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1 Introduction and preliminaries

1.1 Introduction

In this paper our main goal is to show that a family of variational problems of p-Laplacian type allows us to
get the Kantorovich potentials and transport densities of theMonge–Kantorovichmass transport problem for
general Finsler costs. Moreover, this approach allows us to characterize the Euler–Lagrange equation associ-
ated to the variational Kantorovich problem. We will also give different characterizations of the Kantorovich
potentials, and a Benamou–Brenier formula of the optimal transport problem

The variational approach using p-Laplacian problemswas introduced by Evans and Gangbo [18] to solve
the Monge transport problem for the cost given by the Euclidean distance. This limit procedure turned out to
be quite flexible and allowed us to deal with different transport problems in which the cost is given by the
Euclidean distance or variants of it; for example, optimal matching problems (here one deals with systems
of p-Laplacian type), optimal import/export problems (here one considers Dirichlet or Neumann boundary
conditions) and optimal transport with the help of a courier (this is related to the double obstacle problem
for the p-Laplacian).We refer to [10, 22–26]. Here we extend the previous results considering amore delicate
structure, that is given in terms of a Finsler metric that may change from one point to another in the domain
(this is what is called a Finsler structure in the literature). Our ideas can also be extended to manifolds but,
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2 | N. Igbida et al., Optimal mass transportation for Finsler costs

to simplify the presentation, we prefer to state and prove our results just in a bounded smooth domain Ω
inℝN . However, at the end of the paper we present how the obtained results read on a Riemannianmanifold.

Now, let us introduce some terminology and general results fromoptimalmass transportation theory. The
Monge transportation problem consists in moving one distribution of mass into another minimizing a given
transport cost. Inmathematical terms, the problem can be stated as follows. Let Ω be an open bounded subset
of ℝN . Given two non-negative compactly supported functions f+, f− ∈ L1(Ω) with the same total mass, find
a measurable map T : Ω → Ω such that T f+ = f−, i.e.,∫

T−1(A)

f+(x) dx = ∫
A

f−(x) dx for all A ⊂ Ω measurable,

and in such a way that T minimizes the total transport cost, that is,∫
Ω

c(x, T(x))f+(x) dx = min
S f+=f−

∫
Ω

c(x, S(x))f+(x) dx,
where c : Ω × Ω → ℝ is a given cost function. The map T is called an optimal transport map. The difficulties
of solving the above problem motivated Kantorovich to introduce a relaxed formulation, called the Monge–
Kantorovich problem, that consists in looking for plans, that is, non-negative Radon measures μ in Ω × Ω
such that projx(μ) = f+(x) dx and projy(μ) = f−(y) dy. Denoting by Π(f+, f−) the set of plans, the Monge–
Kantorovich problem consists in minimizing the total cost functional

Kc(μ) := ∫
Ω×Ω

c(x, y) dμ(x, y)
in Π(f+, f−). If μ is a minimizer of the above problem we say that it is an optimal plan. When c is continuous,
it is well known that

inf
T f+=f−

∫
Ω

c(x, T(x))f+(x) dx = min
μ∈Π(f+ ,f−)

Kc(μ).
For notation and general results on Mass Transport Theory we refer to [1, 4, 17, 18, 33, 34]. Below we

summarize our main concern in this paper.
Here we will deal with a cost c given by a Finsler distance (see Section 1.3 for a precise definition) that

can be non-symmetric. However, since the cost satisfies the triangular inequality, the following duality result
holds (see [33]):

min{Kc(μ) : μ ∈ Π(f+, f−)} = sup{∫
Ω

v(f− − f+) : v ∈ Kc(Ω)}, (1.1)

where
Kc(Ω) := {u : Ω Ü→ ℝ : u(y) − u(x) ≤ c(x, y)}.

Moreover, there exists u ∈ Kc(Ω) such that∫
Ω

u(f− − f+) = sup{∫
Ω

v(f− − f+) : v ∈ Kc(Ω)}.
Such maximizers are called Kantorovich potentials.

When c is symmetric, we have that

min{Kc(μ) : μ ∈ Π(f+, f−)} = sup{∫
Ω

v(f+ − f−) : v ∈ Kc(Ω)}, (1.2)

since v ∈ Kc(Ω) if and only if −v ∈ Kc(Ω).
In Section 1.4 we state precisely what is our cost function. In order to do this we introduce Finsler struc-

tures in Section 1.3, which grosso modo are extensions of norms. Basic references in Finsler geometry are [6]
and [31].
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1.2 Conditions on the data

From now on, Ω will be a bounded smooth domain in ℝN and f+, f− ∈ L2(Ω) are non-negative, compactly
supported functions with the same total mass. We also assume that supp(f+) ∪ supp(f−) ⊂⊂ Ω. Some of the
results we will obtain can be obtained for masses f± in larger spaces, e.g., M(Ω). Nevertheless, since our
objective is to present how the limit procedure works, we will avoid technicalities that could appear with less
regular masses.

1.3 Finsler structures

Wewill denote by ⟨ξ; η⟩ the Euclidean inner product between ξ and η inℝN andby |ξ | = √⟨ξ, ξ⟩ the Euclidean
norm inℝN .

A Finsler function Φ in ℝN is a function that is non-negative, continuous, convex and positively homo-
geneous of degree 1. In addition, it has the following property:

Φ(tξ ) = tΦ(ξ ) for any t ≥ 0, ξ ∈ ℝN ,
and vanishes only at 0. The dual function (or polar function) of a Finsler function Φ is defined by

Φ∗(ξ∗) := sup{⟨ξ∗; ξ⟩ : Φ(ξ ) ≤ 1} for ξ∗ ∈ ℝN .
It is immediate to verify that Φ∗ is also a Finsler function.

Observe that a Finsler function Φ satisfies

α|ξ | ≤ Φ(ξ ) ≤ β|ξ | for any ξ ∈ ℝN ,
for some positive constants α, β.

Finsler functions are extensions of norms. In fact, any norm in ℝN is a Finsler function, and any sym-
metric Finsler function is a norm. Moreover, for any Finsler function, convexity is equivalent to the triangular
inequality. In the literature the Finsler functions are also denominated as Minkowski norms.

Set
BΦ := {ξ ∈ ℝN : Φ(ξ ) ≤ 1}.

This is a closed bounded convex set with 0 ∈ int(B). It is symmetric around the origin if Φ is a norm. Con-
versely, for any closed bounded convex set Kwith 0 ∈ int(K),ϕK(ξ ) := inf{α > 0 : ξ ∈ αK} is a Finsler function
with BϕK = K; when K is centrally symmetric, we have a norm.

The dual function (or polar function) of a Finsler function Φ is defined by

Φ∗(ξ∗) := sup{⟨ξ∗; ξ⟩ : ξ ∈ BΦ} for ξ∗ ∈ ℝN .
It is immediate to verify that Φ∗ is also a Finsler function; and a norm when Φ is a norm. We also have

Φ∗(ξ∗) = sup
ξ ̸=0

⟨ξ∗; ξ⟩
Φ(ξ ) .

Therefore, the following inequality of Cauchy–Schwarz type holds:⟨ξ∗; ξ⟩ ≤ Φ(ξ )Φ∗(ξ∗). (1.3)

If Φ is a norm, we have |⟨ξ∗; ξ⟩| ≤ Φ(ξ )Φ∗(ξ∗). (1.4)

Now, for general Finsler functions inequality (1.4) is not true. An example of a Finsler function that is not
a norm inℝ is given by Φ(ξ ) := aξ− + bξ+ with 0 < a < b.
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It is not difficult to see that
Φ∗∗(ξ ) = Φ(ξ ) for all ξ ∈ ℝN .

Hence,
Φ(ξ ) = sup

ξ∗ ̸=0

⟨ξ; ξ∗⟩
Φ∗(ξ∗) .

If we assume that the Finsler function Φ is differentiable at ξ , then, by Euler’s theorem,

Φ(ξ ) = ⟨DΦ(ξ ); ξ⟩. (1.5)

Moreover, if we assume that Φ is differentiable in K ⊂ ℝN , then since Φ is convex, it follows from (1.5) that⟨DΦ(ξ ); η⟩ ≤ Φ(η) for all ξ, η ∈ K, (1.6)

and consequently |⟨DΦ(ξ ); η⟩| ≤ sup{Φ(η), Φ(−η)} ≤ β|η| for all ξ, η ∈ K. (1.7)

Ifwe assume that Φ is differentiable inℝN \ {0}, by Lagrangemultipliers, fromΦ∗(ξ∗) = supΦ(ξ)=1⟨ξ; ξ∗⟩,
we get that if Φ(ξ ) = 1 and Φ∗(ξ∗) = ⟨ξ; ξ∗⟩, then there exists λ ∈ ℝ such that ξ∗ = λDΦ(ξ ). Now, by (1.5),
we have that

if Φ(ξ ) = 1 and Φ∗(ξ∗) = ⟨ξ; ξ∗⟩, then ξ∗ = Φ∗(ξ∗)DΦ(ξ ). (1.8)

From (1.5) and (1.6), we also have

Φ∗(DΦ(ξ )) = 1 for all ξ ̸= 0. (1.9)

In this paper, a Finsler structure F on an open set D is a continuous function F : D × ℝN → ℝ+ such that
for any x ∈ D, F(x, ⋅ ) is a Finsler function inℝN .

For a Finsler structure F on D, we define the dual structure F∗ : D × ℝN → ℝ+ by
F∗(x, ξ ) := sup{⟨η; ξ⟩ : F(x, η) ≤ 1}.

Note that F∗ is also a Finsler structure.
Some important examples of Finsler structures are those of the form Φ(B(x)ξ ), where Φ is a Finsler func-

tion and B(x) is a continuous symmetric N × N positive definite matrix. Such type of Finsler structures are
known as deformations of Minkowski norms.

