler costs = 11

Thanks to Lemma 3.2, we can consider ue € C1(Q) such that u¢ — u uniformly in any compact subset K
of Q and
limsupF*(-, Due(-)) <1 everywherein Q.

e—0

Q

Xy We have

Givenx,y € Q,forog e T’

u(y) —u(x) = lig(l)(ue(y) - Ue(x))
1

- j (Duc(o(t)); o' (1) dt

0

< lim | F*(o(t), Due(0(0)F(0(0), '(0)) dt

C—r

lim sup F*(o(t), Due(o(t)))F(a(t), o' (t)) dt

e—0

<

F(a(t), o' (t)) dt.

<

Ot . Ot .

Taking the infimum in o € I‘f({y, we get u(y) — u(x) < cr(x, y). O
Observe that if F*(x, -) is a norm, then, as usual,

[u(y) — u(x)|

X, yeQ, x+ }
cr(x,y) Y Y

Lip(u, cr) = sup{
Therefore, we have the following corollary.
Corollary 3.3. Assume that F*(x, -) is a norm. Then, for u € W-*(Q), we have
F*(x,Du(x)) <1 ae.inQ < |ux)-uy)| < crlx,y).
As consequence of Proposition 3.1, we have that the set of functions
K (Q) = {u € WH™(Q) : u(y) - u(x) < cp(x, y)}

coincides with the set
Ki(Q) := {u € WH®(Q) : esssup F* (x, Du(x)) < 1}.
XeQ

Hence, (1.1) can be written as follows:

min{Kc,(u) : p € L(f", f)} = sup{ Jv(f‘ -fH:ve K}(Q)}. (3.1)

Q

Remark 3.4. Inthe case where F(x, &) = |£] and Q is convex, cr coincides with the Euclidean distance. In this
case the result of Proposition 3.1 is known. Otherwise, i.e., for F(x, &) = |£] and Q not necessarily convex, cr
is not the Euclidean distance, but it is the geodesic distance related to the Euclidean norm inside Q. Proposi-
tion 3.1 asserts that the result for the Euclidean distance in convex sets remains true for Finsler distances in
any domain Q.

Theorem 3.5. Let uy, be the limit of a subsequence {uy,}; as in Lemma 2.3. Then u, is a Kantorovich potential
for the optimal transport problem of f* to f~ with the cost given by cr(x, y). That is, the supremum in (3.1) is
attained at u,.

Moreover, if F*(x, -) € CL(RN \ {0}), for

oF*

Xp = [F* (6 Dup 0P 5 £

(X, Dup(x)), (3.2)
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12 — N.Igbida et al., Optimal mass transportation for Finsler costs DE GRUYTER

there exists a subsequence Xp,, converging weakly* as measures in Q to Xoo € M(Q, RN) such that
J(f‘ —fyv = JDV dXe forallv e CH(Q).
Q Q
In particular,
—div(Xs) = f~ —f" in the sense of distributions.
This theorem gives statement (3) of Theorem 1.2.

Proof. From (2.3), for every v € K;(Q), we have

[t - J [F* (x, J;up(x))]p [t
Q

’ J [F*(x, Dv(x))]p jv(f_ _fh
Q Q
| +)
< 7—! V()

Taking limits as p; — oo, we obtain
J Uoo(fT=f) = sup{ Jv(f‘ -fH:ve K}(Q)}.
Q Q

Then, in order to prove that u, is a Kantorovich potential, it only remains to see that
Us € KE(Q).

Now, using again (2.5) from the previous computations, we have that

;1]
( j[F*(x,Du,,(x))]p) < (Cp)7.
Q
Then, as above, if we take N < m < p, we get

1 pm 1
IF* (%, Dup(0)lzme) < (Cp)PTIQI P < (C1p)PT,

(3.3)

(3.4)

(3.5)

the constant C; being independent of p. Hence, having in mind that up, = ue uniformly in Q, we can assume

that Duy, — Du, in (L™(Q))N. Then, by Mazur’s theorem [15, Corollary 3.8], there exist X >0,i=j,...

with Y9, A = 1 such that
ki
Z/VDup — Duy, strongly in (L™(Q))N and a.e. in Q.
i=j
Then, by the continuity of F*, we have

( ZA]D“p,) — F*(-,Duy,) stronglyin L™(Q) and a.e. in Q.
i=j

Therefore,

F( ZADup,>

IF*(-, Duco)llim(q) < liminf
]—00 i

Lm(Q)
k)
< l1m1an/1’||F (-, Dup)llLm(o

ki )
<liminf )’ X(Cipy)7™
jmoo =

=1.
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DE GRUYTER N. Igbida et al., Optimal mass transportation for Finsler costs =— 13

