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Abstract

In this paper, we consider evolution problems
8
<

:

dum
dt

+Amum 3 Fm(., um) in (0, T ),

um(0) = u0m

where for m = 1, 2, ...1, Am are m-accretive operators in a Banach
space X, Fm : (0, T ) ⇥ D(Am) ! X are Caratheodory functions
satisfying some assumptions, u0m 2 D(Am) and um the mild solu-
tion of the problems. Assuming that, as m ! 1, Am ! A1 in
the sense of resolvent and Fm ! F1 in the natural sense, we prove

that if e�tAmu0m ! e�tA1u01 for t > 0, then um ! u1 in
C ((0, T );X) . And, we apply this result to the limit as m ! 1, of the
solution um of

(
ut = �um + g(., u) on (0, T )⇥ ⌦,

um = 0 on (0, T )⇥ @⌦, u(0, .) = f � 0 on ⌦.
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1 Introduction.

Consider the following problem

(Pm)

8
>><

>>:

ut = �u
m + g(u) on Q = (0, T )⇥ ⌦

u
m = 0 on ⌃ = (0, T )⇥ @⌦

u(0, x) = f(x) on ⌦

where ⌦ is a bounded open set in IRN , f 2 L
1(Q), f � 0 and g : IR+ ! IR

is continuous with

g(0) � 0,
dg

dr
 K in D0 (0,1) ,(1.1)

with K 2 C (IR+) ; the time T > 0 is such that the solution of the o.d.e

M
0 = g(M), g(0) = kfk1

is defined on [0, T ). Then for every m � 1, there exists a unique solution of
(Pm) in the sense

8
><

>:

u 2 C
⇣
[0, T );L1(⌦)

⌘
\ L

1
loc

⇣
[0, T )⇥ ⌦

⌘
, u � 0, u(0, .) = f,

u
m 2 L

2
loc

⇣
[0, T );H1

0 (⌦)
⌘
, ut = �u

m + g(u) in D0(Q).
(1.2)

Let denote this solution by um ; one has

0  um  M a.e. on Q for every m � 1.(1.3)

In the case g ⌘ 0, it has been proved in [4] (see also [11], [13]) that

um(t) ! f = f�[w=0] + �[w>0] in L
1(⌦) for any t 2 (0, T ),

where w is the unique solution of the ‘mesa problem’

w 2 H
1
0 (⌦), �w 2 L

1(⌦), w � 0,

0  �w + f  1, w(�w + f � 1) = 0 a.e ⌦.

We extend this result for any function g satisfying the assumptions above,
and prove that

um ! u1 in C
⇣
(0, T );L1(⌦)

⌘
,
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where u1 is the unique solution of

(P1)

8
>>>>><

>>>>>:

u1 2 C
⇣
[0, T );L1(⌦)

⌘
\ L

1
loc

⇣
[0, T )⇥ ⌦

⌘
, 0  u1  1,

u1(0, .) = f, 9w1 2 L
2
loc

⇣
[0, T );H1

0 (⌦)
⌘
, w1 � 0,

w1(u1 � 1) = 0 and
@u1

@t
= �w1 + g(u1) in D0(Q),

with f defined above.

Let u be the solution of the o.d.e

@u

@t
= g(u) on Q, u(0, .) = f on ⌦.

Notice that u is well defined on Q, u � 0 and that

u  1 on Q , u1 = u on Q.

This is in particular the case if g(1)  0. In other words, if g(1)  0 then

um ! u in C
⇣
(0, T ), L1(⌦)

⌘
as m ! 1.

This last convergence has been shown in [14] for g(u) ⌘ �u
p
, by proving

again in the perturbed problem all the estimates of the case g ⌘ 0. Our
approach is completely di↵erent .