1.4 The cost function

Let us now introduce the cost function. Given a Finsler structure F on Ω,wedefine the following cost function:

cF(x, y) := inf
σ∈ΓΩx,y

1∫
0

F(σ(t), σ�(t)) dt for x, y ∈ Ω, (1.10)

where
ΓΩx,y := {σ ∈ C1([0, 1], Ω), σ(0) = x, σ(1) = y}.

We have that cF is a Finsler distance. We emphasize that cF is not necessary symmetric (i.e., we may have
cF(x, y) ̸= cF(y, x)) because F is merely positively homogeneous.

Remark 1.1. In the particular case F(x, ξ ) = Φ(ξ ) and Ω convex, we have that

cF(x, y) = Φ(y − x).
In fact, given σ ∈ ΓΩx,y, since Φ is convex, applying Jensen’s inequality, we get

Φ(y − x) = Φ( 1∫
0

σ�(t) dt) ≤ 1∫
0

Φ(σ�(t)) dt.
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Therefore, by taking the infimum,we get Φ(y − x) ≤ cF(x, y). On the other hand, if σ(t) = x + t(y − x), we have
cF(x, y) ≤ 1∫

0

Φ(σ�(t)) dt = Φ(y − x).
Let us remark thatwhen cF is not symmetric, (1.2) is not true in general. For example, if Φ(ξ ) := aξ−+ bξ+

with 0 < a < b, then for f+ = χ(0,1) and f− = χ(1,2), we have that an optimal transport map is T(x) = x + 1, so

min{KcF (μ) : μ ∈ Π(f+, f−)} = ∫ c(x, T(x))f+(x) dx= ∫Φ(T(x) − x)f+(x) dx= b = ∫ u(x)(f−(x) − f+(x)) dx,
where u(x) = bx is the Kantorovich potential. On the other hand, an optimal transport map for the transport
of f− to f+ is S(x) = x − 1, and consequently

sup{∫
Ω

v(f+ − f−) : v ∈ KcF (Ω)} = ∫ cF(x, S(x))f−(x) dx= ∫Φ(S(x) − x))f−(x) dx= a = ∫ u(x)(f+(x) − f−(x)) dx,
where u(x) = −ax is a Kantorovich potential.
1.5 Main results

Wewill denote byM(Ω,ℝN) the set of allℝN -valued Radonmeasures in Ω,which, by the Riesz representation
theorem, can be identified with the dual of the space C(Ω,ℝN) endowed with the supremum norm.

Given a measure X ∈ M(Ω,ℝN), we define its total variation with respect to the Finsler structure F as
follows. For an open set A ⊂ Ω, we define|X|F(A) := sup{∫

Ω

Φ dX : Φ ∈ C(Ω,ℝN), supp(Φ) ⊂ A, Φ(x) ∈ BF∗(x, ⋅ ) for all x ∈ Ω}.
Its extension to every Borel set of Ω is a Radon measure (see Lemma 3.6).

We will identify the elements η ∈ L1(Ω,ℝN) as elements ofM(Ω,ℝN) by means of⟨η, Φ⟩ := ∫
Ω

⟨Φ(x), η(x)⟩ dx,
where

η(x) := {{{η(x) if x ∈ Ω,
0 if x ∈ Ω \ Ω.

We shall suppose that F is a Finsler structure in a bounded open set Dwith Ω ⊂⊂ D. We will also suppose
the following convexity condition on Ω:

cF(x, y) = cDF (x, y) := inf
σ∈ΓDx,y

1∫
0

F(σ(t), σ�(t)) dt for all x, y ∈ Ω. (1.11)

Note that by the continuity of F we can suppose, taking a smaller D if necessary, that

α|ξ | ≤ F∗(x, ξ ) ≤ β|ξ | for any ξ ∈ ℝN and x ∈ D, (1.12)

where α, β are positive constants.
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For the Poincaré disk, that is, the unit disk D1(0) with the Finsler structure
F(x, ξ ) = 2|ξ |

1 − |x|2 ,
since we ask for supp(f+) ∪ supp(f−) ⊂⊂ Ω ⊂⊂ D, choosing Ω ⊂ D ⊂ D1(0) adequately, condition (1.11) is sat-
isfied. In this case, the distance cF is given by

cF(x, y) = arcosh(1 + 2|x − y|2(1 − |x|2)(1 − |y|2)).
Our main result reads as follows, remember we are under the data conditions given above and in Sec-

tion 1.2.

Theorem 1.2. Suppose F∗(x, ⋅ ) ∈ C1(ℝN \ {0}). The following hold true:
(1) For p > N, there exists a solution up of the variational problem

min
u∈Sp

∫
Ω

[F∗(x, Du)]p
p

− ∫
Ω

u(f− − f+),
where Sp = {u ∈ W1,p(Ω) : ∫Ω u = 0}.

(2) There exists a subsequence upj that converges uniformly to a Lipschitz continuous function u∞.
(3) The function u∞ is a Kantorovich potential for the mass transport problem of f+ to f− with cost given by the

Finsler distance cf given in (1.10). Moreover, for

Xp = [F∗(x, Dup(x))]p−1 ∂F∗∂ξ (x, Dup(x)),
there exists a subsequence Xpjk converging weakly

∗ as measures in Ω to X∞ ∈ M(Ω,ℝN) such that∫
Ω

(f− − f+)v = ∫
Ω

Dv dX∞ for all v ∈ C1(Ω).
(4) We have that |X∞|F(Ω) = ∫

Ω

u∞(f− − f+) = min{KcF (μ) : μ ∈ Π(f+, f−)}.
(5) Let μ be the measure F(x,X∞). If F∗(x, Dμu∞(x)) ≤ 1 μ-a.e. in Ω, then∫

Ω

(f− − f+)v = ∫
Ω

∂F∗

∂ξ
( ⋅ , Dμu∞) ⋅ Dv dμ for all v ∈ C1(Ω)

and
F∗(x, Dμu(x)) = 1 μ-a.e. in Ω,

where Dμu∞ is the tangential gradient of u∞ with respect to μ. The measure μ is known as a transport
density.

For the particular case of quadratic cost c(x, y) = |x − y|2, Benamou and Brenier [8] introduced the Eulerian
point of view of the mass transport problem and obtained what is usually known as Benamou–Brenier for-
mula. This point of view has been generalized in different directions (see, for instance, [1, 3, 14]). Following
Brenier, see [14], we consider the paths f : [0, 1] → M(Ω,ℝ)+ and the vector fields E : [0, 1] → M(Ω,ℝN)
satisfying {{{{{{{

d
dt ∫

Ω

ϕ df(t) + ∫
Ω

∇ϕ dE(t) = 0 inD�(0, 1) for all ϕ ∈ C1(Ω),
f(0) = f+ and f(1) = f−. (1.13)

Given a solution (f, E) of (1.13), we define its energy by
JF(f, E) := 1∫

0

|E(t)|F(Ω) dt.
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We have the following relation between the Monge–Kantorovich problem and the equation (1.13) that
provides a Benamou–Brenier formula for this kind of transport problems.

Theorem 1.3. Assume that F∗(x, ⋅ ) ∈ C1(ℝN \ {0}) and considerX∞ the flux given in Theorem 1.2. Then, given
f(t) := f+ + t(f− − f+) and E(t) := X∞ for t ∈ [0, 1], we have that (f, E) is a solution of problem (1.13). Moreover,

min{JF(f, E) : (f, E) is a solution of (1.13)} = min{KcF (μ) : μ ∈ Π(f+, f−)}.
The paper is organized as follows. In Section 2 we introduce the p-Laplacian problems that we use to approx-
imate a Kantorovich potential of our mass transport problem, and we prove that we can take limits as p → ∞
along subsequences of the solutions, obtaining in the limit a Lipschitz function. In Section 3 we show that
this limit is in fact a Kantorovich potential for our problemand,moreover,wefind aPDE, involving a transport
density, that is verified by the limit. In Section 4we see that the results obtained in Section 3 characterize the
Kantorovich potentials for the transport problem we study. Section 5 is devoted to get a Benamou–Brenier
formula for the problem. Finally, in Section 6 we briefly comment on the extension of our results to a general
Riemannian manifold.

2 A p-Laplacian problem
We assume the data conditions stated in Section 1.2 and that F and Ω satisfy condition (1.11).

For p > N, we consider the variational problem
min
u∈Sp

∫
Ω

[F∗(x, Du)]p
p

− ∫
Ω

uf. (2.1)

where f ∈ L2(Ω), ∫Ω f = 0, and Sp = {u ∈ W1,p(Ω) : ∫Ω u = 0}.
As remarked above we work with f ∈ L2(Ω) to avoid technicalities in the p-Laplacian approach.

Lemma 2.1. For p > N, there exists a continuous solution up to the variational problem (2.1).

This lemma implies statement (1) of Theorem 1.2.

Proof. Note that under the conditions on F∗, we have

α|Du| ≤ F∗( ⋅ , Du) ≤ β|Du|. (2.2)

Hence, for every u ∈ W1,p(Ω),
α∫
Ω

|Du|p
p

≤ ∫
Ω

[F∗(x, Du)]p
p

≤ β∫
Ω

|Du|p
p

,

and therefore the functional

Θp,f (u) = ∫
Ω

[F∗(x, Du)]p
p

− ∫
Ω

uf,

is well defined in the set Sp which is convex, weakly closed and non empty. On the other hand, using the
Poincaré inequality, one can prove that Θp,f is coercive, bounded below and lower semicontinuous in Sp.
Then, there exists a minimizing sequence un ∈ Sp ⊂ W1,p(Ω) such that un ⇀ u ∈ Sp and

inf
S
Θp,f = lim inf

n→+∞
Θp,f (un) ≥ Θp,f (u).

Hence, the minimum of Θp,f in Sp is attained.