Taking the limit as m — oo, we get that
IF*(-, Duco)lliz=(q) < 1,

and we conclude that uq, € K;(Q).
Finally, if F*(x, -) € C1(RN \ {0}), since u,, is a weak solution of problem (2.3), for X,, as defined in (3.2),
we have that
J(xp; Dv) = J(f‘ _f*w forally e WhP(Q). (3.6)
o) Q
Let us see that {X, : p > N} is bounded in L1(Q, RY). First, taking u,, as test function in (3.6) and having
in mind (1.5), we have
J[F*(x, Duy(x))]Pdx < Cy forallp > N.
Q
Then, by Holder’s inequality, we get

J[F*(x, Du,(x)P'dx < C, forallp > N. 3.7)
Q
On the other hand, from (1.7) and (1.12), we have that
OF*
a_f(X,Dup(X)) <B;

hence, by (3.7), we have that
JIDC,,I <pBC, forallp >N.
Q

Therefore, there exists X, € M(Q, RY) and a subsequence {pj,} such that

Xp;, = Xoo Wweakly” as measures in Q.
Thus, for any v € C1(Q), having in mind (3.6), we get

j(f_ -fHyv= J(xp].k;Dv) - JDvdDCOO.

Q Q Q

o

Hence, we have proved (3.3). O

For the next theorem, we need to introduce for a given measure a new one using the Finsler structure. Let us
first prove the following result on | - | defined in Section 1.5.

Lemma 3.6. The extension of |X|r to every Borel set B ¢ Q given by
|X|r(B) := inf{|X|F(A) : A open, B c A}
is a Radon measure in Q.

Proof. By the De Giorgi—Letta theorem [2, Theorem 1.53], it is enough to show that |X|r is subadditive, su-
peradditive and inner regular. For given open sets A, B ¢ Q and @ € C(Q, R") such that supp(®) ¢ A U Band
D(x) € Bp+(x,.) forall x € Q, let {n; : i = 1, 2, 3} be a partition of unity such that supp(n1) c A, supp(n7,) c B
and supp(3) ¢ Q \ supp(®). Then

J(Ddx - qucp ax + J 12 ® dX + j 3@ dX < [XIF(A) + |X|£(B).

Q Q

=]

Q

Hence, taking the supremum in @, we obtain
|XIr(A U B) < |X]|p(A) + | X]|p(B).
The other two properties are easy to prove. O
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14 — N.lIgbida et al., Optimal mass transportation for Finsler costs DE GRUYTER

Since F is non-negative, positively 1-homogeneous and convex in the second variable, given X € M(Q, RY),
we can also define (see, for instance, [2, 5]) the measure F(x, X) by

dx

J Foo 0= " d|Xs|

B

F(x, x“(x))dx+J ( (X))dIDCS|
B

|
:]!F( d|DC|(X)> dixi

for all Borel set B c Q, where X = X% + X5 is the Lebesgue decomposition of X, |X| is the total variation of

X and dd&| is the Radon-Nikodym derivative of X with respect to |X|. Since |X| is absolutely continuous with

respect to the measure |X|r, by [2, Proposition 2.37], we have

JF(X, X) =J ( Ay (x))dIDCIF for all Borel set B c Q. (3.8)
B B

Having in mind (3.8) and following the proof of the continuity Reshetnyak theorem given in [32], we get the
following result.

Lemma 3.7. Let X, X € M(Q, RY) be such that
Xo— X inM@Q,RY)  and  [Xalp(Q) — [X|F(Q).
Then
lim JF(X, ) = IF(X, x).
n—.oo
Q Q
We will also use the following approximation result.

Lemma 3.8. For any u € W-®(Q) such that F* (x, Du(x)) < 1 for a.e. x € Q, there exists u € C*(Q) such that
U — u uniformly in any compact subset K of Q and

limsup sup F* (x, Due(x)) < 1.
€—0 Q

Proof. Since F*(x, Du(x)) < 1 for a.e. x € Q and we are under condition (1.11), if we take the McShane—
Whitney extension
u(x) = in(f){u(y) +c2(y, 0}, xeD,
€

then we have that u(x) - u(y) < cy D(y, x). Take ue = u * pe € C1(Q) (we can extend u as zero outside D). Then
U — u uniformly in any compact subset K of D. On the other hand, by continuity, there exists x. € Q such
that

sup F*(x, Due(x)) = F*(Xe, Due(xe)).
Q

By Lemma 3.1 (that can be applied to D and C? ), we have that

esssup F*(x, Du(x)) < 1.

xeD

Then, by Jensen’s inequality, for € small, we have

F*(xe, Due(xe)) < j F*(xe, Du(y))pe(xe —y) dy
F* (xe, DU(y))pe(xe - y) dy j F*(y, Du(y))p(x - y) dy + j F*(y, DA())pe(xe - y) dy
D D

(F*(xe, Du(y)) — F*(y, Du(y)))pe(xe — y) dy + 1.

b'—b—‘b
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Now, there exists a subsequence such that x,, — xo and, for this subsequence, we have

J(F*(xen, DE(y)) - F*(y, Duy)))pe, (Xe, - y) dy — 0 as n — +oo. 0
D
Theorem 3.9 (Statement (4) of Theorem 1.2). Let uy, and X, be as in Theorem 3.5. Then
Xoolr(@) = [ PO %) = [ ol = . (3.9)
a Q