We will obtain the results above in an abstract framework of perturbation
of nonlinear problem in a Banach space X. We consider evolutions problems

8
><

>:

dum

dt
+ Amum 3 Fm(., um) in (0, T ),

um(0) = u0m

for m = 1, 2, ...1, where Am are m-accretive operators in X, Fm : (0, T ) ⇥
D(Am) ! X are Caratheodory functions satisfying assumptions, made pre-
cise below (corresponding to (1.1) in the concrete case above) and u0m 2
D(Am). Our main result is : assume that, as m ! 1, Am ! A1 in the
sense of resolvent and Fm ! F1 in the natural sense (made precise be-

low), if e�tAmu0m ! e
�tA1u01 in X for t > 0, then um ! u1 in

3



C ((0, T );X) .

The asumptions and the main result in the abstract framework are pre-
sented in section 2. In section 3, we show how it applies for the concrete
problems (Pm) and in section 4, we made present other examples which will
be developed in [15].

2 Abstract framework.

Let X be a Banach space with norm |.| and braket [., .] defined by :

[x, y] = inf
�>0

|x+ �y|� |x|
�

.

If A is a m-accretive operator in X, i.e A : X ! P(X) has a nonexpansive
resolvent J A

�
= (I + �A)�1 everywhere defined in X for every � > 0, then for

u0 2 D(A) (the closure in X of the e↵ective domain D(A) = {x 2 X ; Ax 6=
;}) and f 2 L

1
loc

([0, T ), X) , the evolution problem
8
><

>:

du

dt
+ Au 3 f on (0, T )

u(0) = u0

is well posed in the sense of mild solution (or integral solution) (see [3], [5],
[12]). If f ⌘ 0, this solution is given by the exponential formula

u(t) = e
�tA

u0 := lim
n!1

✓
I +

t

n
A

◆�n

u0.

In general one has :

Lemma 1 . Let A be m-accretive in X, u0 2 D(A) and F : (0, T )⇥D(A) !
X satisfy

i) F is Caratheodory , i.e. t ! F (t, x) is measurable for any x 2 D(A),

and x ! F (t, x) is continuous for a.a. t 2 (0, T )

ii) [x� x̂, F (t, x)� F (t, x̂)]  k(t)|x� x̂|, for every x x̂ 2 D(A),

and a.a. t 2 (0, T ) with k 2 L
1
loc
([0, T ))

iii) |F (t, x)|  c(t), for any x 2 D(A) and a.a. t 2 (0, T ), with

c 2 L
1
loc
([0, T )).
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Then there exists a unique u 2 C ([0, T );X) mild solution of

P (A,F, u0)

8
><

>:

du

dt
+ Au 3 F (., u) on (0, T ),

u(0) = u0.

Notice that, by the assumptions, F (., u) 2 L
1
loc

(0, T,X) for any u 2 C ([0, T );X) .
Lemma 1 is well known if F (t, x) = f(t) + F0(x) (since then A� F0 + kI is
m-accretive) ; we will give a proof of the general case at the end of this section.

We state the main result of this section :

Theorem 1 . For m = 1, 2, ...1, let Am be m-accretive operators in X,

u0m 2 D(Am), Fm : (0, T )⇥D(Am) ! X satisfy the assumptions i), ii), iii)
of Lemma 1 with k, c independent of m and um 2 C ([0, T );X) be the mild

solution of P (Am, Fm, u0m). Assume that, as m ! 1,

a) (I + Am)
�1
x ! (I + A1)�1

x in X for any x 2 X,

b) Fm(t, xm) ! F1(t, x1) in X for a.a. t 2 (0, T ) and

(xm) 2
Y

m=1,2...1
D(Am) such that x1 = lim

m!1
xm,

c) e
�tAmu0m ! e

�tA1u01 in X for t > 0.

Then um ! u1 in C ((0, T );X) as m ! 1.