Remark 2.2. When F∗(x, ⋅ ) is strictly convex, the uniqueness of the solution up to (2.1) directly follows from
the constraint ∫Ω up = 0.
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Assuming that F∗(x, ⋅ ) ∈ C1(ℝN \ {0}), then, via standard arguments like the ones used in [7], we have that
up is a weak solution of the following problem of p-Laplacian type:{{{{{{{

−div([F∗(x, Du(x))]p−1 ∂F∗∂ξ (x, Du(x))) = f in Ω,[F∗(x, Du(x))]p−1⟨∂F∗∂ξ (x, Du(x)); η⟩ = 0 on ∂Ω.
(2.3)

Here η is the exterior normal vector on ∂Ω and ∂F∗
∂ξ is the gradient of F∗(x, ξ ) with respect to the second

variable ξ .
Let Φ be a Finsler function and A(x) be a symmetric N × N positive definitematrix that depends smoothly

on x. If F(x, ξ ) = Φ(A(x)ξ ), then (2.3) becomes{−div([Φ∗(A−1Du)]p−1A−1DΦ∗(A−1Du)) = f in Ω,[Φ∗(A−1Du)]p−1⟨A−1DΦ∗(A−1Du); η⟩ = 0 on ∂Ω.
(2.4)

Note that in the particular case Φ(ξ ) = |ξ | (the Euclidean norm), (2.4) reads{−div(|A−1Du|p−2A−2Du) = f in Ω,|A−1Du|p−2⟨A−2Du; η⟩ = 0 on ∂Ω.

Finally, for A = I, (2.4) becomes {−∆p,Φ∗u = f in Ω,[Φ∗(Du)]p−1⟨DΦ∗(Du); η⟩ = 0 on ∂Ω,

where

∆p,Φ∗u := N∑
i=1

∂
∂xi

([Φ∗(Du)]p−1 ∂Φ∗

∂ξi
(Du)).

In particular, for Φ∗ an ℓq-norm, that is,

Φ∗(ξ ) = ‖ξ‖q := ( N∑
k=1

|ξk|q) 1
q

,

the operator ∆p,Φ∗ becomes

∆p,Φ∗u = N∑
i=1

∂
∂xi

([ N∑
k=1

!!!!!!! ∂u∂xk !!!!!!!q] p−q
q !!!!!!! ∂u∂xi !!!!!!!q−2 ∂u∂xi),

and consequently, for q = 2, we get the classical p-Laplacian operator

∆pu := div(|Du|p−2Du).
Now, let us see that we can extract a sequence of solutions to (2.1) {upj }j with pj → ∞ that converges

uniformly as j → ∞.

Lemma 2.3. Let up be a solution to (2.1) indexed by p with p > N. Then, there exists a subsequence pj → ∞
such that upj Â± u∞ uniformly in Ω. Moreover, the limit u∞ is Lipschitz continuous.

From this lemma statement (2) of Theorem 1.2 follows.

Proof. Along this proof we will denote by C a constant independent of p that may change from one line to
another.

Our first aim is to prove that the Lp-norm of the gradient of up is bounded independently of p.
Let v be a fixed Lipschitz function with F∗(x, Dv(x)) ≤ 1 for a.e. x ∈ Ω and ∫Ω v = 0. Then we have that

v ∈ Sp. Hence, since up is a minimizer of the functional Θp,f in Sp, we have∫
Ω

[F∗(x, Dup(x))]p
p

− ∫
Ω

fup ≤ ∫
Ω

[F∗(x, Dv(x))]p
p

− ∫
Ω

fv ≤ ∫
Ω

1
p
− ∫
Ω

fv.
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Consequently, ∫
Ω

[F∗(x, Dup(x))]p
p

≤ 1
p
|Ω| − ∫

Ω

fv + ∫
Ω

fup .

For this calculation, taking v = 0 should be enough, nevertheless we will use this later on.
Now, thanks to the fact that ∫Ω up = 0 and that the constant in the inequality ‖up‖Lp(Ω) ≤ C‖Dup‖Lp(Ω) can

be chosen independent of p (see the proof of [23, Theorem 3.5]), we get∫
Ω

fup ≤ C‖up‖Lp(Ω) ≤ C‖Dup‖Lp(Ω),
and then we obtain ∫

Ω

[F∗(x, Dup(x))]p
p

≤ C + C‖Dup‖Lp(Ω).
Then, by (2.2), we get ∫

Ω

[F∗(x, Dup(x))]p ≤ pC + pC(∫
Ω

[F∗(x, Dup(x))]p) 1
p

.

From this inequality we can obtain that there exists C, independent of p, such that(∫
Ω

[F∗(x, Dup(x))]p) 1
p ≤ (Cp) 1

p−1 . (2.5)

Then, from (2.2), we obtain that there exists C, independent of p, such that(∫
Ω

|Dup|p) 1
p ≤ C.

Now, using this uniform bound, we prove uniform convergence of a sequence upj . In fact, form such that
N < m ≤ p, we have ‖Dup‖Lm(Ω) ≤ |Ω| p−mpm ‖Dup‖Lp(Ω).
Then {up}p>N is bounded inW1,m(Ω), and sinceweknow that∫Ω up = 0,we canobtain a sequence upj ⇀ u∞ ∈
W1,m(Ω) with pj → +∞. Since W1,m(Ω) í→ C0,α(Ω̄) (note that α does not depend on p) and upj ⇀ u∞ ∈
W1,m(Ω), we obtain upj → u∞ in C0,α(Ω), and in particular upj Â± u∞ uniformly in Ω. As upj ∈ C(Ω), we have
that u∞ ∈ C(Ω).

Finally, let us show that the limit function u∞ is Lipschitz. In fact, we proved that(∫
Ω

|Du∞|m) 1
m ≤ lim inf

pj→+∞
(∫
Ω

|Dupj |m) 1
m ≤ C|Ω| 1m ≤ C.

Now,we takem → ∞, to obtain ‖Du∞‖L∞(Ω) ≤ C. So,we have proved u∞ ∈ W1,∞(Ω), that is, u∞ is a Lipschitz
function.

Remark 2.4. All the results of this section remain true if we assume that f = fp and
fp ⇀ f weakly in L2(Ω).

3 Mass transport interpretation of the limit

3.1 Kantorovich potentials

The goal of this section is to show that for f = f− − f+, the limit u∞ of up (thatweproved to exist in the previous
section), up to a subsequence, is a Kantorovich potential for the mass transport problem of f+ to f− with the
cost given by the Finsler distance cF(x, y) defined by (1.10).

The key idea is contained in the following result.
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10 | N. Igbida et al., Optimal mass transportation for Finsler costs

Proposition 3.1. If F satisfies the conditions given in Section 1.5, then we have the following characterization:

u ∈ W1,∞(Ω) ⇐⇒ Lip(u, cF) < ∞,

where
Lip(u, cF) := sup{u(y) − u(x)cF(x, y) : x, y ∈ Ω, x ̸= y}.

Moreover,
ess sup
x∈Ω

F∗(x, Du(x)) = Lip(u, cF).
To prove this result we need the following approximation lemma.

Lemma 3.2. Let u ∈ W1,∞(Ω) be such that F∗(x, Du(x)) ≤ 1 for a.e. x ∈ Ω. There exists uϵ ∈ C1(Ω) such that
uϵ → u uniformly in any compact subset K of Ω and

lim sup
ϵ→0

F∗(x, Duϵ(x)) ≤ 1 for any x ∈ Ω.
Proof. By means of convolution, let us consider uϵ := ρϵ ⋆ u, where u is extended to 0 outside Ω. Then it is
clear that for any x ∈ Ω and x ∈ ω ⊂⊂ Ω, there exists ϵ0 > 0 such that

supp(ρϵ(x − ⋅ )) ⊂ Ω for any 0 < ϵ ≤ ϵ0.
This implies that

F∗(y, Du(y))ρϵ(x − y) ≤ ρϵ(x − y) for any y ∈ ℝN .
Then, by Jensen’s inequality, for 0 < ϵ ≤ ϵ0, we have

F∗(x, Duϵ(x)) ≤ ∫
Ω

F∗(x, Du(y))ρϵ(x − y) dy= ∫
Ω

F∗(x, Du(y))ρϵ(x − y) dy − ∫
Ω

F∗(y, Du(y))ρϵ(x − y) dy + ∫
Ω

F∗(y, Du(y))ρϵ(x − y) dy≤ ∫
Ω

(F∗(x, Du(y)) − F∗(y, Du(y)))ρϵ(x − y) dy + 1.

Letting ϵ → 0, we deduce that
lim sup
ϵ→0

F∗(x, Duϵ(x)) ≤ 1.

Proof of Proposition 3.1. The first assertion is an easy consequence of (1.12).
First, let us consider u ∈ W1,∞(Ω). Then, for a.e. x ∈ Ω,⟨Du(x); ξ⟩

F(x, ξ ) = lim
h→0+

u(x + hξ ) − u(x)
F(x, hξ )≤ Lip(u, cF) lim inf
h→0+

cF(x, x + hξ )
F(x, hξ )≤ Lip(u, cF) lim inf

h→0+
1

F(x, hξ ) 1∫
0

F(x + thξ, hξ ) dt= Lip(u, cF).
Consequently, we get the inequality

ess sup
x∈Ω

F∗(x, Du(x)) ≤ Lip(u, cF).
Let us prove the last inequality in the other direction, which is equivalent to show

ess sup
x∈Ω

F∗(x, Du(x)) ≤ 1 â⇒ u(x) − u(y) ≤ cF(y, x) for any x, y ∈ Ω.
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Thanks to Lemma 3.2, we can consider uϵ ∈ C1(Ω) such that uϵ → u uniformly in any compact subset K
of Ω and

lim sup
ϵ→0

F∗( ⋅ , Duϵ( ⋅ )) ≤ 1 everywhere in Ω.

