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Abstract

This paper is concerned with existence and uniqueness of solutions for a doubly
nonlinear degenerate parabolic problem of the type 5(w);—div a(z, Dw)+0j (., /J’(w)) >
f, where a is a Leray-Lions operator, [ is a nondecreasing continuous function and
9j(.,7) is a maximal monotone graph with respect to r defined on a closed interval of
IR. Particular cases of j correspond to the so called obstacle problem.

Keywords : Obstacle poblem, Elliptic-parabolic problem, L' theory, Semigroup of
contraction, accretive operator, weak solution, integral solution.

1 Introduction

Let © C RY be a bounded domain with smooth boundary T', p > 1 and a : Q x RN —
RY a Leray-Lions operator, i.e. a is a Caratheodory function (i.e is measurable in z € Q
for all £ € R and continuous in £ € RY for a.e. z € Q) with a(., 0) = 0, satisfying

(Hy) there exists o > 0 such that for all € € RY  a(z, £).6 > al¢|P for ae. z € Q

(Hy) for any &, n € RY such that £ #7n (a(z, &) —a(z, n)).(6—n) >0 ae. z €

(Hs) there exists ¢ > 0 and k € L” (Q) such that |a(z, £)| < o(k(z) +|¢P1) ae.z e Q

_P_
p—1
In (0,7) x €, we consider the elliptic-parabolic problem of the type

and for any £ € RV, where p/ =

u —diva(z, Dw)+9j(z,u)> f uwu=pw) inQ:=(0,T)xQ
PP (ug, ) a(z, Dw).ii+2z=0 zey(w) in¥:=(0,T)xT

u(0) = up in Q

Y
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where 77 is the unit outward normal of I'; f € g (Q) and S : R — R is a nondecreasing
continuous function with 3(0) = 0 and

(Ha) R(f) =R.

For a.e. z € Q, 9j(x,.) is a maximal monotone graph in R and 7 is a maximal monotone
graph in R x R such that 0 € «(0) and

(Hs) D(y) =R or D(y) = {0}.

The assumptions (H; — H3) are classical in the study of nonlinear operators in divergence
form (see for instance [7] and [18]). The nonlinearity 5 appears in the study of nonlinear
diffusion problems like the filtration equation (cf. [19] and the reference therein). We
are interested into the existence and uniqueness of a solution. A standard weak solution

of P33 (ug, f) is a function u € C([O,T], Ll(Q)> such that u(0) = wug, and there exists

(w,z,n) € LP (O,T; Wl’p(Q)> x LY(X) x LY(Q) such that v = B(w), n € 9j(., u) a.e. in
Q, z € y(w) a.e. on ¥ and, for any & € C1(Q),

d ) ,
[ at puoe+ [+ [awe= [ e g [une w vor. @

The main difficulty when treating this type of problem is due to the (non-smooth) z-
dependence of the absorption term 9j(xz,u). If 8 = Idg, D(y) = {0} and either j is
independent of x or j(.,7) € L>®(Q) + L*(Q), for any r € R, it is well- known by now
that (for L>° data) the problem admits a unique weak solution (cf. [9]). However, in the
general case (including the case of x—dependent obstacles that we treat in this paper)
the absorption term 0j(x,u) gives rise to a measure term p and there only exists some
generalized weak solution to the equation for which the condition p € 9j5(.,u) has to be
interpreted in some appropriate way. For the particular case § = Idg and homogeneous
Dirichlet boundary condition (D(y) = {0}) existence and uniqueness of a generalized weak
solution has been proved in [25] for the elliptic problem and in [3] for the corresponding
parabolic problem. The proofs in [3] and [25] rely on rather technical and, especially in
the parabolic case, sophisticated arguments from capacity and measure theory. To our
knowledge the case where 8 # Idg and D(vy) # {0} is still open. In this paper we treat
a peculiar case for which the condition j(.,7) € L>®(Q) + L*(Q) fails to be true and the
assumptions (H; — Hs) are fulfilled. We treat the case where j is such that

3(@,r) = j(@,r) + Ly @), g @) (1), (2)

where j : @ x R — [0,00] is convex, Ls.c in r € R, j(.,r) € L'(Q) for all € R with
3(.,0) =0 and _, 1, are two given measurable functions. The main application we have
in mind is the so called obstacle problem (cf. [6], [13], [16], [22] and [24]). Our approach is
different and new, we develop a new notion of solution for the nonlinear elliptic-parabolic
problem P57 (ug, f). We use entropic inequality (cf. [7]) with test functions satisfying the
obstacle condition. This notion permits to handle the problem with L' data. However,
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even for bounded solution the truncation seems to be necessary for the uniqueness of
solution for the evolution problem. More precisely, we prove that under the assumptions

(Hy—Hs), for any f € L>(Q) and ug € L>() such that ¢_(x) < up(z) < ¢4 (x), for a.e.
x € Q, the problem P%7 (ug, f) has a unique solution in the sense that u € C ([O, T), L (Q)) ,

u(0) = up and there exists w € LP(O T; Wl’p(Q)), i € LYQ), z € L'(X) such that
u=F(w), 7 €dj(z,u) ae. in Q, z € y(w) a.e. L and

// Ti(r — €)dB(r) +/Qa<.,Dw)Dﬂ(w—£>+/QﬁTl(w—s>

[ M- < [ Mw-9 w D01, W0
r Q

for any ¢ € CY(Q), such that ¢_ < (&) < ¢y ae. x € Q, where Tj is the truncation
function at level [ defined by

Ti(s) := max{ —l, min{l, s}}, s € R.