Proof. Let v¢ be the approximation given in Lemma 3.8 for u = u,, then

j(f- - )t dx = lim I(f‘ e dx
€—>
Q Q
= lim J Dv. dX s
e—0
Q
< lim sup sup F*(x, Dve ()| X ool F(Q)
€—0 Q
< Yool F(Q). (3.10)
Let {p;}; be a sequence such that up, and X, converge to uy, and X, in the sense given in the previous

results.
Take now @ € C(Q, RY) with ®(x) € Br+(x,.) forall x € Q. By (1.3), we have

j DXy, dx < j F*(x, ®(x))F(x, Xp,(x)) dx < JF(X, Xp,(x)) dx. (3.11)
Q Q Q
Therefore,
I DdXy = lilm J DXy, < lim sup I F(x, Xp,(x)) dx,
a Q "

and, by taking the supremum in @,

|Xool#(@) < lim sup I F(x, X, () dx. (3.12)
! Q

Now, applying Holder’s inequality, (1.9), (1.5) and (3.6), we get

lim sup j Flx, Xp,(0) dx = lim sup J[F* (x, Dup, (x))]p"‘lF(x, aa? .(x))) dx
<lim sup( I[F*(x, Duy, (x))]”! dx) ;
1—00 Q
= lim sup( J[F*(x, Dupi(x))]"""1 5 {(x)); Dup, (x)> dx)
1—00 a

;1
=limsup<j(xp, Duy,) )
i—00
Q

= lim J(xp,;Dup,.)

1—00

Q
:illglo([(f up
- ¢~ o,

Q
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16 —— N.lIgbida et al., Optimal mass transportation for Finsler costs DE GRUYTER

that is,
lim sup J F(x, Xp,(x)) dx < J(f‘ — Ueo- (3.13)

i—o0 a
Then, by (3.10), (3.12) and (3.13),

Xoolr(@) = j(f- Yo dx. (3.14)
Q

Let us see now that
[ Xp: IF(Q) = [ XeolF(Q). (3.15)

By (3.11), taking the supremum in @, we have

200 @ < [ Fx, ).
)
Then, by (3.13) and (3.14), we get

i—oo i—oo

lim suplxpilp(ﬁ) < limsup J F(x, Xp,) = J(f‘ ~ oo = |Xeol F(Q).
Q

On the other hand, given ® € C (Q, RN) with ®(x) € Bp«(x,.) for all x € Q, we have

J DXy, < 1%, 1£(Q),
Q
thus
J DXoo < liminf | X, [(Q),
1
Q

from which, we get that
|XoolF(Q) < liminf Xy, |r(Q),
1

and the proof of (3.15) is finished.
Finally, since X, — Xco in M(Q, RV) and we have (3.15), by Lemma 3.7, we get

[ Foc 2o = tim [P0 20 = [¢ - f e 0
Q Q Q
Let us see now that F(x, X,) is the transport density of the transport problem we are dealing with. To do

that we need to recall the concept of tangential derivative with respect to a Radon measure (see, for instance,
[11-13]). Given u € M(Q)*, we define

N:={fe L,‘jo(ﬁ, RY) : there exists u, € C*°(Q) such that

u — O uniformly and Du, — & in o(Ly?, Ly)}.

The orthogonal of N'in L Pl,(ﬁ, RY) is characterized in [13] by
Nt={oe L}l(ﬁ) :0(x) € Ty(x) prae.},

where T, is a closed valued p-measurable multifunction that is called the tangent space to the measure p.
For a function u € C1(Q), its tangential gradient Dyu(x) is defined as the projection Py (x)Du(x) on Ty (x).
In [13] it was proved that the linear operator u € C1(Q) — Dyu e L;O(ﬁ, RY) can be extended in a unique
way as a linear continuous operator Dy, : Lip(Q) — L;"(ﬁ, RN), where Lip(Q) is equipped with the uniform
convergence and Ll‘jo(ﬁ, RY) with the weak star topology. Consequently, there exists v, € €' (Q) such that

Ve — Uy uniformly, DyVve = Dyuieo o(LY, Ly). (3.16)
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Following [29], given u € W%*°(Q), we define the u-tangential gradient of u with respect to F in the fol-
lowing form: for x € Q such that D, u(x) exists, we define
Dyu(x)-v .