Given x, y ∈ Ω, for σ ∈ ΓΩx,y, we have
u(y) − u(x) = lim

ϵ→0
(uϵ(y) − uϵ(x))= 1∫

0

⟨Duϵ(σ(t)); σ�(t)⟩ dt
≤ lim
ϵ→0

1∫
0

F∗(σ(t), Duϵ(σ(t)))F(σ(t), σ�(t)) dt
≤ 1∫

0

lim sup
ϵ→0

F∗(σ(t), Duϵ(σ(t)))F(σ(t), σ�(t)) dt
≤ 1∫

0

F(σ(t), σ�(t)) dt.
Taking the infimum in σ ∈ ΓΩx,y, we get u(y) − u(x) ≤ cF(x, y).
Observe that if F∗(x, ⋅ ) is a norm, then, as usual,

Lip(u, cF) = sup{ |u(y) − u(x)|cF(x, y) : x, y ∈ Ω, x ̸= y}.
Therefore, we have the following corollary.

Corollary 3.3. Assume that F∗(x, ⋅ ) is a norm. Then, for u ∈ W1,∞(Ω), we have
F∗(x, Du(x)) ≤ 1 a.e. in Ω ⇐⇒ |u(x) − u(y)| ≤ cF(x, y).

As consequence of Proposition 3.1, we have that the set of functions

KcF (Ω) = {u ∈ W1,∞(Ω) : u(y) − u(x) ≤ cF(x, y)}
coincides with the set

K∗
F (Ω) := {u ∈ W1,∞(Ω) : ess sup

x∈Ω
F∗(x, Du(x)) ≤ 1}.

Hence, (1.1) can be written as follows:

min{KcF (μ) : μ ∈ Π(f+, f−)} = sup{∫
Ω

v(f− − f+) : v ∈ K∗
F (Ω)}. (3.1)

Remark 3.4. In the case where F(x, ξ ) = |ξ | and Ω is convex, cF coincides with the Euclidean distance. In this
case the result of Proposition 3.1 is known. Otherwise, i.e., for F(x, ξ ) = |ξ| and Ω not necessarily convex, cF
is not the Euclidean distance, but it is the geodesic distance related to the Euclidean norm inside Ω. Proposi-
tion 3.1 asserts that the result for the Euclidean distance in convex sets remains true for Finsler distances in
any domain Ω.

Theorem 3.5. Let u∞ be the limit of a subsequence {upj }j as in Lemma 2.3. Then u∞ is a Kantorovich potential
for the optimal transport problem of f+ to f− with the cost given by cF(x, y). That is, the supremum in (3.1) is
attained at u∞.

Moreover, if F∗(x, ⋅ ) ∈ C1(ℝN \ {0}), for
Xp := [F∗(x, Dup(x))]p−1 ∂F∗∂ξ (x, Dup(x)), (3.2)
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12 | N. Igbida et al., Optimal mass transportation for Finsler costs

there exists a subsequence Xpjk converging weakly
∗ as measures in Ω to X∞ ∈ M(Ω,ℝN) such that∫

Ω

(f− − f+)v = ∫
Ω

Dv dX∞ for all v ∈ C1(Ω). (3.3)

In particular, −div(X∞) = f− − f+ in the sense of distributions. (3.4)

This theorem gives statement (3) of Theorem 1.2.

Proof. From (2.3), for every v ∈ K∗
F (Ω), we have−∫

Ω

up(f− − f+) ≤ ∫
Ω

[F∗(x, Dup(x))]p
p

− ∫
Ω

up(f− − f+)
≤ ∫
Ω

[F∗(x, Dv(x))]p
p

− ∫
Ω

v(f− − f+)
≤ |Ω|
p

− ∫
Ω

v(f− − f+).
Taking limits as pj → ∞, we obtain∫

Ω

u∞(f− − f+) ≥ sup{∫
Ω

v(f− − f+) : v ∈ K∗
F (Ω)}.

Then, in order to prove that u∞ is a Kantorovich potential, it only remains to see that

u∞ ∈ K∗
F (Ω). (3.5)

Now, using again (2.5) from the previous computations, we have that(∫
Ω

[F∗(x, Dup(x))]p) 1
p ≤ (Cp) 1

p−1 .

Then, as above, if we take N < m ≤ p, we get‖F∗(x, Dup(x))‖Lm(Ω) ≤ (Cp) 1
p−1 |Ω| p−mpm ≤ (C1p) 1

p−1 ,

the constant C1 being independent of p. Hence, having inmind that upj Â± u∞ uniformly in Ω,we can assume
that Dupj ⇀ Du∞ in (Lm(Ω))N . Then, by Mazur’s theorem [15, Corollary 3.8], there exist λji ≥ 0, i = j, . . . , kj
with∑kj

i=j λ
j
i = 1 such that

kj∑
i=j
λjiDupi → Du∞ strongly in (Lm(Ω))N and a.e. in Ω.

Then, by the continuity of F∗, we have

F∗( ⋅ , kj∑
i=j
λjiDupi) → F∗( ⋅ , Du∞) strongly in Lm(Ω) and a.e. in Ω.

Therefore, ‖F∗( ⋅ , Du∞)‖Lm(Ω) ≤ lim inf
j→∞

"""""""""F∗( ⋅ , kj∑
i=j
λjiDupi)"""""""""Lm(Ω)≤ lim inf

j→∞

kj∑
i=j
λji‖F∗( ⋅ , Dupi )‖Lm(Ω)

≤ lim inf
j→∞

kj∑
i=j
λji(C1pi) 1

pi−1= 1.
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Taking the limit as m → ∞, we get that ‖F∗( ⋅ , Du∞)‖L∞(Ω) ≤ 1,

and we conclude that u∞ ∈ K∗
F (Ω).

Finally, if F∗(x, ⋅ ) ∈ C1(ℝN \ {0}), since up is a weak solution of problem (2.3), forXp as defined in (3.2),
we have that ∫

Ω

⟨Xp;Dv⟩ = ∫
Ω

(f− − f+)v for all v ∈ W1,p(Ω). (3.6)

Let us see that {Xp : p ≥ N} is bounded in L1(Ω,ℝN). First, taking up as test function in (3.6) and having
in mind (1.5), we have ∫

Ω

[F∗(x, Dup(x))]p dx ≤ C1 for all p > N.
Then, by Hölder’s inequality, we get∫

Ω

[F∗(x, Dup(x))]p−1 dx ≤ C2 for all p > N. (3.7)

On the other hand, from (1.7) and (1.12), we have that!!!!!!!∂F∗∂ξ (x, Dup(x))!!!!!!! ≤ β;
hence, by (3.7), we have that ∫

Ω

|Xp| ≤ βC2 for all p > N.
Therefore, there exists X∞ ∈ M(Ω,ℝN) and a subsequence {pjk } such that

Xpjk ⇀ X∞ weakly∗ as measures in Ω.

Thus, for any v ∈ C1(Ω), having in mind (3.6), we get∫
Ω

(f− − f+)v = ∫
Ω

⟨Xpjk ;Dv⟩ → ∫
Ω

Dv dX∞.

Hence, we have proved (3.3).

For the next theorem, we need to introduce for a given measure a new one using the Finsler structure. Let us
first prove the following result on | ⋅ |F defined in Section 1.5.
Lemma 3.6. The extension of |X|F to every Borel set B ⊂ Ω given by|X|F(B) := inf{|X|F(A) : A open, B ⊂ A}
is a Radon measure in Ω.

Proof. By the De Giorgi–Letta theorem [2, Theorem 1.53], it is enough to show that |X|F is subadditive, su-
peradditive and inner regular. For given open sets A, B ⊂ Ω and Φ ∈ C(Ω,ℝN) such that supp(Φ) ⊂ A ∪ B and
Φ(x) ∈ BF∗(x,⋅ ) for all x ∈ Ω, let {ηi : i = 1, 2, 3} be a partition of unity such that supp(η1) ⊂ A, supp(η2) ⊂ B
and supp(η3) ⊂ Ω \ supp(Φ). Then∫

Ω

Φ dX = ∫
Ω

η1Φ dX + ∫
Ω

η2Φ dX + ∫
Ω

η3Φ dX ≤ |X|F(A) + |X|F(B).
Hence, taking the supremum in Φ, we obtain|X|F(A ∪ B) ≤ |X|F(A) + |X|F(B).
The other two properties are easy to prove.
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Since F is non-negative, positively 1-homogeneous and convex in the second variable, given X ∈ M(Ω,ℝN),
we can also define (see, for instance, [2, 5]) the measure F(x,X) by∫

B

F(x,X) := ∫
B

F(x,Xa(x)) dx + ∫
B

F(x, dXsd|Xs| (x)) d|Xs|= ∫
B

F(x, dXd|X| (x)) d|X|
for all Borel set B ⊂ Ω, where X = Xa + Xs is the Lebesgue decomposition of X, |X| is the total variation of
X and dX

d|X| is the Radon-Nikodym derivative of X with respect to |X|. Since |X| is absolutely continuous with
respect to the measure |X|F, by [2, Proposition 2.37], we have∫

B

F(x,X) = ∫
B

F(x, dX
d|X|F (x)) d|X|F for all Borel set B ⊂ Ω. (3.8)

Having in mind (3.8) and following the proof of the continuity Reshetnyak theorem given in [32], we get the
following result.

Lemma 3.7. Let Xn ,X ∈ M(Ω,ℝN) be such that
Xn ⇀ X inM(Ω,ℝN) and |Xn|F(Ω) → |X|F(Ω).

Then
lim
n→∞

∫
Ω

F(x,Xn) = ∫
Ω

F(x,X).
We will also use the following approximation result.

Lemma 3.8. For any u ∈ W1,∞(Ω) such that F∗(x, Du(x)) ≤ 1 for a.e. x ∈ Ω, there exists uϵ ∈ C1(Ω) such that
uϵ → u uniformly in any compact subset K of Ω and

lim sup
ϵ→0

sup
Ω
F∗(x, Duϵ(x)) ≤ 1.