Notice that, our approach can be extended naturally to L! data. But, we focus our
attention here into bounded solution.

In the next section, we prove existence and uniqueness of the solution of the station-
ary problem associated to Pﬁ’j(uo, f). For that, we approximate dj by a sequence of
absorptions Jjy, , defined everywhere on R, and we give also some preliminary estimates
that will be used afterwards. In the third section, we use the nonlinear semigroup theory
and we establish existence result for the problem without obstacle. Then, we approach
the obstacle problem by a elliptic-parabolic problem Pﬁ*»f“j%u(uo, f) without obstacle
and we pass to limit, thus proving existence. The last section is devoted to the proof of
uniqueness. We use the concept of integral solution and we show that the solutions of
PP J(ug, f) are integral solutions, thus they are unique.

2 Elliptic problem

In order to study the problem in the framework of nonlinear semigroup theory, we
consider the stationary problem associated with ph (uo, f) defined by
v—diva(z, Dw)+9j(.,, v)> f, v=pFw) in

S59()
a(x, Dw).i+2z=0 z€y(w) in T.

The norm in LP(Q) is denoted by ||.||,, 1 < p < oo. The space W'P(Q2) denotes the
classical Sobolev space endowed with the norm ||.||1 .

2.1 Elliptic problem without obstacle: j(., r) € L'(Q) ¥r € R
Throughout this section, we assume that

j(,r) € LY(Q) forall r e R (3)
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and we prove existence and uniqueness of a weak solution of the problem S8 ’j( f). Our
main result in this section is

Proposition 2.1 Given f € L°°(QY), there exists a unique weak solution v for the problem
SPI(f) in the sense thatv € L*() and there exists w € WYP(Q), n € LY(Q) and z € L*(T)
such thatn € 9j(., v), v = B(w) a.e. Q, z€vy(w) ae I and

/Qvﬁﬂt/ga(m?DW)DﬁJr/anﬂL/FZEZ/Qfﬁ (4)

for any € € Wl’p(Q). Moreover, v, w and z are bounded in L*° and we have the following

estimates:
Lot [nr+ [1z1< 171 (5)
Q Q r Q

v oo < lloos  [Twlloe < [l flloc)s 12 lloo < Cy (Il flloo), (6)
NS
[1pur<ci and ([ lat Du)p) <o 7)
Q Q
where, C1, Cy are constants that depends only on Q, p, N, ||f||cc, @ and || k HLP/(Q).
The existence, uniqueness, contraction and order preserving properties are equivalent to
the fact that the operator Ag, ; defined in L'(2) by

((u, f e LP(Q), 3we WH(Q), 3ne LF(Q), 3z € LP (I

u=PB(w), n€dj(., u) ae. Q, z€yw) ae T

/Q of.. Duw)DE + /Q ne + /F 26 = /Q fé, Ve € Wir(9)

is T-accretive in L'(©2) and R(I + eAp, ;) 2 L°(Q) for any ¢ > 0. These results are well
known by now in the case, where j = 0 (see for instance [5]). To treat the case j # 0, let
us consider B; the operator defined by

B = {(u,n) € L'Q) x L' n € 9j(, w)},

fEAﬂ,jU@

and we write

Ag,j = A0+ Bj.
Recall that the Yoshida approximation of j(x, .) is given by

inz,.) = A(I — (I + %j(m, .))—1).

Lemma 2.2 i) The operator Ag, j, is m-T-accretive in L'(Q).
i) Given f € LY(Q)NLP(Q) and 1 < ¢ < oo, for any ¢ > 0 we have

| (I+eAs, j) " f lLa@) < [ f llzo)-
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Proof: i) First, recall (cf. [5]) that for any (u,v) € Ag o, we have
/ p(u)v >0 for any p € Py, (8)
Q

where Py := {p € Lip(R); p nondecreasing , p(0) =0 and supp(p’) compact}.

So, since By, is continuous and T-accretive, then Ag j, is also T-accretive in L*(©2). On
the other hand, thanks to [5] we know that for any & > 0 we have R(I +eAg o) 2 L” (Q),

then by using the corollary 3.1 of [4], we deduce that R(I + € Ag, ;,) 2 L¥ () and As, iy
is m-T-accretive in L'(€).

i1) Thanks to [8], it is enough to prove that Ag ;, satisfies (8). Let (uy, f) € Agj,.
Thanks to (8), we have

/Q p(ur) (f — 0ja(s un)) = 0.

Using the fact that p(uy) 9jx(., uy) > 0 a.e. in Q, we deduce that the property (8) is
satisfied for the operator Az ;, and i) follows. [

Proof of Proposition 2.1. The proof of this proposition is standard. For completeness,
let us give the main arguments.