> 00 { . Dyu(x) - V}
FuUulX) i=y—F/——5-V Ve argmax — ———
K F(x, 7)? veT,(x), [vl=1 F(x,v)

In case F(x, -) is strictly convex, then there is a unique maximum

Dyu(x)-v

V€ arg max{ Foxv)

LV e T,(0), V] = 1},
and consequently 0r,,u(x) has a unique element, that we denote by Vg, u(x), that is called the p-tangential
gradient of u at x with respect to F, that is,

Dyu(x)-v

VERMO) = TRG oy

Observe that
OFuu(x) = {(Duu(x) -VV:ve argmax Dyu(x)- v}.
veT,(x), F(x,v)=1
Theorem 3.10. Let uy, and X, be as in Theorem 3.5. If we set u := F(x, X), then

J(f’ _fry = J ‘g—;" .Dvdu forallv e C'(Q),
2 a
A%,
du

(X) € Opulieo(x) and F(x, Aoy (x)) =1 p-ae.inQ.

du

Moreover, if F(x, -) is strictly convex, then

I(f ~ffyv= I VEulUoo - Dvdu  forallv e C1(Q)
Q Q
and
F(x, VEyue(x)) =1 p-ae. inQ

Proof. Since X, is absolutely continuous with respect to i, we have that the Radon—Nikodym derivative ‘g—y""

isin L},(ﬁ, RN). On the other hand, by (3.4),

- div( y%) =f~—f* inthe sense of distributions.

Then, from [13, Proposition 3.5], it follows that

dXeo
du

(x) € Tu(x) p-ae. (3.17)

We claim now that
Dyuco(x) - v(x) < F(x,v(x)) p-ae. (3.18)

for any v(x) € Ty(x) u-a.e. Indeed, let u, be the function given in Lemma 3.8. Then, by (1.3), if v(x) € Ty (x)
u-a.e., we have
Dyue(x) - v(x) = Due(x) - v(x) < F*(x, Due(x))F(x, v(x))

for pu-almost all x. Now, integrating the above inequality over any u-measurable set A and taking limits as
€ — 0, we get

[ Dutteo30- v da) < | Fx. v o,

A A
which gives (3.18).
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From (3.18) and (3.17), we can write

dx;’ (x)) y-ae. (3.19)

dXx
Dyuco(x) - —d;’ (x) < F(x, y

Now, since
F(x, cgc—yoo(x)) =1 pu-ae,
inequality (3.19) reads
dX oo
du
Now, taking v, as in (3.16) and having in mind (3.17), we get

Dy, - <1 pu-ae. (3.20)

jpyvedf_um an = [ Dvedxeo = [ - fyve.
Q Q o

Therefore, taking limits as € — 0, we obtain

dX. _
J oo g = [ = = [
Q Q Q
where the last equality is a consequence of (3.9). Then, by (3.20),
dX.
Dyes - d—;" =1 p-ae. (3.21)

On account of (3.18) and (3.21), we have

o0

du

(x) € argmax{Dyueo(x) - v : v € Ty(x), F(x,v) =1},

and consequently

dX
i (X) € O plUco(X).
Assuming that F(x, -) is strictly convex, we have
ax
d;’ (X) = VEuUoo(X),

and the proof concludes. O

Corollary 3.11 (Statement (5) of Theorem 1.2). Let u, and X, be as in Theorem 3.5. If in addition we assume
that

F*(x, Dyuco(x)) <1 p-ace.inQ, (3.22)
then OF*
J(f‘ —fHyv = J a_g("D”““’) -Dvdu forallv e CY(Q),
Q a (3.23)
F*(x, Dyuco(x)) = 1 u-a.e.inQ,
Proof. Since
1=Dyleo - di;" < F*(x, Dyuco(x)) p-ae.,
by (3.22), we have that
F*(x,Dyus(x)) =1 p-ae. (3.24)
On the other hand, 4 p
Xoo Xoo
Dpuoo . W =1= F(X, W(X)) H-a.e. (3.25)
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Now, having in mind (3.25) and (3.24), and applying (1.8), we deduce that

aai;(x, Dytteo()) = aa—?(x, Dutteo(x) pace.

Then, by the above theorem we get (3.23). O

dg—yoo(x) = F(x, d;C_Hoo(X))

Remark 3.12. If F(x, &) = |A(x)¢] with A(x) a symmetric positive definite matrix, then
Dyuco(x) € Bp+(x,.) M-a.e.in Q.

In fact, we have F*(x, &) = |A(x)"*¢|. Then, since A(x)~! preserves the orthogonality and Dyuco(x) and
D, (x) — Dyl (x) are orthogonal (remember that Djuq(x) is defined as the projection Py (x)Duq,(x) on
T, (x)), using Pythagoras’ theorem, we have

JA() ™ Do ()12 = [A(X) ™ Dyytoo ()12 + [AX) ™ (Do (X) = Dyyio (X))].

Therefore,
F*(x, Dyuioo(x)) < F* (X, Dugo (X)) < 1.

Let us remark that in this case, it is known that, in fact, y is absolutely continuous with respect to the
Lebesgue measure since f* € L1(Q) (see [16, 19, 29, 30]), and thus DyUeo = Dulgo.