Proof of Theorem 1. Let first assume, instead of c) ; that

u0m ! u01 in X as m ! 1 ;

as it is well known (see [9]), this assumption (together with a)) implies c),
more generally (see [3], [5]) : let f 2 L

1
loc

(0, T,X) and, for m = 1, 2, ...1, vm

be the mild solution of
8
><

>:

dvm

dt
+ Amvm 3 f on (0, T ),

vm(0) = u0m ;

then vm ! v1 in C ([0, T );X) as m ! 1. We apply this result with
f = F1(., u1) such that v1 = u1. We have (see [3], [5])

d

dt
|um � vm|  [um � vm, Fm(., um)� F1(., u1)]

 k|um � vm|+ |Fm(., vm)� F1(., u1)| in D0(0, T )
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where we have used the assumption ii). Then

|um(t)� vm(t)| 
Z

t

0
e

R t

s
k(⌧)d⌧

"m(s)ds

with "m = |Fm(., vm) � F1(., u1)|. Since vm ! u1 in C ([0, T );X) , thanks
to b) and iii), one has "m ! 0 in L

1
loc
([0, T )), and then um � vm ! 0 in

C ([0, T );X) . The conclusion um ! u1 in C ([0, T );X) follows.

We prove now the result with the general assumption c) ; for � 2 (0, T ),
set

F
�

m
(t, x) = �(�,T )Fm(t, x)

and let u�

m
be the mild solution of P (Am, u0m, F

�

m
). Clearly

u
�

m
(t) = e

�tAmu0m for t 2 [0, �],

and then by assumption c)

u
�

m
(�) ! u

�

1(�) as m ! 1.

Applying the first part of the proof on the interval (�, T ), one has

u
�

m
! u

�

1 in C ([�, T ), X) as m ! 1.

On the other hand, using ii), iii), we have

d

dt
|um � u

�

m
|  [um � u

�

m
, Fm(., um)� F

�

m
(., u�

m
)]

 c�[0, �] + k|um � u
�

m
|�(�, T ) in D0(0, T ),

such that

|um(t)� u
�

m
(t)|  e

R t

�
k(⌧)d⌧

Z
�

0
c(s)ds for t 2 [�, T ).

Then for 0 < �  t1 < t2 < T,

lim sup
m!1, t2[t1,t2]

|um(t)� u1(t)|  2e
R t2
�

k(⌧)d⌧
Z

�

0
c(s)ds,
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such that the conclusion um ! u1 in C ((0, T );X) follows.
ut

Proof of the Lemma 1. Uniqueness is clear since, if u, û are two mild
solutions of P (A,F, u0), one has

d

dt
|u� û|  [u� û, F (., u)� F (., û)]

 k|u� û| in D0((0, T )),

and then u = û. To prove existence we may assume T < 1 and k, c 2
L
1(0, T ).

Let X be the Banach space L1 (0, T, ⇢dt,X) with the weight ⇢(t) = e
�
R t

0
(1+k(⌧))d⌧

and A be the operator in X defined by

f 2 Au , f 2 L
1 (0, T,X) , u 2 C ([0, T );X) is a mild solution of

8
><

>:

du

dt
+ Au� (k + 1)u 3 f on (0, T )

u(0) = u0.

The operator A is m-accretive in X ; indeed for f 2 Au, f̂ 2 Aû

⇢[u� û, f � f̂ ] � ⇢
d

dt
|u� û|+ ⇢

0|u� û| in D0(0, T ),

such that

[u� û, f � f̂ ]X =
Z

T

0
[u� û, f � f̂ ]⇢dt

� ⇢(T )|u(T )� û(T )| � 0 ;

on the other hand for f 2 L
1 (0, T,X) , using Banach fixed point Theorem,

one proves the existence of a mild solution of
du

dt
+Au 3 ku+ f on (0, T ),

u(0) = u0, and then R (I +A) = X .

Let B be the map defined on

D (A) ⇢
n
u 2 X ; u(t) 2 D(A) a.a. t 2 (0, T )

o
,

by Bu(t) = k(t)u(t) � F (t, u(t)) ; using ii), B is accretive and, thanks to
i) and iii), B is continuous in X . Then A+B is m-accretive (see [1], [5]) and
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there exists u 2 D (A) satisfying u+Au+ Bu 3 0, that is a mild solution
of P (A,F, u0).
ut

Remarks. The assumption iii) in Lemma 1 may be relaxed : for instance
with the same proof, one has existence of a mild solution to P (A,F, u0) only
with i), ii) and

|F (t, x)|  c0|x|+ c, c0 2 IR+, c 2 L
1
loc
([0, T ]).