Uniqueness: For i = 1,2; let f; € L°°(Q) and v; the solution of S%(f;) in the sense of
Proposition 2.1, then

[ =e+ [ (at Dun) =at, Dun))De+ [ (m=mie+ [ (12
= [ 5 - pe

1
for any & € WP(Q). Taking 7 Ti(wy; — wa), for I > 0 as a test function in the preceding
equality, using the monotonicity and letting | — 0, we deduce that

/{2’U1—v2\§/g|f1—f2|. (9)

Existence: Thanks to Lemma 2.2 there exists a unique solution vy € L'(Q) of S%3x(f).
So, there exists wy € WIP(Q), gy € L'(Q) and zy, € LY(I') such that 7y = 9jr(z, vy),
vy = B(wy) ae. Q, z) = y(wy) a.e. T', and

/m+/ alz, DwAD£+/m§+/zA§ /fé, (10)

for any € € W'P(Q). Thanks to 74) of Lemma 2.2 we have

[ ox [lzeo@) < | fllLe(e)- (11)
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In addition, since R(5) = R and D(y) = R, then

[ wx || oo (@) < max (571( I fllpee) ) U (=B (= f |l )) = Cs(|] fllo) (12)
and
| 2x || oo (r) < max (’Y( [ wx [[eo(@) ) U (=) (= [ wx || zoo () )) <Oyl flloo)  (13)

Now, taking wy as a test function in (10), using (H1), (12) and monotonicity, we deduce
that

1
[ 1Dl < izl = € (14)

Thanks to (12) and (14), there exists a subsequence, that we denote again by w), such
that
wy —w in WHP(Q)- weak and wy —w a.e. in Q.

Since 3 is continuous and vy is bounded in L*°(2) then
vy — v in LP(Q) and v=pf(w) ae. in Q.
By using (13) and (14) we deduce that
wy — w in LYT), zy — z in LYI')-weak and z € v(w) ae. on T.

For the passage to the limit in the term 9j)(.,vy), we use the same arguments of [9] to
deduce that
dir(, va) — n in  L'(Q)-weak. (15)

1
Indeed, setting o) = (I + Xf)j(a:, )" tuy, we have

Il ox llzee@) < [l oa [lpee@) < I £ [lpee(0)-
In addition, since djx(x, vy) € dj(x, o)) a.e. in 2, then using the definition of 9j, we get
—j (@, = fllze@) — 1) < 9ha(, va) <@, || £z +1) a.e. in €2,

and (15) follows by using (3). Then, thanks to Lemma 1.6 of [9], we deduce that € 95(., v)
a.e. . Now, let us prove that, as A\ — 0,

a(z, Dwy) — h in [L” (Q)]V-weak and divh = diva(z, Dw) in D'(Q). (16)

Using (Ha2), (14) and Minkowski inequality, we have

”(/<lkl+lDwA|”‘1>p')p
@ 1 1
([ 1K@P)7 +( [ [puse)?)
: 9
(11611 @y + 11DwAl o)

1
< 0<‘|kHLP/(Q) +C7 ) = Oy,

‘ =

IN

( /Q la(., Duy)?)

<

)
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so that, there exists a subsequence that we denote again by A, such that
a(z, Dwy) — h in [LP (Q)]V-weak as A — 0.

Using Minty-Browder’s monotonicity arguments (cf. [10]), one can actually prove div a(z, Dw) =
divh in D'(Q). Indeed, taking (wy — w) as a test function in (10), we obtain

[ at DuDlus —w) < [ (= oon—w) = [ Gl on)lwr = w) = [ 2w - w)
Q Q Q r
Letting A — 0 and using previous convergence and L™ () estimates, we get

limsup/ a(., Dwy)D(wy —w) <0
Q

A—0
and
limsup/a(., Dwy)Dwy S/th, (18)
A—0 Q Q

which is the key inequality that allows to deduce then (16) by the standard monotonicity
arguments. At last, letting A — 0 in (10), (11), (12), (13), (14) and (17) the results of
the proposition follow. [

2.2 Elliptic obstacle problem

Now, we assume that .
J(@,m) = 5(2,7) + Ip_ (@), 4y 2] (1),

where j : Q x R — [0,00] is convexe, ls.c in r € R, j(.,7) € L'(Q) for all » € R with
J(,,0) =0 and ¥_, 14 are two given measurable functions. Let K be given by

K = {w e L®(Q): ¥_(z) < B(w) < ¥4 (z) ae z€ Q}
Proposition 2.3 Let f € L>®(Q), then there exists a unique solution of S (f) in the

sense that v € LY(Q), there exists (w, z,n) € WYP(Q) x LYT) x LY(Q) such that 7(z) €
01(x, v(x)), v(zx) = f(w(x)) a.e z € Q, z(x)=~y(w(x)) ae x €T, and

[vw-0+ [ at.Dupw-9+ [dw-+ [w-0< [ fw-9 (9
Q Q Q r Q

for any £ e WHP(Q) N K.