In the case F(-, Xoo(+)) € L1(Q), we have the following result.
Corollary 3.13. Let u, and X, be as in Theorem 3.5. If F(-, Xoo(-)) € LY(Q), then for almost every x,

F(x, Xoo(X)) >0 = F*(x, Dus,(x)) =1, (3.26)

and

j F(x, xoo(x»(‘;i;(x, Duieo()): Dv(x)> dx = j(ﬁ(x) ~ FO0)V(x) dx

Q Q

forallv e cY(Q).In particular,

- div(F(~ , Xool ))aa—?( - Duoo)) =(f" = f*%) inthe sense of distributions, (3.27)
and
JF(X, Xoo(X)) dx = J Uso ) (f~(X) = fT(x)) dx. (3.28)
Q Q

Remark 3.14. Let us give an interpretation of equation (3.27) in terms of the Finsler manifold (Q, F). For this
we need to recall the concept of gradient vector in a Finsler manifold (see, for example, [28]). Let us suppose
that 2F?(x, -) is differentiable for & # 0. Let J: Q x R¥ — RN be the transfer map of the Finsler structure F,
defined in a € RN as the unique maximizer of the function & — (a, &) - 2F?(x, £). The vector J(x, a) can be
given as follows:

J0x, @) = F* (6, 00 2 (x, a0).

(24
The gradient vector in the Finsler manifold (Q, F) of a smooth function u: Q — R is defined by
. oF*
Vu(x) := J(x, Du(x)) = F*(x, Du(x))a—g(x,Du(x)).
Let us remark that the gradient vector Vu coincides with Vg, u when y is absolutely continuous with respect
to the Lebesgue measure.
Then, setting a(x) = F(x, X), by (3.26), we have

*

400 Vieo () = a(x) 2 (x, Duteo ().

0§
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Therefore, we can write equation (3.27) as follows:
—div(aVue,) = f~ = f* in the sense of distributions,
with ess sup,cq F(x, Vi (X)) < 1. Moreover, for almost every x,
a(x) >0 = F(x,Vue(x)) =1.
Indeed, by (1.9),

F(X, Vi (X)) = F(x, F*(x, Duoo(x))aa—?(x, Duoo(x)))

oF*
- F*(x, Duoooo)F(x, SE Duoo(x»)
= F*(x, Dugo (X)),

and, by (3.26), we have that F(x, Vi, (x)) = F*(x, DUy (x)) = 1 for almost every x such that a(x) > 0.

We have been dealing with a mass transport problem in the Finsler metric space (Q, F, dx), with a quite gen-
eral Finsler structure F, for the distance induced by such structure. This general structure includes the case
F(x, &) = ®(A(x)¢), where @ is a Finsler function and A(x) is a symmetric N x N positive definite matrix that
depends smoothly on x; in particular, the Riemannian structures F(x, &) = |A(x)£], where | - | is the Euclidean
norm. Let us see how these results can be interpreted in the context of optimal transportation on Riemannian
manifolds.

3.2 Example

In the particular case in which F(x, &) = |A(x)é&], where | - | is the Euclidean norm and A(x) is a symmetric
N x N positive definite matrix that depends smoothly on x € Q, we have

1 1
Ccr(x,y) = inf J\/(A(a(t))a’(t);A(a(t))a’(t)) dt = inf J\/(Az(o(t))o’(t);o’(t))dt.
Uergyo oel"fiyo

Therefore, writing A%(z) = (81,j(2))i,j =: g(2), the cost function c is given by

1
cr(x,y) = dgatx,y) = inf [ [Y giy0(0)0](00)(0 .
o€l 5 \iJ
That is, in this case the cost function c is the distance induced by the metric tensor g.
When A(z) = b(z)Iy (here Iy denotes the N x N identity matrix), we have

cr(x,y) = ing jb(z) ds.

o€l 4

This case has been studied in [26].

Theresults obtained can be interpreted in the context of optimal transportation on Riemannian manifolds
with cost function the distance induced by the metric tensor. Let us illustrate this with the following example.

N-dimensional parametrized manifolds in R™. Let $ be an N-dimensional parametrized manifold in RM
(M = N), thatis, 8 = (Q), where Q is an open bounded set of RN and 1): Q — RM is a smooth map such that
for each x € Q, the M x N Jacobian matrix J (x) has rank N. We denote by g the metric tensor g :=J fp -Jy and
by |g| the determinant of g. Consider in § the Riemannian distance induced by the Euclidean distance in RM,
ie.,

1
diy,s(&m) = inf [10'(0)dt,

oel‘m o

where I is the M x M identity matrix.
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One can think on 8, for example, the sphere of radius R in R3, parametrized by y: 10, 271[ x ]0, 1[ — R3,
given by
P(60, @) = (Rcos Osin ¢, RsinOsin ¢, Rcos ¢),

which is a non Euclidean Riemannian manifold with metric g defined by

R’sin’¢ 0 )

g(ey ¢) = ( 0 R2

Suppose that we have two functions f * ¢ L1(8, dvol), both with equal mass, i.e.,
[ 7@ dvolz) = [igioof*wen) dx = [ F-@ dvolz) = [igloof oy,
S Q 8 Q

and we want to transport f* to f~ on 8 with cost function the distance dj,, 5. If we take

00 = \I8100f* P (x0)),

Jf*(x) dx = Jf‘(x) dx.