Proof. Since F∗(x, Du(x)) ≤ 1 for a.e. x ∈ Ω and we are under condition (1.11), if we take the McShane–
Whitney extension

u(x) := inf
y∈Ω

{u(y) + cDF (y, x)}, x ∈ D,
then we have that u(x) − u(y) ≤ cDF (y, x). Take uϵ = u ∗ ρϵ ∈ C1(Ω) (we can extend u as zero outside D). Then
uϵ → u uniformly in any compact subset K of D. On the other hand, by continuity, there exists xϵ ∈ Ω such
that

sup
Ω
F∗(x, Duϵ(x)) = F∗(xϵ , Duϵ(xϵ)).

By Lemma 3.1 (that can be applied to D and CDF ), we have that

ess sup
x∈D

F∗(x, Du(x)) ≤ 1.

Then, by Jensen’s inequality, for ϵ small, we have

F∗(xϵ , Duϵ(xϵ)) ≤ ∫
D

F∗(xϵ , Du(y))ρϵ(xϵ − y) dy= ∫
D

F∗(xϵ , Du(y))ρϵ(xϵ − y) dy − ∫
D

F∗(y, Du(y))ρ(xϵ − y) dy + ∫
D

F∗(y, Du(y))ρϵ(xϵ − y) dy≤ ∫
D

(F∗(xϵ , Du(y)) − F∗(y, Du(y)))ρϵ(xϵ − y) dy + 1.
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Now, there exists a subsequence such that xϵn → x0 and, for this subsequence, we have∫
D

(F∗(xϵn , Du(y)) − F∗(y, Du(y)))ρϵn (xϵn − y) dy → 0 as n → +∞.

Theorem 3.9 (Statement (4) of Theorem 1.2). Let u∞ and X∞ be as in Theorem 3.5. Then|X∞|F(Ω) = ∫
Ω

F(x,X∞) = ∫
Ω

u∞(f− − f+). (3.9)

Proof. Let vϵ be the approximation given in Lemma 3.8 for u = u∞, then∫
Ω

(f− − f+)u∞ dx = lim
ϵ→0

∫
Ω

(f− − f+)vϵ dx= lim
ϵ→0

∫
Ω

Dvϵ dX∞≤ lim sup
ϵ→0

sup
Ω
F∗(x, Dvϵ(x))|X∞|F(Ω)≤ |X∞|F(Ω). (3.10)

Let {pi}i be a sequence such that upi and Xpi converge to u∞ and X∞ in the sense given in the previous
results.

Take now Φ ∈ C(Ω,ℝN) with Φ(x) ∈ BF∗(x,⋅ ) for all x ∈ Ω. By (1.3), we have∫
Ω

ΦXpi dx ≤ ∫
Ω

F∗(x, Φ(x))F(x,Xpi (x)) dx ≤ ∫
Ω

F(x,Xpi (x)) dx. (3.11)

Therefore, ∫
Ω

Φ dX∞ = lim
i

∫
Ω

ΦXpi ≤ lim sup
i

∫
Ω

F(x,Xpi (x)) dx,
and, by taking the supremum in Φ,|X∞|F(Ω) ≤ lim sup

i
∫
Ω

F(x,Xpi (x)) dx. (3.12)

Now, applying Hölder’s inequality, (1.9), (1.5) and (3.6), we get

lim sup
i→∞

∫
Ω

F(x,Xpi (x)) dx = lim sup
i→∞

∫
Ω

[F∗(x, Dupi (x))]pi−1F(x, ∂F∗∂ξ (x, Dupi (x))) dx
≤ lim sup

i→∞
(∫
Ω

[F∗(x, Dupi (x))]pi dx) pi−1
pi

= lim sup
i→∞

(∫
Ω

[F∗(x, Dupi (x))]pi−1⟨∂F∗∂ξ (x, Dupi (x));Dupi (x)⟩ dx) pi−1
pi

= lim sup
i→∞

(∫
Ω

⟨Xpi ;Dupi⟩) pi−1
pi

= lim
i→∞

∫
Ω

⟨Xpi ;Dupi⟩= lim
i→∞

∫
Ω

(f− − f+)upi= ∫
Ω

(f− − f+)u∞,
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that is,
lim sup
i→∞

∫
Ω

F(x,Xpi (x)) dx ≤ ∫
Ω

(f− − f+)u∞. (3.13)

Then, by (3.10), (3.12) and (3.13), |X∞|F(Ω) = ∫
Ω

(f− − f+)u∞ dx. (3.14)

Let us see now that |Xpi |F(Ω) → |X∞|F(Ω). (3.15)

By (3.11), taking the supremum in Φ, we have|Xpi |F(Ω) ≤ ∫
Ω

F(x,Xpi ).
Then, by (3.13) and (3.14), we get

lim sup
i→∞

|Xpi |F(Ω) ≤ lim sup
i→∞

∫
Ω

F(x,Xpi ) = ∫
Ω

(f− − f+)u∞ = |X∞|F(Ω).
On the other hand, given Φ ∈ C(Ω,ℝN) with Φ(x) ∈ BF∗(x,⋅ ) for all x ∈ Ω, we have∫

Ω

ΦXpi ≤ |Xpi |F(Ω),
thus ∫

Ω

ΦX∞ ≤ lim inf
i

|Xpi |F(Ω),
from which, we get that |X∞|F(Ω) ≤ lim inf

i
|Xpi |F(Ω),

and the proof of (3.15) is finished.
Finally, since Xpi ⇀ X∞ inM(Ω,ℝN) and we have (3.15), by Lemma 3.7, we get∫

Ω

F(x,X∞) = lim
n→∞

∫
Ω

F(x,Xpi ) = ∫
Ω

(f− − f+)u∞.
Let us see now that F(x,X∞) is the transport density of the transport problem we are dealing with. To do
that we need to recall the concept of tangential derivative with respect to a Radonmeasure (see, for instance,
[11–13]). Given μ ∈ M(Ω)+, we define

N := {ξ ∈ L∞μ (Ω,ℝN) : there exists un ∈ C∞(Ω) such that
un → 0 uniformly and Dun ⇀ ξ in σ(L∞μ , L1μ)}.

The orthogonal ofN in L1μ(Ω,ℝN) is characterized in [13] by
N⊥ = {σ ∈ L1μ(Ω) : σ(x) ∈ Tμ(x) μ-a.e.},

where Tμ is a closed valued μ-measurable multifunction that is called the tangent space to the measure μ.
For a function u ∈ C1(Ω), its tangential gradient Dμu(x) is defined as the projection Pμ(x)Du(x) on Tμ(x).
In [13] it was proved that the linear operator u ∈ C1(Ω) Ü→ Dμu ∈ L∞μ (Ω,ℝN) can be extended in a unique
way as a linear continuous operator Dμ : Lip(Ω) → L∞μ (Ω,ℝN), where Lip(Ω) is equipped with the uniform
convergence and L∞μ (Ω,ℝN) with the weak star topology. Consequently, there exists vϵ ∈ C1(Ω) such that

vϵ → u∞ uniformly, Dμvϵ
∗⇀ Dμu∞ σ(L∞μ , L1μ). (3.16)
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Following [29], given u ∈ W1,∞(Ω), we define the μ-tangential gradient of u with respect to F in the fol-
lowing form: for x ∈ Ω such that Dμu(x) exists, we define

∂F,μu(x) := {Dμu(x) ⋅ v̂
F(x, v̂)2 v̂ : v̂ ∈ argmax

v∈Tμ(x), |v|=1

Dμu(x) ⋅ v
F(x, v) }.

In case F(x, ⋅ ) is strictly convex, then there is a unique maximum

v̂ ∈ argmax{Dμu(x) ⋅ vF(x, v) : v ∈ Tμ(x), |v| = 1},
and consequently ∂F,μu(x) has a unique element, that we denote by ∇F,μu(x), that is called the μ-tangential
gradient of u at x with respect to F, that is,∇F,μu(x) = Dμu(x) ⋅ v̂

F(x, v̂)2 v̂.

Observe that
∂F,μu(x) = {(Dμu(x) ⋅ v̂)v̂ : v̂ ∈ argmax

v∈Tμ(x), F(x,v)=1
Dμu(x) ⋅ v}.

Theorem 3.10. Let u∞ and X∞ be as in Theorem 3.5. If we set μ := F(x,X∞), then∫
Ω

(f− − f+)v = ∫
Ω

dX∞

dμ
⋅ Dv dμ for all v ∈ C1(Ω),

dX∞

dμ
(x) ∈ ∂F,μu∞(x) and F(x, dX∞

dμ
(x)) = 1 μ-a.e. in Ω.

Moreover, if F(x, ⋅ ) is strictly convex, then∫
Ω

(f− − f+)v = ∫
Ω

∇F,μu∞ ⋅ Dv dμ for all v ∈ C1(Ω)
and

F(x, ∇F,μu∞(x)) = 1 μ-a.e. in Ω

Proof. SinceX∞ is absolutely continuouswith respect to μ, we have that the Radon–Nikodymderivative dX∞
dμ

is in L1μ(Ω,ℝN). On the other hand, by (3.4),−div(μ dX∞

dμ ) = f− − f+ in the sense of distributions.