In order to prove Proposition 2.3, we approximate j by a sequence of functions satisfying

the assumptions of the preceeding section. In addition, in order to handle the evolution
problem, we choose a monotone approximation. More precisely, we consider the problem
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, oy, — diva(x, Dwy ) +0dx u( vaw) D F oa =B u(wy )  in Q
SB)\,;L:JA,;L(]L‘)

a(x, Dwy, )M+ 2y, =0 23,0 € Y(wa, ) inT
where jy , and ) , are monotones approximations of j and f3, respectively given by

ine 1) =3, 1) + 55 ((r=vu@) ) = 5o ((r=v-@)) aeve@ @0

and

Baulr)=pB(r) = Xr~ +urt.
Proof of Proposition 2.3: Existence Thanks to Proposition 2.1, the problem B Ix, (f)
has a unique solution vy , € LI(Q) and there exists (wx, 4, 2, 4, 0N, ) € Wl’p(Q) X

LY(T) x LY(Q) such that vy, = B u(wy ) ae. Q, 2y, € y(wy ) ae T, 6y, €
Aja, (e va, ) ae. Qand, for any & € WHP(Q),

/gzv,\7“§+/gla(m, Dwk,u)pu/ﬂqﬂg +/szg _ /fo.

Moreover, vy, 4, Wy, 4y 2, and 0y, satisfies the estimates (5)-(7). Setting

1

mon = g5 (=02 @)*) = (o= v-@)7) " ae e,

we have 7y, := 0y u — 7, € LH(Q) and 7y, € 9j(., vy, ). Using the estimates (5)-(7)
in the same way as in the proof of Proposition 2.1 and applying a diagonal process, we
deduce that there exists v € L1(Q2), w € W'P(Q) and z € L!(T'), and a subsequence A(u)
such that A(u) — 0; as p — 0 and

UN(u), p = Up — v in LY(), Wx(p), p = Wy — W in WP (Q)-weak,
(), p = 2p — 2 in L'(D)-weak and a(., Dw,) = ¢ in [P (Q))V-weak
with v = B(w) a.e. Q and z € y(w) a.e. T'. In addition, using the definition of 97, we get
107 (2, vy)| < j(x, v, — Signo(v,)) — j(x,v,)  ae. in Q.
Since j(.,7) € LY(Q) Vr € Rand || vy |[peo) < || f |[Loo (), then
9j(., vu) — i in L'(Q)-weak,

and (the Lemma 1.6 of [9]) 7 € 5(., v) a.e. €.
Now, let us show that (v, w, z,7) satisfy (19). Taking w, —& € WHP(Q) as a test function
in SBA(M)»wj)\(u),u(f)7 we get

/Qvu(wu_g)‘F/ a(z, Dw,)D /5
e /f
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Assuming that £ € K, we check easily that

(5u — ﬁu) (wy—¢€) >0 ae.
and, then

[ ontw—e1+ / (s Dw,)D(w, &) + / (w0, — €)

F

[ ot~ 5>+hmmf/ ol Dw)Dw, =9 + [ iw=6) o
2w —£) < /fw 6).

Moreover, we have w € K. Indeed, thanks to (5) we have

Lv— :v+—lv— x))
|V o= @) = o= @)1 < [ 111 (22)

then letting 4 — 0, we deduce ¥ < v < 9 a.e. ; hence w € K. Now, let us prove
that

liminf/ a(z, Dw,)D(w, — &) > / a(xz, Dw)D(w —§). (23)
pn—0 QO QO
Then, taking £ = w in (21), we get
liminf/ a(z, Dw,)Dw,, < / ¢pDw. (24)
n—0 0 [¢)

At last, using Minty-Browder arguments as in the proof of Proposition 2.1 the proof is
finished. [
Uniqueness: Let vy, vy are two solutions in the sense of (19). Taking wy — Tj(we —
wy) (respectively wy 4+ Tj(we — wy)) as a test function in the inequality satisfied by vo
(respectively v1) adding the two inequalities and using (Hz), we obtain

/Q(Uzvl)Tl(wzw1)+/9(772ﬁ1)7}(w2w1)+/

r

(z2—21) T (wa—w1) < /(f2 J1)Ti(we—wr).

1
Then, multiplying by 7 using the monotonicity and letting [ — 0, we get

- - 2
/sz vlrs/gm I (25)

and the result follows. n

As an immediate consequence of the proof of Proposition 2.1, we have the following con-
vergence result of the operator Ag, soda
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Corollary 2.4 Under assumptions of Proposition 2.3, there exists a subsequence A(p)
such that as p — 0 we have A(u) — 0 and the operator Ag, ., . j\. .

Ll(Q), in the sense of the resolvent to the T-accretive operator Ag, ;, defined by

converges in

v e LP(Q), Jwe WHP(Q) N K, Ine LY(Q), 3z € LY(D)

v=_p_3w), 7€dj(.,v) ae Q,zey(w) ae T, and
fE.A/BJ"U@

/Qa(., Dw)D(w—f)+/Qﬁ(w_§)+/rz(w_§) S/Qf(w—g) (26)

for any € € WP(Q)NK.

3 Evolution problem
To treat P (ug, f), we consider in L'(Q) the Cauchy problem

A ug+Ag jud f in (0,7)
CPBJ(uOv f)
u(0) = up.

Lemma 3.1 D(Ag ;) = {z e LYQ); ¥_(z) < 2(z) < Yy (x) ae. Qand Iw € WHP(Q) such that z =
5(w)} = X.