Q Q

then we have

A simple calculation shows that

diy,s(&,1) = dgo(P1(&), Y~ () forall&,n e RM. (3.29)

Moreover, if Tf+ = f-and T := ™1 o To 1, then Tf* = f~ and

j di,. s (€, TE)F (&) dvol(§) = j\/|g|<x)dg,g(x, YU T FH () dx

8 Q
- j dg.0(x, TOO)f* (x) dx.
Q

Similarly, if Tf* = f~and T := o To1p~!, then Tf* = f~ and

j dg.0(x, TOO)f*(x) dx = j di,.s(& TE)F (&) dvol(8).

Q 8
Therefore, for the Monge problems, we have

Tfe=f

min 1 ! diy,s(& TN (&) dvol(f)} = Tr}fll:l}{ (J; dg,a(x, T(X))f*(X)dX}.

Consider now the Kantorovich potential u, obtained in Theorem 3.5 for F*(x, &) = |A~1(x)&], A a square
root of g and the masses f*. Then

sup{ JV(X)(f’(X) -ff(x)dx:ve Kdg,Q(Q)} = [ U () (f~(X) = f7(x)) dx

Q

ttoo (Y7 W 0N)(V1g100F~(00) = \IgICOF () ) dx

]
D e, (O e, O e

Uo7 (2))(F(2) - FF(2)) dvol(2).

On the other hand, by (3.29), it is easy to see that
veKao(Q) & v (2) €Ky, (8).
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Thus,

sup{ j VOO~ (x) = frx))dx v e Kdg,Q(Q)]» = sup{ Jw(z)(f‘(z) —f*(z) dvol(z) : w € Kd,M,S(M)}.
Q S

Consequently, for i (2) := Ueo (P ~1(2)),

[ #e@ (@ - 7 @) dvol(z) - sup{ [ W@ - Fren avolz) : w e K, (S)},

8 8

and il is a Kantorovich potential for the transport of f* to f~ on the manifold $ with respect to the Riemann-
ian distance dj,,,s.

When N = M we consider a change of variables. In this case, \/Ig(_x)l = |Jy(x)|. Now a square root A of g
can be ], among others.

Corollary 3.13 reads now as follows. Let us denote with a(x) the transport density F(x, X (x)). Then

—div(ag'Duy,) = f - f* inQ, (3.30)
and for a.e. x,
ax) >0 = (g1 (x)Duco(x); Dugo(x)) = 1. (3.31)
If we define a
a:= ° !/)_1,
gl

then from (3.28) we have

Juoo(Z)(f (2) - F*(2) dS = | \Ig1(00)iteo (PO (F~ (1h(0)) = (%)) dx

8

Uoo () (f~(X) = fT(x)) dx

a(x) dx

a(z) dvol(z

Jeco
i
i
gk

Recall that w € WH®(8) if w o 1 € WH(Q). For w € WH®(8), the gradient of w at z € § is denoted by
Vw(z) € T,S and is defined, for v € T8, by

W@ = Swow),,
where a: | — €, €[ — 8 is a smooth path such that a(0) = z and a’(0) = v. Then we have
(YW@ (x)), Jy(x)u) = (D(w o p)(x),u) forallx e Q, ue RN, (3.32)
In fact, if we define a(t) := P (x + tu) = (i o r)(¢t), then by applying the chain rule, we have
(VW@ (), Jy(ou) = %(Wo )|z = %((W ¥) o 1o = (DW e P)(0), u).
Given ¢ € W1-*°(8), multiplying (3.30) by ¢ o ¥ and integrating by parts, we get

J a(x){g 1 (xX)Duco(x); D(¢p o P)(x)) dx = j PO~ (0) - fT(x)) dx

Q

P2 (2) - f*(2)) dvol(z).

env_,b
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On the other hand, applying two times (3.32), we get

j a(x){g™" (\)Dteo(0); D(@ o P)(X)) dx = j a(0) () (0T (0) ™ Diteo (6); V(1)) dx

Q Q

= [[@01y-+ WD Vo) dx
Q

- j\/|g|(x>a<¢(x>><vaoo<¢(x>); V() dx
Q

= J a(2){Vileo(2); Vo(2)) dvol(z).
S

Consequently,

—div(aVile) = f~ - f* in the weak sense.

Moreover, by (3.31), if @(z) > 0 then (Vii,(2); Vil (2)) = 1. Observe that this is the formulation given in [19].

3.3 Optimal mass transport maps

Let us point out that Feldman and McCann in [19], using Kantorovich potentials, found an optimal transport
map To: 8 — 8, which solves the following Monge’s problem:

_min { J di,s(& TENF (&) dvol(f)}-
=i 1]

Here we have presented a way to obtain Kantorovich potentials by taking limits of p-Laplacian type problems,
by using the idea of Evans and Gangbo in [18].