Notice that one could also take multivalued perturbations Fm in Theorem
1 : see [15] for such examples.

3 An application.

Let ⌦ be a bounded open set in IRN
, f 2 L

1(⌦) with f � 0, T > 0, Q =
(0, T )⇥ ⌦, and g : Q⇥ IR+ ! IR satisfy

i) g(t, x, r) is continuous in r 2 IR+ for a.a. (t, x) 2 Q,

ii) g(., r) 2 L
1
loc

⇣
[0, T )⇥ ⌦

⌘
for any r 2 IR+,

iii)
@g

@r
(t, x, .)  K in D0(0,1) for a.a. (t, x) 2 Q with K 2 C(IR+),

iv) g(., 0) � 0 a.e. on Q,

v) there exists M 2 W
1,1
loc

([0, T )) such that

M
0(t) � g(t, x,M(t)) for a.a.. (t, x) 2 Q and M(0) � kfk1.

Notice that these assumptions implies

g(., u) 2 L
1
loc

⇣
[0, T )⇥ ⌦

⌘
for any u 2 L

1
loc

([0, T )⇥ ⌦)

since

g(., R)� K̃(R).R  g(., r)  g(., 0) + K̃(R).R for 0  r  R,

where K̃(R) = max
[0,R]

K.

For m � 1, we consider the problem

(Pm)

8
>><

>>:

ut = �u
m + g(., u) on Q

u = 0 on ⌃ = (0, T )⇥ @⌦

u(0, .) = f on ⌦.
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One has :

Lemma 2 . Under assumptions above, for any m � 1 there exists a unique

solution of (Pm) in the sense

8
>><

>>:

u 2 L
1
loc

([0, T )⇥ ⌦) \ C
⇣
[0, T );L1(⌦)

⌘
, u � 0, u(0, .) = f(.),

u
m 2 L

2
loc

⇣
(0, T );H1(⌦)

⌘
and

@u

@t
= �u

m + g(., u) in D0(Q).
(3.1)

Moreover u  M a.e. on Q.

This result follows from the general theory of porous medium problem. We
will below relate it to Lemma 1.

As m ! 1, the problem (Pm) formally tends to

(P1)

8
>>>>>>><

>>>>>>>:

@u

@t
= �w + g(., u) on Q,

0  u  1, w � 0, (u� 1)w = 0 on Q,

w = 0 on ⌃,

u(0, .) = f on ⌦,

where f = f�[w=0] + �[w>0], with w the unique solution of the ‘mesa problem’

w 2 H
1
0 (⌦), �w 2 L

1(⌦), w � 0,

0  �w + f  1, w(�w + f � 1) = 0 a.e ⌦.

One has

Theorem 2 . Under assumptions above, for m � 1, let um be the solution

of (Pm), given in Lemma 2. Then,

1) um ! u1 in C
⇣
(0, T );L1(⌦)

⌘
as m ! 1.

2) Assuming g(., 1)  g̃ in D0(Q) with g̃ 2 L
2
loc

⇣
[0, T ), H�1(⌦)

⌘
, there

exists a unique (u, w) solution of (P1) in the sense

8
>>>><

>>>>:

u 2 C
⇣
[0, T );L1(⌦)

⌘
, w 2 L

2
loc

⇣
(0, T ), H1

0 (⌦)
⌘
,

u(0, .) = f(.), 0  u  1, w � 0, (u� 1)w = 0

and
@u

@t
= �w + g(., u) in D0(Q),

(3.2)

9



and we have u1 = u.

3) Assuming g(., 1)  0 a.e. on Q, u1 = u where u is the solution of

the o.d.e
@u

@t
= g(t, x, u) on Q, u(0) = f on ⌦.