Proof: By density and the definition of the operator Ag ; we have D(Ag ;) € X. To prove

that X C D(Ag, ), it is enough to prove that X NL>(Q) C D(Ap, ;). Let u € X NL>(Q)
and u. be the solution of

ue —ediva(zr, Dw:) +€0j(.,,us) du  u. = f(ws) in Q
(27)
a(z, Dwe). M+ 2. =0 ze € y(we) on T.

In the sense that, there exists (we,2:,0:) € covve venns
We recall that

[uellpa) < llullpaqy — for all g € [1, oo,

e 1oy < maix (8711w llzee) ) U (=B7)(= [l u lle(@)))
and
2 gy < max (y( [ llzeay ) U (=)= Nl e [l )

Then, by taking subsequence €, — 0 if necessary, we have

eze = 0in L>(T),
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and, there exists (@, w) € L*(2) x L>(§) such that

ue — @ in LP'(Q)-weak
and

we — @ in LP (Q)-weak .

Our aim now, is to prove that & = u a.e. in {2 and the convergence of u. holds to be true
in L1(Q). Taking ¢ = 0 as a test function in the definition of the solution of problem (27)
in the sense of Proposition 2.3 and using (H;) we get

/ Du. P < Cllulloos [lwlloo), . Ca
0 o= e -

Applying Minkowski inequality and (H3), we get

1
(<Al ) + < [ 1Dwel)?)

14
o (<llkll oy +7CF )

1
v

([ leat. Du))?

IN

IN

so that
ea(., Dw.) — 0 in [LP (Q)]V-weak .

Now, set 6. = 7. + 1., with
Ne(z) € Miy_(2), g (a)) (ue(T)),  Te(w) € dj(x,u.(x)) ae. ze€Q
and 7). € Ll(Q). Using the same arguments of the proof of Proposition 2.3, we have
efe — 0 in L*(Q)-weak

Passing to the limit in the definition of the solution of problem (27), we obtain

lim [ (v —u)(we —§) <0 Ve WP(Q)NK. (28)
E— Q

This implies that

lim ngwag/ﬂuﬁ)—k/ﬂﬁf—/ﬂuf VEeWHP(Q)NK, (29)

e—0
so that
lim [ vew: < / .
e—0 [¢) Q
Indeed, since w. € WHP(Q)NK, it is enough to take £ = w, in (29) and to let &’ — 0. Now,

by the standard monotonicity arguments we deduce that « = f(w) and liH(l) UsWe =
E— Q

/ @ in L'(Q). Then (28) implies
Q

/(a —u)(—£) <0 VEECWWP(QNK. (30)
Q

11
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At last, taking £ = @ — Tj(w — w) in (30), multiplying the inequality by % and letting
[ — 0, we obtain

2~ ullssey = [ (3= wSigno(@ - w) <o,
Q
then @& = u a.e. € Q and u. converges weakly to u in L¥ (Q). Moreover,
||u€HLP’(Q) < ”u”Ll)/(Q)?

then we deduce that u. converge strongly to u in L” (Q) and then in L'(Q). (]

In order to treat the evolution problem, let us consider again the monotone approxi-

mations
1

ine, 1) = 3o, 1) + 55 ((r= 0@ ) = 5o ((r=v-@)) ae e

and
Bau(r)=B(r) = X1~ +prt.

Proposition 3.2 If f € L®(Q) and ug € L(Q), then the mild solution uy, ,, of C PP w i w(ug, f)

is the unique weak solution of PP wixu(ug f); ie. wuy , € LY(Q) and there ewists
(W, s 27, s O, ) € LP(O,T; Wl’p(Q)> X Ll(Z) X Ll(Q) such that, uy , = Bx, u(wy, ) and
O €09 uls, upn, p) ace. in Q, 2y, € Y(wy, ) a.e. on X and

—/[)T/Qu,\,y&-i-/(;/ﬂa(-a Dw/\,u)Df‘F/OT/Q‘sk,Mé"'/OT/Fz)‘vNE

(31)
= [ [ re+ [ wco)
for any € € C1([0,7] x Q) with £(.,7) = 0. Moreover, for any T >0
ux, 1w (7)o (@) < [luollLoe@) + T fllL= (@) (32)

and

/0 /Q Dun P < C (33)

where C is a constant independent of m and n. Moreover, for any N > X > 0 and
p' > >0, we have
Wy, Swy S wy o ae in Q.

To prove this proposition we need the following lemma (chain rule) which is is well known
by now in the field of nonlinear degenerate parabolic problem (see for instance [1], [2], [11]
and [23]).

12
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Lemma 3.3 Let u be a weak solution of the problem Pm’“’j%“(uo,f) in the sense of
Proposition 8.2. Then, we have

oa(., Dw)DT;(w — &) + odTi(w—§) + ozTi(w — &)
Q Q by
= o fTi(w—¢§) + oy W(t)Tl(T—ﬁ)dﬁ(T), Vi>0
1 [l L.

for any € € WHP(Q) and o € D(0,T).