On the existence of optimal transport maps, see also [9], and for Tonelli Lagrangians with superlinear
growth, see [20]. The existence of an optimal transport map in Finsler manifolds is obtained in [27] in the
case where the Finsler structure is independent of x and for quadratic cost functions. The Lagrangian F(x, &)
treated here has not superlinear growth.

4 Characterization of the Kantorovich potentials

In this section we shall see that the results obtained in Section 3 characterize the Kantorovich potentials
for the transport problem we are dealing here. Similar results have been obtained by Pratelli in [29], with
different methods, in the context of Riemannian manifolds and for symmetric Finsler restructures.

Remark 4.1. Observe that the statements (3.5), (3.3) and (3.9) remain true if we assume that f~ - f* = f, with
fp —f weaklyin L*(Q).
Lemma 4.2. Assumep > N. Let g € L?(Q) with fQ g = 0. Then there exists a solution vy, of

vy - div< [F*(x, Dvp(x))]p’laa—lzﬁ(x, Dvp(x))> —g inQ,

(4.1)
OF*
oF (x, Dvp(x)); n> =0 on oQ

[F* (x, Dvp ()P

such that for a subsequence p; — oo,
Vp; = Voo = Pxz(0)(8) uniformly in Q,
where Pg:(q) is the projection in L2(Q) on the convex set Kp(Q).
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Proof. Working as in the proof of Lemma 2.1, we have that the minimizer v, of
* p
(:)p,g(v) = J @ + % J |v—g|2
Q Q
is a solution of (4.1). It is easy to see that v;, is bounded in L%(Q), and so there exists a subsequence pj — +00
such that v,,, — v, weakly in L?(Q).
Now, working as in the proof of (3.5) and (3.3) (see Remark 4.1), we have that

Voo € Kp(Q), (4.2)
and also that there exists X € M(Q, RY) such that
J(g Vo)V = JDV dx forallv e CL(@). (4.3)
Q Q

On the other hand, working as in the proof of (3.9) (see Remark 4.1), we get
[ Foe 20 = [(g - veolveo-
a Q

From (4.3), for v € Kz(Q), we obtain (after a regularization approach using Lemma 3.8)

&= vev < [ Fo, 20 = [ (g~ vpveo: (4.4)
Q a Q
Now, (4.2) and (4.4) gives vq, = Pk:(0)8, as we wanted to show. O

Theorem 4.3. The following assertions are equivalent:

(1) u is a Kantorovich potential for the mass transport problem of f* to f~, with the cost being the Finsler
distance given in (1.10).

(2) u € K-, and there exists X € M(Q, RN) satisfying

{ [~ =fv=[gDvdX forallve C'(Q), -
JoF~ = fHu = [5F(x, X).
(3) u € Kg-, and there exist v e M(Q)* and A € L1(Q, RY) such that
{ Jof~=fHv=[sA-Dvdv forallv e C'(Q), - ©)
A(x) € opyu(x) and F(x,A(x))=1 v-a.e.inQ.
Proof. First of all observe that
u is a Kantorovich potential &= u = Pg:(f + u). (4.5)

(1) implies (2). Take v, a weak solution of the following problem of p-Laplacian type:

OF*
0§

Vp - div([F*(X, Dvp(x))]p*1 (x, Dvp(x))> =f+u inQ,

OF*
[F* (x, Dvp(x))]p‘1<a—€(x, Dv,(0); n> -0 on 0Q.

Then, by Lemma 4.2 and (4.5), we have that

;}Lngo Vp(x) = P (u+f) =u  uniformly in Q.
Observe also that in the proof of Lemma 4.2, we had X € M(Q, RN) satisfying condition (C1).

(2) implies (1). From (C1), using Lemma 3.8, it is not difficult to see that
J(f‘ -ffv < JF(X, X) = j(f‘ —fHu forallv € Kg-,
Q

Q
and thus u is a Kantorovich potential.
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(3) implies (2). 1f we set X := Av, it is enough to show that

jF(x, X) = JF(X, A)dv = J(f’ - fu.

Q Q

By (3.16), there exist smooth functions v, such that

Ve —» u uniformly,  Dyve — Dyu o(L, L1).

Then, taking v = v, in (C2), we have

j(f_ —ffve = JA-Dve dv=|A-Dyvedv,

Q

O —

ol

and by taking limits, we get

J(f* —fHu= JA -Dyudv.

Q Q
Now, working as in the proof of (3.18), we obtain

Dyu(x)-v(x) < F(x,v(x)) v-a.e.
for any v(x) € Ty (x) v-a.e. This implies that
F(x, A(x)) = A(x) - Dyu(x) v-a.e.in Q.

Going back to (4.6) and using again (C2), we get

Jor=rou-

Q

F(x, A) dv.

O —)

(2) implies (3). Takev = F(x,X)and A = %. We only need to show that

A(X) € Opyu(x) and F(x,A(x))=1 v-a.e.inQ.

This can be proved as Theorem 3.10, by replacing u., with u.