Then, from [13, Proposition 3.5], it follows that

dX∞

dμ
(x) ∈ Tμ(x) μ-a.e. (3.17)

We claim now that
Dμu∞(x) ⋅ v(x) ≤ F(x, v(x)) μ-a.e. (3.18)

for any v(x) ∈ Tμ(x) μ-a.e. Indeed, let uϵ be the function given in Lemma 3.8. Then, by (1.3), if v(x) ∈ Tμ(x)
μ-a.e., we have

Dμuϵ(x) ⋅ v(x) = Duϵ(x) ⋅ v(x) ≤ F∗(x, Duϵ(x))F(x, v(x))
for μ-almost all x. Now, integrating the above inequality over any μ-measurable set A and taking limits as
ϵ → 0, we get ∫

A

Dμu∞(x) ⋅ v(x) dμ(x) ≤ ∫
A

F(x, v(x)) dμ(x),
which gives (3.18).
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18 | N. Igbida et al., Optimal mass transportation for Finsler costs

From (3.18) and (3.17), we can write

Dμu∞(x) ⋅ dX∞

dμ
(x) ≤ F(x, dX∞

dμ
(x)) μ-a.e. (3.19)

Now, since
F(x, dX∞

dμ
(x)) = 1 μ-a.e.,

inequality (3.19) reads
Dμu∞ ⋅ dX∞

dμ
≤ 1 μ-a.e. (3.20)

Now, taking vϵ as in (3.16) and having in mind (3.17), we get∫
Ω

Dμvϵ
dX∞

dμ
dμ = ∫

Ω

Dvϵ dX∞ = ∫
Ω

(f− − f+)vϵ .
Therefore, taking limits as ϵ → 0, we obtain∫

Ω

Dμu∞
dX∞

dμ
dμ = ∫

Ω

(f− − f+)u∞ = ∫
Ω

dμ,

where the last equality is a consequence of (3.9). Then, by (3.20),

Dμu∞ ⋅ dX∞

dμ
= 1 μ-a.e. (3.21)

On account of (3.18) and (3.21), we have

dX∞

dμ
(x) ∈ argmax{Dμu∞(x) ⋅ v : v ∈ Tμ(x), F(x, v) = 1},

and consequently
dX∞

dμ
(x) ∈ ∂F,μu∞(x).

Assuming that F(x, ⋅ ) is strictly convex, we have
dX∞

dμ
(x) = ∇F,μu∞(x),

and the proof concludes.

Corollary 3.11 (Statement (5) of Theorem 1.2). Let u∞ andX∞ be as in Theorem 3.5. If in addition we assume
that

F∗(x, Dμu∞(x)) ≤ 1 μ-a.e. in Ω, (3.22)

then {{{{{{{
∫
Ω

(f− − f+)v = ∫
Ω

∂F∗

∂ξ
( ⋅ , Dμu∞) ⋅ Dv dμ for all v ∈ C1(Ω),

F∗(x, Dμu∞(x)) = 1 μ-a.e. in Ω,

(3.23)

Proof. Since
1 = Dμu∞ ⋅ dX∞

dμ
≤ F∗(x, Dμu∞(x)) μ-a.e.,

by (3.22), we have that
F∗(x, Dμu∞(x)) = 1 μ-a.e. (3.24)

On the other hand,
Dμu∞ ⋅ dX∞

dμ
= 1 = F(x, dX∞

dμ
(x)) μ-a.e. (3.25)
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Now, having in mind (3.25) and (3.24), and applying (1.8), we deduce that

dX∞

dμ
(x) = F(x, dX∞

dμ
(x))∂F∗∂ξ (x, Dμu∞(x)) = ∂F∗

∂ξ
(x, Dμu∞(x)) μ-a.e.

Then, by the above theorem we get (3.23).

Remark 3.12. If F(x, ξ ) = |A(x)ξ | with A(x) a symmetric positive definite matrix, then

Dμu∞(x) ∈ BF∗(x,⋅ ) μ-a.e. in Ω.

In fact, we have F∗(x, ξ ) = |A(x)−1ξ |. Then, since A(x)−1 preserves the orthogonality and Dμu∞(x) and
Du∞(x) − Dμu∞(x) are orthogonal (remember that Dμu∞(x) is defined as the projection Pμ(x)Du∞(x) on
Tμ(x)), using Pythagoras’ theorem, we have|A(x)−1Du∞(x)|2 = |A(x)−1Dμu∞(x)|2 + !!!!A(x)−1(Du∞(x) − Dμu∞(x))!!!!2.
Therefore,

F∗(x, Dμu∞(x)) ≤ F∗(x, Du∞(x)) ≤ 1.

Let us remark that in this case, it is known that, in fact, μ is absolutely continuous with respect to the
Lebesgue measure since f+ ∈ L1(Ω) (see [16, 19, 29, 30]), and thus Dμu∞ = Du∞.

In the case F( ⋅ ,X∞( ⋅ )) ∈ L1(Ω), we have the following result.
Corollary 3.13. Let u∞ and X∞ be as in Theorem 3.5. If F( ⋅ ,X∞( ⋅ )) ∈ L1(Ω), then for almost every x,

F(x,X∞(x)) > 0 â⇒ F∗(x, Du∞(x)) = 1, (3.26)

and ∫
Ω

F(x,X∞(x))⟨∂F∗∂ξ (x, Du∞(x));Dv(x)⟩ dx = ∫
Ω

(f−(x) − f+(x))v(x) dx
for all v ∈ C1(Ω). In particular,− div(F( ⋅ ,X∞( ⋅ ))∂F∗

∂ξ
( ⋅ , Du∞)) = (f− − f+) in the sense of distributions, (3.27)

and ∫
Ω

F(x,X∞(x)) dx = ∫
Ω

u∞(x)(f−(x) − f+(x)) dx. (3.28)

Remark 3.14. Let us give an interpretation of equation (3.27) in terms of the Finsler manifold (Ω, F). For this
we need to recall the concept of gradient vector in a Finsler manifold (see, for example, [28]). Let us suppose
that 1

2F
2(x, ⋅ ) is differentiable for ξ ̸= 0. Let J : Ω × ℝN → ℝN be the transfer map of the Finsler structure F,

defined in α ∈ ℝN as the unique maximizer of the function ξ Ü→ ⟨α, ξ⟩ − 1
2F

2(x, ξ ). The vector J(x, α) can be
given as follows:

J(x, α) = F∗(x, α)∂F∗
∂ξ

(x, α).
The gradient vector in the Finsler manifold (Ω, F) of a smooth function u : Ω → ℝ is defined by∇u(x) := J(x, Du(x)) = F∗(x, Du(x))∂F∗

∂ξ
(x, Du(x)).

Let us remark that the gradient vector ∇u coincides with ∇F,μu when μ is absolutely continuous with respect
to the Lebesgue measure.

Then, setting a(x) = F(x,X∞), by (3.26), we have
a(x)∇u∞(x) = a(x)∂F∗

∂ξ
(x, Du∞(x)).
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20 | N. Igbida et al., Optimal mass transportation for Finsler costs

Therefore, we can write equation (3.27) as follows:−div(a∇u∞) = f− − f+ in the sense of distributions,

with ess supx∈Ω F(x, ∇u∞(x)) ≤ 1. Moreover, for almost every x,

a(x) > 0 â⇒ F(x, ∇u∞(x)) = 1.

Indeed, by (1.9),

F(x, ∇u∞(x)) = F(x, F∗(x, Du∞(x))∂F∗
∂ξ

(x, Du∞(x)))= F∗(x, Du∞(x))F(x, ∂F∗∂ξ (x, Du∞(x)))= F∗(x, Du∞(x)),
and, by (3.26), we have that F(x, ∇u∞(x)) = F∗(x, Du∞(x)) = 1 for almost every x such that a(x) > 0.

We have been dealing with a mass transport problem in the Finsler metric space (Ω, F, dx), with a quite gen-
eral Finsler structure F, for the distance induced by such structure. This general structure includes the case
F(x, ξ ) = Φ(A(x)ξ ), where Φ is a Finsler function and A(x) is a symmetric N × N positive definite matrix that
depends smoothly on x; in particular, the Riemannian structures F(x, ξ ) = |A(x)ξ|, where | ⋅ | is the Euclidean
norm. Let us see how these results can be interpreted in the context of optimal transportation on Riemannian
manifolds.

3.2 Example

In the particular case in which F(x, ξ ) = |A(x)ξ|, where | ⋅ | is the Euclidean norm and A(x) is a symmetric
N × N positive definite matrix that depends smoothly on x ∈ Ω, we have

cF(x, y) = inf
σ∈ΓΩx,y

1∫
0

√⟨A(σ(t))σ�(t); A(σ(t))σ�(t)⟩ dt = inf
σ∈ΓΩx,y

1∫
0

√⟨A2(σ(t))σ�(t); σ�(t)⟩ dt.
Therefore, writing A2(z) = (gi,j(z))i,j =: g(z), the cost function c is given by

cF(x, y) = dg,Ω(x, y) := inf
σ∈ΓΩx,y

1∫
0
√∑
i,j
gi,j(σ(t))σ�i (t)σ�j (t) dt.

That is, in this case the cost function c is the distance induced by the metric tensor g.
When A(z) = b(z)IN (here IN denotes the N × N identity matrix), we have

cF(x, y) = inf
σ∈ΓΩx,y

∫
σ

b(z) ds.
This case has been studied in [26].

The results obtained canbe interpreted in the context of optimal transportationonRiemannianmanifolds
with cost function the distance induced by themetric tensor. Let us illustrate this with the following example.