Proof: The lemma is a simple consequence of Chain Rule Lemma (see for instance [1],
[2], [11] and [23]). ]
Proof of Proposition 3.2 : Let ¢ = T'/k, with k € p and let us consider the sub-
division tg = 0 < t1 < ... <t <7 < t, with t; —t;,_1 = ¢, fl,...,fk S LOO(Q) and

Z/ [|f(t) fi||L1(Q) < e. We define the e-approximate solution by uj ,(0) = ug and
ti—1

ui,u(t):ugx,u for t €lt;—1,t;], i =1,..., k,
where uf\ u 1s given by
uz/\y,u_u)\,u_'_gAﬁA w I, i\,,uagfl'

That is, there exists (w)\ ,HZA M,(S/\ u) € Wl’p(Q) x LYT) x LY(Q) such that 5§7M €
jix, (- U,\ ) UA u =B, u(wA p)ae Q2 efy(wA x) ae. I and

[aus+ [atpusoves [ a6+ [A,e= [ater [re 0

for any ¢ € WHP(Q). As in this proposition m and n are fixed; we omit the notation with
respect to A and p. We denote w®, 2, ° and f© the functions defined by w*(t) = w} ,,

65(t) = &°, 25(t) = 2%, f(t) = f for t €]t;_1,t;]. Thanks to Proposition 2.1, it follows that

|| oo () < [|uol] oo (q) +€Z £ 2o @)
so that
T
[[us ()] oo () < [|uol| Lo () +/0 1f (&)l oo ydt := My, ¥t € [0,T]. (35)

Using (H4), (Hs) and the definition of dj, we have

[P ()] ooy < max (87 (M) U (=71 (=My)) = My V€ (0,T),  (36)



Nonlinear Obstacle Problem N. Igbida , F. Karami 14

10 limry < max (OB U (=)(-M2)) = M Vi (©.T),  (37)
and
|07 (z, u¥)| < j(z,u® — Signo(u)) — j(z,u) a.e. in Q. (38)

Now, taking w’ as a test function in (34) and using the fact that, for any i = 1, ..., k,
/(ui_l —u)w' < / J(u™1) - / J(w'), n'w'>0and z'w' >0,
Q Q Q
q
where J : R —— [0, 00] is given by J(5(q)) = / sdp(s). We get
0

/Qj(ui)+€/ga(., Duw')Dw' ge/gf"wﬂr/gj(ui—l). (39)

So, adding (39) for i = 1,..., k, we get

[aw@y+ [ [ ot puipws < [ g+ [ [ o (40)

Using (H1), (36) and the positivity of J, we have

o /0 /Q Dufp < /Q T (o) + ||y 1o 110 =2 € (41)

We recall that, by nonlinear semigroup theory, as ¢ — 0, u® converges in C([0,T], L'(Q))
to the mild solution u of the Cauchy problem C'P?J(ug, f). Thanks to (36), (41) and
(Hs), there exists w € LP(0,T, W'P(Q)), x € [L” (Q)]V such that, as e, —> 0, we have
w* — w, in LP(O,T; Wl’p(Q))—Weak and a(., Duw™) — x in [LP(Q)]V-weak. On
the other hand, we have j(z,.) € L'(Q), using (35) and (38), then §°* — § in L(Q)-
weak. Thanks to (37), 25 — z in L'(X)-weak. Applying Lemma 1.6 of [9] we have also
0 € 0j(., u) a.e. Q and z € y(w) a.e. . The proof of divy = diva(., Dw) follows in
a standard way (cf. [5] and [15]). Combining all estimates and passing to the limit with
e — 0 in the weak formulation, (35) and (41) we obtain (31), (32) and (33).

Now, let A > X\ > 0 and g > 0. Thanks to Lemma 4.3 (see the Appendix), for i = 1,..., k,
we have wf\u > fwf\/’M a.e. @, then wf , > w5, , a.e. Q . Passing to the limit as ¢ go
to 0, we deduce that wy , > wy, 4 a.e. Q and for p > W >0, \>0; Wy, p S Wy, ae Q.om

Theorem 3.4 Given f € L™(Q), up € L>(Q) ND(Ag, j). Let u be the mild solution of
CP?%J(ug, f). Then, there exists w € LP (O,T; Wl’p(Q)), i€ LNQ) and z € LY(X) such
that u = B(w), 7 € 8j(x, u) ae Q,z€~(w) ae ¥ and
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// Ti(r — €)dB(r) +/a<., Dw)Dﬂ(w—m/gﬁTl(w—&) -
+ [ g SZfﬂ(wé) in D/(0.7)

r
for any £ € CH(Q)N K.

Proof: Let uy , be the mild solution of C’PBA"“J'N“(UO, f) and (wx s 525, 4oy 50N )
as given by Proposition 3.2. Thanks to Proposition 3.2 and the monotonicity of wy ,,
there exists a subsequence A(p) such that as p — 0; A(u) — 0 and wy, =: uy(,, , —

in C([O,T); Ll(Q)), u € D(Ag, ;) and there exists (wx(u), u» 2a(n), us ON( such that
as - — 0, we have wy(,),, = w, — w in LY(Q) and in LP(O,T; Wl’p(Q)>—Weak ,

a(., Dw,) — x in (L (@) -weak and 2\(w), p = 2u — 2 in LP(¥)-weak. Since for a.e. t €
(0,T), u(t) € D(Ag, ;) then w(t) € K for a.e. t € (0,T). Setting dy,), , =: 0, and

u)w)

DN

Tl = b0 — A(lmmu (@)t + im (@),

we have, 7, € 85(.,1@) and

<5p, - ﬁM>Tl(w“ —&) >0 forany¢e€K;

so that,

//Ua Duw,,)DT;(w //UnNTl +//EazuTz(wu—€)
g//Qat/wo €)dB,(r) //ale Ve € K.