5 The Benamou-Brenier approach

(4.6)

Proof of Theorem 1.3. By (3.4), we have that (f, E) is a solution of problem (1.13) for f(t) := f* + t(f~ - f*)

and E(t) := X for t € [0, 1]. Then, from (3.9), it follows that

min{Jr(f, E) : (f, E) is a solution of (1.13)} < |Xeo|r(Q) = min{K, () : p € TI(F*, f)}.

To prove the reverse inequality, consider v, the approximation given in Lemma 3.8 for u = uy,. Then, given

(f, E) a solution of (1.13), we have

min{Xeo) € M £} = el =) = | jl oo
Q Qo0

|E()|F(Q) < Jr(f, E),

<

O e,

and consequently

min{XK, (@) : p € I, )} < min{Jr(f, E) : (f, E) is a solution of (1.13)}. O
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We say that the Finsler structure F is geodesically complete if for any x, y € Q there exists 0, € F)‘Zy such that

1 1
crx,y) = inf [ F(o(0),0'(0) dt = | Floxy (0, 0% (0) dt.
0

oelyy o

Theorem 5.1. Assume F*(x,-) € C1(RN \ {0}) and also that F is geodesically complete. For any transport plan
y € II(f*, f~) we define the measures

flO) := ey, E(t) == me(al, (0)y)

with 71¢(x, y) := 0x,,(t). Then (f, E) is a solution of (1.13). Moreover, if y is an optimal transport plan, then
]F(fa E) =min{j<6p(y) le € H(f+af_)}' (5-1)
Proof. Lety e II(f*, f~) be a transport plan. Given ¢ € C1(Q),

d d )
pr j ¢ dfi) = = j b(0x,y (D) dy(x, y) = j V(0ry(0)0% ,(0) dy(x, y) = jv¢ dE(1),

Q oxQ oxQ Q

hence (f, E) is a solution of (1.13). Suppose now that y is an optimal transport plan. Then

|E(t)|p(Q) = sup{ Jcp dE(t) : @ € C(Q, RN) with ®(x) € Bp«(y,.) forall x € Q}
Q
= sup{ J (D(ay,y (1), O‘;’y(t» dy(x,y) : @ € C(Q, RN) with ®(x) € Bp+(x,.) forall x € Q}
axQ
Now, by (1.3), we have
<(D(Ux,y(t)), 0';’},(1'» < F(O'x,y(t): U;,y(t))F*(O'x,y(t)a q)(o'x,y(t))) < F(Ux,y(t), U)’(,y(t))-

Thus,
E(DIF(Q) < j F(0y,y(0), 0% (D) dy(x, y),
oxQ
and then

Je(f, E) = | |E(O)|p(Q) dt

< | | Py o, oyen ayeey)
axQ
= j cr(x,y) dy(x, )

axQ

= min{Kc, (1) : u € I(F, f)}.

Therefore, by Theorem 1.3, we get (5.1). O

Ot |, Ot .

6 Extensions to Riemannian manifolds

In this section we briefly comment on the extension of our results to the case in which the optimal transport
problem takes place on a Riemannian manifold. For such extension, we use ingredients of the general theory
of Sobolev spaces on Riemannian manifolds, and we refer to [21] for details.
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We deal with a Riemannian manifold M of dimension N with a metric tensor g;; and a compatible measure
u (that is, a measure such that the measure of a geodesic ball of radius r is comparable with rV). The manifold
M is assumed to be compact with or without boundary. We also have that vol, (M) = IM du is finite.

On this manifold we have a Finsler structure, that is, a function F(x, &) that for each x € M is a Finsler
functionon ¢ € T, M. Using the Riemannian inner product in the tangent plane, we can define the dual Finsler
structure F*(x, &) (that gives also a Finsler function on T, M for every x € M). Associated to this Finsler struc-
ture, we can define the cost cr exactly as we did before. Given x, y € M, set

Y, :={o e C'([0,1], M) : 6(0) = x, 0(1) =y},
and define

1
cr(x,y) := inf JF(o(t), o' (b)) dt. (6.1)
oell,
0
Now, our mass transport problem reads as follows: given f* and f~ with the same total mass, find T an
optimal transport map, that is, a minimizer of

T‘}i‘}ﬂl cr (%, TOF* () .

In this setting we can consider the following variational problem: for p > N, minimize

J LCT L J uf dyi.
p

M
in the set S, = {u € WHP(M) : IM u dyu = 0}. Here, as before, f = f~ — f*.

For minimizers of this functional (that can be proved to exists as in Lemma 2.1), one can show with the
same computations of Lemma 2.3 that there exists a subsequence p; — co such that u,, = uy uniformly
in M. Moreover, the limit u., is Lipschitz continuous.

In addition, it can be proved, as in Section 3, that u, is a Kantorovich potential for the mass transport
problem of f* to f~ with cost being the Finsler distance given in (6.1), that is, u., maximizes

[ v =rryan

M

intheset Ko, (M) :={u: M — R: u(y) — u(x) < cr(x,y)}.
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