N-dimensional parametrized manifolds in ℝM. Let S be an N-dimensional parametrized manifold in ℝM
(M ≥ N), that is, S = ψ(Ω), where Ω is an open bounded set ofℝN and ψ : Ω → ℝM is a smoothmap such that
for each x ∈ Ω, theM × N Jacobianmatrix Jψ(x) has rank N. We denote by g the metric tensor g := Jtψ ⋅ Jψ and
by |g| the determinant of g. Consider in S the Riemannian distance induced by the Euclidean distance inℝM,
i.e.,

dIM ,S(ξ, η) = inf
σ∈ΓSξ,η

1∫
0

|σ�(t)| dt,
where IM is the M ×M identity matrix.
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One can think on S, for example, the sphere of radius R inℝ3, parametrized by ψ : ]0, 2π[ × ]0, π[ → ℝ3,
given by

ψ(θ, ϕ) = (R cos θ sinϕ, R sin θ sinϕ, R cosϕ),
which is a non Euclidean Riemannian manifold with metric g defined by

g(θ, ϕ) = (R2 sin2 ϕ 0
0 R2

) .
Suppose that we have two functions ̃f± ∈ L1(S, dvol), both with equal mass, i.e.,∫

S

̃f+(z) dvol(z) = ∫
Ω

√|g|(x) ̃f+(ψ(x)) dx = ∫
S

̃f−(z) dvol(z) = ∫
Ω

√|g|(x) ̃f−(ψ(x)) dx,
and we want to transport ̃f+ to ̃f− on S with cost function the distance dIM ,S. If we take

f±(x) = √|g|(x) ̃f±(ψ(x)),
then we have ∫

Ω

f+(x) dx = ∫
Ω

f−(x) dx.
A simple calculation shows that

dIM ,S(ξ, η) = dg,Ω(ψ−1(ξ ), ψ−1(η)) for all ξ, η ∈ ℝM . (3.29)

Moreover, if T̃ ̃f+ = ̃f− and T := ψ−1 ∘ T̃ ∘ ψ, then T f+ = f− and∫
S

dIM ,S(ξ, T̃(ξ )) ̃f+(ξ ) dvol(ξ ) = ∫
Ω

√|g|(x)dg,Ω(x, ψ−1(T̃(ψ(x))) ̃f+(ψ(x))) dx
= ∫
Ω

dg,Ω(x, T(x))f+(x) dx.
Similarly, if T f+ = f− and T̃ := ψ ∘ T ∘ ψ−1, then T̃ ̃f+ = ̃f− and∫

Ω

dg,Ω(x, T(x))f+(x) dx = ∫
S

dIM ,S(ξ, T̃(ξ )) ̃f+(ξ ) dvol(ξ ).
Therefore, for the Monge problems, we have

min
T̃ ̃f+= ̃f−

{∫
S

dIM ,S(ξ, T̃(ξ )) ̃f+(ξ ) dvol(ξ )} = min
T f+=f−

{∫
Ω

dg,Ω(x, T(x))f+(x)dx}.
Consider now the Kantorovich potential u∞ obtained in Theorem 3.5 for F∗(x, ξ ) = |A−1(x)ξ|, A a square

root of g and the masses f±. Then

sup{∫
Ω

v(x)(f−(x) − f+(x)) dx : v ∈ Kdg,Ω (Ω)} = ∫
Ω

u∞(x)(f−(x) − f+(x)) dx
= ∫
Ω

u∞(ψ−1(ψ(x)))(√|g|(x) ̃f−(ψ(x)) − √|g|(x) ̃f+(ψ(x))) dx
= ∫

S

u∞(ψ−1(z))( ̃f−(z) − ̃f+(z)) dvol(z).
On the other hand, by (3.29), it is easy to see that

v ∈ Kdg,Ω (Ω) ⇐⇒ v(ψ−1(z)) ∈ KdIM ,S (S).
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Thus,

sup{∫
Ω

v(x)(f−(x) − f+(x)) dx : v ∈ Kdg,Ω (Ω)} = sup{∫
S

w(z)( ̃f−(z) − ̃f+(z)) dvol(z) : w ∈ KdIM ,S (M)}.
Consequently, for ũ∞(z) := u∞(ψ−1(z)),∫

S

ũ∞(z)( ̃f−(z) − ̃f+(z)) dvol(z) = sup{∫
S

w(z)( ̃f−(z) − ̃f+(z)) dvol(z) : w ∈ KdIM ,S (S)},
and ũ∞ is a Kantorovich potential for the transport of ̃f+ to ̃f− on themanifold Swith respect to the Riemann-
ian distance dIM ,S.

When N = M we consider a change of variables. In this case, √|g(x)| = |Jψ(x)|. Now a square root A of g
can be Jψ among others.

Corollary 3.13 reads now as follows. Let us denote with a(x) the transport density F(x,X∞(x)). Then− div(ag−1Du∞) = f− − f+ in Ω, (3.30)

and for a.e. x,
a(x) > 0 â⇒ ⟨g−1(x)Du∞(x);Du∞(x)⟩ = 1. (3.31)

If we define
ã := a√|g| ∘ ψ−1,

then from (3.28) we have∫
S

ũ∞(z)( ̃f−(z) − ̃f+(z)) dS = ∫
Ω

√|g|(x)ũ∞(ψ(x))( ̃f−(ψ(x)) − ̃f+(ψ(x))) dx
= ∫
Ω

u∞(x)(f−(x) − f+(x)) dx
= ∫
Ω

a(x) dx
= ∫

S

ã(z) dvol(z).
Recall that w ∈ W1,∞(S) if w ∘ ψ ∈ W1,∞(Ω). For w ∈ W1,∞(S), the gradient of w at z ∈ S is denoted by∇w(z) ∈ TzS and is defined, for v ∈ TzS, by⟨∇w(z), v⟩ = d

dt
(w ∘ α)!!!!t=0,

where α : ] − ϵ, ϵ[ → S is a smooth path such that α(0) = z and α�(0) = v. Then we have⟨∇w(ψ(x)), Jψ(x)u⟩ = ⟨D(w ∘ ψ)(x), u⟩ for all x ∈ Ω, u ∈ ℝN . (3.32)

In fact, if we define α(t) := ψ(x + tu) = (ψ ∘ r)(t), then by applying the chain rule, we have⟨∇w(ψ(x)), Jψ(x)u⟩ = d
dt

(w ∘ α)!!!!t=0 = d
dt

((w ∘ ψ) ∘ r)!!!!t=0 = ⟨D(w ∘ ψ)(x), u⟩.
Given φ ∈ W1,∞(S), multiplying (3.30) by φ ∘ ψ and integrating by parts, we get∫

Ω

a(x)⟨g−1(x)Du∞(x);D(φ ∘ ψ)(x)⟩ dx = ∫
Ω

φ(ψ(x))(f−(x) − f+(x)) dx
= ∫

S

φ(z)( ̃f−(z) − ̃f+(z)) dvol(z).
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On the other hand, applying two times (3.32), we get∫
Ω

a(x)⟨g−1(x)Du∞(x);D(φ ∘ ψ)(x)⟩ dx = ∫
Ω

a(x)⟨Jψ(x)(Jψ(x)tJψ(x))−1Du∞(x);∇φ(ψ(x))⟩ dx
= ∫
Ω

a(x)⟨Jψ−1 (ψ(x))Du∞(x);∇φ(ψ(x))⟩ dx
= ∫
Ω

√|g|(x)ã(ψ(x))⟨∇ũ∞(ψ(x));∇φ(ψ(x))⟩ dx
= ∫
S

ã(z)⟨∇ũ∞(z);∇φ(z)⟩ dvol(z).
Consequently, −div(ã∇ũ∞) = ̃f− − ̃f+ in the weak sense.

Moreover, by (3.31), if ã(z) > 0 then ⟨∇ũ∞(z);∇ũ∞(z)⟩ = 1. Observe that this is the formulation given in [19].

3.3 Optimal mass transport maps

Let us point out that Feldman andMcCann in [19], using Kantorovich potentials, found an optimal transport
map T̃0 : S → S, which solves the following Monge’s problem:

min
T̃ ̃f+= ̃f−

{∫
S

dIM ,S(ξ, T̃(ξ )) ̃f+(ξ ) dvol(ξ )}.
Herewe have presented away to obtain Kantorovich potentials by taking limits of p-Laplacian type problems,
by using the idea of Evans and Gangbo in [18].

On the existence of optimal transport maps, see also [9], and for Tonelli Lagrangians with superlinear
growth, see [20]. The existence of an optimal transport map in Finsler manifolds is obtained in [27] in the
case where the Finsler structure is independent of x and for quadratic cost functions. The Lagrangian F(x, ξ )
treated here has not superlinear growth.

4 Characterization of the Kantorovich potentials
In this section we shall see that the results obtained in Section 3 characterize the Kantorovich potentials
for the transport problem we are dealing here. Similar results have been obtained by Pratelli in [29], with
different methods, in the context of Riemannian manifolds and for symmetric Finsler restructures.

Remark 4.1. Observe that the statements (3.5), (3.3) and (3.9) remain true if we assume that f− − f+ = fp with
fp ⇀ f weakly in L2(Ω).

Lemma 4.2. Assume p > N. Let g ∈ L2(Ω) with ∫Ω g = 0. Then there exists a solution vp of{{{{{{{
vp − div([F∗(x, Dvp(x))]p−1 ∂F∗∂ξ (x, Dvp(x))) = g in Ω,[F∗(x, Dvp(x))]p−1⟨∂F∗∂ξ (x, Dvp(x)); η⟩ = 0 on ∂Ω

(4.1)

such that for a subsequence pj → ∞,

vpj → v∞ = PK∗
F (Ω)(g) uniformly in Ω,

where PK∗
F (Ω) is the projection in L

2(Ω) on the convex set K∗
F (Ω).
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Proof. Working as in the proof of Lemma 2.1, we have that the minimizer vp of

Θ̃p,g(v) = ∫
Ω

[F∗(x, Dv)]p
p

+ 1
2 ∫
Ω

|v − g|2
is a solution of (4.1). It is easy to see that vp is bounded in L2(Ω), and so there exists a subsequence pj → +∞
such that vpj ⇀ v∞ weakly in L2(Ω).

Now, working as in the proof of (3.5) and (3.3) (see Remark 4.1), we have that

v∞ ∈ K∗
F (Ω), (4.2)

and also that there exists X ∈ M(Ω,ℝN) such that∫
Ω

(g − v∞)v = ∫
Ω

Dv dX for all v ∈ C1(Ω). (4.3)

On the other hand, working as in the proof of (3.9) (see Remark 4.1), we get∫
Ω

F(x,X) = ∫
Ω

(g − v∞)v∞.
From (4.3), for v ∈ K∗

F (Ω), we obtain (after a regularization approach using Lemma 3.8)∫
Ω

(g − v∞)v ≤ ∫
Ω

F(x,X) = ∫
Ω

(g − vp)v∞. (4.4)

Now, (4.2) and (4.4) gives v∞ = PK∗
F (Ω)g, as we wanted to show.