Using (32) with the definition dj and the fact that j(z, u,) € L*(Q), we get 7, — 7 in
LY(Q)-weak and 7 € 9j(., u) a.e. in Q (see Lemma 1.6 of [9]). Letting u — 0 in (43), we

get
lilglj%f//aa Dw,,) DT} (w //m)le €) //olew €)
S//Qat/wo Tlr—gdﬁr—i—//Qalew—g,VﬁeK.

To prove that (u,w, z,7) satisfies (42), we need to show that

liminf//aa Dw,,)DTj(w //O'(I.CU Dw)DTy(w —&).
n—0

(43)

(44)

15
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To this aim, it is enough to prove that

nw—0

hmhﬁ%;m@gDw@DSMm—OE?LaM%Z%@Dﬂw—f) (45)

for any S € P where P := {p € C'(R); p(0) =0, 0 <p' <1, Supp(p’) is compact}.
Thanks to (Hs), we have

/Qaa($, Dw,)DS(w, —§) > /Qaa(x, Duw,,)DwS"(w, — &)
+/Qaa($, Dw)D(w, —w)S' (w, — &) — /Qaa(x, Duw,,)DES" (w, — §).

Since, S (w,—&) = S (w—¢) a.e. on Q, Dw, — Dw in [LP(Q))Y-weak and a(z, Dw,) — x
in [Lp,(Q)]N—weak, then letting 1 — 0 in (46) we obtain

li/in_}%f ; oa(x, Dw,)DS(w, — &) > /QU<a(a:, Dw)Dw — XDf) S'(w—¢). (47)

So, by using Minty argument, (45) follows by proving

liminf// oa(., Dw,)Dw, < //awa (48)
n—0

Our aim now is to prove (48). First we see that by using Lemme 3.3, we have

v o
//m/”mm //aww //mwm

and by letting p — 0, we get

liLn_;(r)lf//;gaa(., Dwu)Dw,L://Qawar//QUt /Owrdﬁ(r) (49)
—//Qdﬁw—//EUZW—ligljgf//QU(éu_ﬁu)wu'

To prove that the right hand side of (49) is less or equal to / / oxDw we use the Landes
Q
regularization in time of w (cf. [17]) defined by
t
wi(x,t) == k‘/ Dy (z, 5)ds
—0o0
for a.e. (x,t), where extend w by 0 for s < 0. Observe that wy € L (O,T; Wl’p(Q)> N

(), 2%

S = k(w — ) € LP(O,T; WLP(Q)> N L®(Q), wi(0) = 0 ae. in Q, and

16
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wy — w € LP (0, T, Wl’p(Q)> as k — oo. Taking owy as a test function in the definition

of the solution of problem PP# Ik (ug, f), we obtain

//Qaa(., Dwu)Dwar//Qoéuwar//EazuwkI//Qofwar//Quu(gwk)t‘

Letting u — 0, we get

//QUXDwk-l-//Zaz’wkI//Qafwk—i—//Qu(owkt—hmmf//05 . (50)

Letting £k — oo, we get

//Uwa—l—//Uzw://afw-i- lim // u(owy)y — lim hmlnf//a%wk.(f)l)
Q by Q k—oo k—oo u—0 0

For the second term of the right hand of (50), we observe that

u(owg); = uoywi + k uo(w — W)

/), [ Jymenr ] ],
_ //Quatwark//Qa(u—ﬁ(wk))(w—’wk)
.y /Q o) (1w — )

Since f is monotone, then (u — B(wg))(w — wy) > 0 and

[ o > [ fomr [
/ /Q woyi + / /Q o (1) (1 )
//Quatwki//Qat /Owk B(r)dr
[ foo [ raso

So, letting £k — oo, we obtain

lim inf / /Q (o) > / /Q o /0 "B, (52)

17
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As to the last term, it is not difficult to see that wy € K and

(6 — M) (wy —wg) >0 ae. Q.

So, using the monotonicity of 97, we have

//QU%U%://Qaﬁuwwr//@a(%_ﬁ#)wk
://Qaﬁuwk+//Qa(6uﬁgr[()wkwu)

+ [ [ oG, _
S/foﬁuwk+//(gaé

and

11H11nf//0‘5uwk<//O'ka—l-hmlnf//

Then (51) implies

//gxpw >//afw+//at/ rds(r //anw
JReT

—lim inf (0u
121;61 ; (8 — Np)wy —

and

// oxDw > hm//oa Dw,,)Dw,.

Consequently (48) holds.