Theorem 4.3. The following assertions are equivalent:
(1) u is a Kantorovich potential for the mass transport problem of f+ to f−, with the cost being the Finsler

distance given in (1.10).
(2) u ∈ KF∗ , and there exists X ∈ M(Ω,ℝN) satisfying{{{ ∫Ω(f− − f+)v = ∫Ω Dv dX for all v ∈ C1(Ω),∫Ω(f− − f+)u = ∫Ω F(x,X). (C1)

(3) u ∈ KF∗ , and there exist ν ∈ M(Ω)+ and Λ ∈ L1ν (Ω,ℝN) such that{{{ ∫Ω(f− − f+)v = ∫Ω Λ ⋅ Dv dν for all v ∈ C1(Ω),
Λ(x) ∈ ∂F,νu(x) and F(x, Λ(x)) = 1 ν-a.e. in Ω.

(C2)

Proof. First of all observe that

u is a Kantorovich potential ⇐⇒ u = PK∗
F
(f + u). (4.5)

(1) implies (2). Take vp a weak solution of the following problem of p-Laplacian type:{{{{{{{{{
vp − div([F∗(x, Dvp(x))]p−1 ∂F∗∂ξ (x, Dvp(x))) = f + u in Ω,[F∗(x, Dvp(x))]p−1⟨∂F∗∂ξ (x, Dvp(x)); η⟩ = 0 on ∂Ω.

Then, by Lemma 4.2 and (4.5), we have that

lim
p→∞

vp(x) = PKF∗ (u + f) = u uniformly in Ω.

Observe also that in the proof of Lemma 4.2, we had X ∈ M(Ω,ℝN) satisfying condition (C1).
(2) implies (1). From (C1), using Lemma 3.8, it is not difficult to see that∫

Ω

(f− − f+)v ≤ ∫
Ω

F(x,X) = ∫(f− − f+)u for all v ∈ KF∗ ,
and thus u is a Kantorovich potential.
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(3) implies (2). If we set X := Λν, it is enough to show that∫
Ω

F(x,X) = ∫
Ω

F(x, Λ) dν = ∫(f− − f+)u.
By (3.16), there exist smooth functions vϵ such that

vϵ → u uniformly, Dνvϵ ⇀ Dνu σ(L∞ν , L1ν ).
Then, taking v = vϵ in (C2), we have∫

Ω

(f− − f+)vϵ = ∫
Ω

Λ ⋅ Dvϵ dν = ∫
Ω

Λ ⋅ Dνvϵ dν,
and by taking limits, we get ∫

Ω

(f− − f+)u = ∫
Ω

Λ ⋅ Dνu dν. (4.6)

Now, working as in the proof of (3.18), we obtain

Dνu(x) ⋅ v(x) ≤ F(x, v(x)) ν-a.e.

for any v(x) ∈ Tν(x) ν-a.e. This implies that

F(x, Λ(x)) = Λ(x) ⋅ Dνu(x) ν-a.e. in Ω.

Going back to (4.6) and using again (C2), we get∫
Ω

(f− − f+)u = ∫
Ω

F(x, Λ) dν.
(2) implies (3). Take ν = F(x,X) and Λ = dX

dν . We only need to show that

Λ(x) ∈ ∂F,νu(x) and F(x, Λ(x)) = 1 ν-a.e. in Ω.

This can be proved as Theorem 3.10, by replacing u∞ with u.

5 The Benamou–Brenier approach
Proof of Theorem 1.3. By (3.4), we have that (f, E) is a solution of problem (1.13) for f(t) := f+ + t(f− − f+)
and E(t) := X∞ for t ∈ [0, 1]. Then, from (3.9), it follows that

min{JF(f, E) : (f, E) is a solution of (1.13)} ≤ |X∞|F(Ω) = min{KcF (μ) : μ ∈ Π(f+, f−)}.
To prove the reverse inequality, consider vϵ the approximation given in Lemma 3.8 for u = u∞. Then, given(f, E) a solution of (1.13), we have

min{Kc(μ) : μ ∈ Π(f+, f−)} = ∫
Ω

u∞(f− − f+) = −∫
Ω

1∫
0

u∞
∂f
∂t= − lim

ϵ→0
∫
Ω

1∫
0

vϵ
∂f
∂t

= lim
ϵ→0

1∫
0

∫
Ω

∇vϵ dE(t)
≤ 1∫

0

|E(t)|F(Ω) ≤ JF(f, E),
and consequently

min{KcF (μ) : μ ∈ Π(f+, f−)} ≤ min{JF(f, E) : (f, E) is a solution of (1.13)}.
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We say that the Finsler structure F is geodesically complete if for any x, y ∈ Ω there exists σx,y ∈ ΓΩx,y such that
cF(x, y) = inf

σ∈ΓΩx,y

1∫
0

F(σ(t), σ�(t)) dt = 1∫
0

F(σx,y(t), σ�x,y(t)) dt.
Theorem 5.1. Assume F∗(x, ⋅ ) ∈ C1(ℝN \ {0}) and also that F is geodesically complete. For any transport plan
γ ∈ Π(f+, f−) we define the measures

f(t) := πt γ, E(t) := πt(σ�x,y(t)γ)
with πt(x, y) := σx,y(t). Then (f, E) is a solution of (1.13). Moreover, if γ is an optimal transport plan, then

JF(f, E) = min{KcF (μ) : μ ∈ Π(f+, f−)}. (5.1)

Proof. Let γ ∈ Π(f+, f−) be a transport plan. Given ϕ ∈ C1(Ω),
d
dt ∫

Ω

ϕ df(t) = d
dt ∫

Ω×Ω

ϕ(σx,y(t)) dγ(x, y) = ∫
Ω×Ω

∇ϕ(σx,y(t))σ�x,y(t) dγ(x, y) = ∫
Ω

∇ϕ dE(t),
hence (f, E) is a solution of (1.13). Suppose now that γ is an optimal transport plan. Then|E(t)|F(Ω) = sup{∫

Ω

Φ dE(t) : Φ ∈ C(Ω,ℝN) with Φ(x) ∈ BF∗(x,⋅ ) for all x ∈ Ω}
= sup{ ∫

Ω×Ω

⟨Φ(σx,y(t)), σ�x,y(t)⟩ dγ(x, y) : Φ ∈ C(Ω,ℝN) with Φ(x) ∈ BF∗(x,⋅ ) for all x ∈ Ω}.
Now, by (1.3), we have⟨Φ(σx,y(t)), σ�x,y(t)⟩ ≤ F(σx,y(t), σ�x,y(t))F∗(σx,y(t), Φ(σx,y(t))) ≤ F(σx,y(t), σ�x,y(t)).
Thus, |E(t)|F(Ω) ≤ ∫

Ω×Ω

F(σx,y(t), σ�x,y(t)) dγ(x, y),
and then

JF(f, E) = 1∫
0

|E(t)|F(Ω) dt
≤ 1∫

0

∫
Ω×Ω

F(σx,y(t), σ�x,y(t)) dγ(x, y)
= ∫
Ω×Ω

cF(x, y) dγ(x, y)= min{KcF (μ) : μ ∈ Π(f+, f−)}.
Therefore, by Theorem 1.3, we get (5.1).

6 Extensions to Riemannian manifolds
In this section we briefly comment on the extension of our results to the case in which the optimal transport
problem takes place on a Riemannianmanifold. For such extension, we use ingredients of the general theory
of Sobolev spaces on Riemannian manifolds, and we refer to [21] for details.
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Wedealwith aRiemannianmanifoldM of dimensionNwith ametric tensor gij and a compatiblemeasure
μ (that is, ameasure such that themeasure of a geodesic ball of radius r is comparable with rN). Themanifold
M is assumed to be compact with or without boundary. We also have that volμ(M) = ∫M dμ is finite.

On this manifold we have a Finsler structure, that is, a function F(x, ξ ) that for each x ∈ M is a Finsler
function on ξ ∈ TxM. Using theRiemannian inner product in the tangent plane,we candefine the dual Finsler
structure F∗(x, ξ ) (that gives also a Finsler function on TxM for every x ∈ M). Associated to this Finsler struc-
ture, we can define the cost cF exactly as we did before. Given x, y ∈ M, set

ΓMx,y := {σ ∈ C1([0, 1],M) : σ(0) = x, σ(1) = y},
and define

cF(x, y) := inf
σ∈ΓMx,y

1∫
0

F(σ(t), σ�(t)) dt. (6.1)

Now, our mass transport problem reads as follows: given f+ and f− with the same total mass, find T an
optimal transport map, that is, a minimizer of

min
T f+=f−

∫
M

cF(x, T(x))f+(x) dμ.
In this setting we can consider the following variational problem: for p > N, minimize∫

M

[F∗(x, Du)]p
p

dμ − ∫
M

uf dμ.

in the set Sp = {u ∈ W1,p(M) : ∫M u dμ = 0}. Here, as before, f = f− − f+.
For minimizers of this functional (that can be proved to exists as in Lemma 2.1), one can show with the

same computations of Lemma 2.3 that there exists a subsequence pj → ∞ such that upj Â± u∞ uniformly
in M. Moreover, the limit u∞ is Lipschitz continuous.

In addition, it can be proved, as in Section 3, that u∞ is a Kantorovich potential for the mass transport
problem of f+ to f− with cost being the Finsler distance given in (6.1), that is, u∞ maximizes∫

M

v(f− − f+) dμ,
in the set KcF (M) := {u : M Ü→ ℝ : u(y) − u(x) ≤ cF(x, y)}.
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