4 Uniqueness

(54)

(55)

To prove uniqueness, we use the concept of integral solution, which is well known in the
context of the abstract Cauchy problem (cf. [8]). This concept was previously used in [9]
for the proof of uniqueness of weak solution of elliptic-parabolic problems, with homoge-

neous Dirichlet boundary conditions.

Definition 4.1 A function u € C([O,T], LI(Q)) is an integral solution of CP%(ug, f)

if for any f € Ag, ji, we have

18
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d A .
g J i< [ = Dsinatuw < [ ir—fi i D)

and u(0) = ug.

Since, Ag ; is accretive in L'(Q2), it is well known (cf. [8], [9]) that a mild solutions and
integral solutions of problem CP”(ug, f) coincide. To get the uniqueness, we prove
with the following proposition that a solution of P J(up, f) is an integral solution of

CP? »I(ug, f). Therefore, by the nonlinear semigroup theory (cf. [9]), the mild solution of
PP (ug, f ) is the unique solution of problem PP (ug, f ).

Proposition 4.2 Let ugp € L™(Q) and f € L™(Q). If u € L™(Q) is a solution of
P’B’](ug, f) in the sense of Theorem 3.4, then w is an integral solution of the problem
CP% 3 (ug, f).

Proof. Let f € Ag i, 17 € 9j(., @), & = B() a.e. Q and 2 € y(w) a.e. T be as given by
the definition of the operator Ag ;. Taking w as a test function in (42) and multiplying

the inequality by —, we obtain

//aa DwDlew//anTl )
//at/w@lw— )dB(r) +//Qafszw—w)-

Passing to limit as | — 0, we get

w(z,t) 1 w(z,t)
[ mtr = a)ase) - [ Signlr - o(@)ds(r
(e, 1) = Bo(@))] ~ Juo(e) — Al ()|

a.e. (t,x) € Q. Moreover,

w(x,t)
[ = @) sl < fuat)

so that by Lebesgue’s dominated convergence theorem, the first term of the right hand of
inequality (56) converges to // (lu(z, t)—B(w)|—|up—pL(w)|)or. Obviously, // fa Ty (w—

// an T (w—w and//oz T;(w—w) converges, respectwelyto// foSigno(w

w), // onSigng(w—w) and // ozSigng(w —1w). As to the first term on the left-hand
Q by

side, note that using the definition of the operator Ag, ;, we have
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1
// oa(., Dw)DTTi(w — ) > Il + I,
Q

1}://62(;@(., Dw) —a(., D@))D%Tl(w—w)
=//Qfa}Tz(w—ﬁo—//Qaﬁ}ﬂ(w—m—/Laé}ﬂ(w—wy

Clearly, I l2 converges to

//Qf”SiQ”O(“’—w)—//Qaﬁsl'gno(w—w)—//Eazsz'gno(w—m).

On the other hand, we have

where

and

lim inf I >hm// o~T}(w —w)(a(., Dw) — a(., Dw))D(w — @) > 0.

=0 =0

So, letting I — 0 in (56), we get

// juz,t) — A)| — [uox) — Jt+//|77 ilo+ [ [ =l

</ /Q o(f — f)Signo(w — )

T A ) R
< [ [ ov = Dsionowey —pn+ [ olr- i)

This implies that for any ¢ € [0,T"), we have

Jur=ai< [ wo-a+ [ { [ 7= Hsionoutty - a)+ L=

and the proof is finished. [

Appendix

Lemma 4.3 Let vy ,, vy, . U, w be the weak solutions in the sense of Proposition (2.1) of
SBA, s I, “(fa, ) SBA’ s N i (f>\/7 ) and BN Ix, "(fa, ) respectively. If, for X' > X >0
and ' > p > 0, we have I n < o u < o, w ace. 8, then

w/\/’u S w)\7u S w)\7 Ul a.e. Q

where, wy, , = 6;71#(0)\’“)7 W,y = 6)?/71”(@)\/,#) and wy, ,y = 6;,1#’ (U)\7 N') a.e. Q).
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Proof: Using the monotonicity of dj, a and v, we get

/Q(UX,M_U/\,M)Signa_(w)\/,u_w)\,u) < /S](fA’,u_f)\,u)+'

Thanks to the definition of 3, ,, we have

/(UM“ — Uz ) Sign{f(w}\r,ﬂ — Wy, ) / (wx, ) — Blwy, M))Szgno (wxr, p — W, )
Q Q

—&-u/(wx — w:\ﬁ#)Signa'(wX’ —wy, ) + (A= )/ wy, Szgno (wxr, ) — wa, )
-X Q(w;,,u — wy “)Signg(w,\gu — Wy, p)-

Since, r — £r* and 8 are nondecreasing, we deduce that

+'u/ﬂ(wj\r’,u — w)t N)Signg(w)\/w — Wy, )

(57)
—)\//Q(wx,u —wy )Signg (W, —wx ) < /(f,v -t
This implies that for fy , > fy, 4, we have £ wi:“ >+ w)\, L thus wy , > wy, ,
In the same way, for > p' > 0, A > 0, we prove that
A (w3 = w3 ) Signi (= wn )
¢ (58)
b [ ], — 0] )Signg (= wr0) < [ (B )
and then for fy , > fi ., we deduce wy, , < wy, . [
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