Proof of Theorem 2. To apply the result of Theorem 1, let X = L
1(⌦)

and consider L the (linear) Dirichlet-Laplace operator in L
1(⌦) : Lu = �u,

with D(L) = {u 2 W
1,1
0 (⌦) ; �u 2 L

1(⌦) and
Z

⌦
u�v =

Z

⌦
v�u for any v 2

H
1
0 (⌦)\L1(⌦) with �v 2 L

1(⌦)} ; notice that if ⌦ has a smooth boundary,
then D(L) = {u 2 W

1,1
0 (⌦) ; �u 2 L

1(⌦)} (see [10]).
For m � 1, we define the singlevalued operator Am in X by

Amu = ��(|u|m�1
u), D(Am) = {u 2 L

m (⌦) ; |u|m�1
u 2 D(L)}.

For m = 1, we define the multivalued operator A1 in X by

A1u = {��w ; w 2 D(L), u 2 sign(w) a.e. on ⌦} .

Thanks to [10], Am is m-accretive in X for m 2 [1,1] ; and, thanks to [6],
we have

(I + Am)
�1
u ! (I + A1)�1

u in X as m ! 1 for any u 2 X.(3.3)

At last, thanks to [4], we have

e
�tAmf ! e

�tA1f in X for any t > 0.(3.4)

As in the proof of Lemma 1, we may assume without loss of generality that
T < 1 and the function M(t) is bounded on [0, T ).
Let R � max

[0,T )
M, and define F : (0, T )⇥X ! X by

F (t, u) = g(t, ., u+ ^R), for a.a. t 2 (0, T ) and any u 2 L
1(⌦).

Thanks to the assumptions on g, F satisfies the assumptions of Lemma 1,
with k(t) = K̃(R) and c(t) = kg(t, ., 0)+k1 + kg(t, ., R)�k1 + |⌦|RK̃(R). The
relation between problems (Pm) and the abstract framework is given by the
next Lemma

10



Lemma 3 . For m � 1, the unique mild solution u (see Lemma 1) of

du

dt
+ Amu 3 F (., u) on (0, T ), u(0) = f(3.5)

is caracterised by (3.1) of Lemma 2 (and in particular independent of R �
max
[0,T )

M.)

This Lemma 3, together with Lemma 1, proves Lemma 2. Also using
Lemma 3 together with (3.3), (3.4) the part 1) of the Theorem 2 follows
immediatly from Theorem 1 : actually

um ! u1 in C
⇣
(0, T );L1(⌦)

⌘
,

where u1 is the mild solution of
8
><

>:

du1

dt
+ A1u1 3 F (., u1) on (0, T ),

u1(0) = f.

The part 3) of Theorem 2 is an immediate consequence of the part 2) :
if g(., 1)  0 a.e. on Q, since 0  f  1, the solution of the o.d.e satisfies
0  u  1 such that (u, 0) is the solution of (3.2).

At last since u1 2 C
⇣
[0, T );L1(⌦)

⌘
and 0  u1  1, the part 2) of

Theorem 2 follows clearly from the next Lemma. This will end the proof of
the results.

Lemma 4 . Let u 2 C
⇣
[0, T );L1(⌦)

⌘
, 0  u  1 a.e. on Q and h 2 L

1(Q)

with h�[u=1]  g̃ in D0(Q) where g̃ 2 L
2
⇣
0, T ;H�1(⌦)

⌘
. Then u is a mild

solution of

du

dt
+ A1u 3 h on (0, T )(3.6)

i↵ 8
>><

>>:

9w 2 L
2
⇣
0, T ;H1

0 (⌦)
⌘
, w � 0, w(u� 1) = 0

and
@u

@t
= �w + h in D0(Q).

ut

11



Proof of Lemma 3. First we show that the mild solution u of (3.5),
satisfy 0  u  M ; as a consequence the mild solution is independent of
R � max

[0,T ]
M. Recall that Am is T-accretive. We have

d

dt

Z
(0� u(t))+ 

Z

[0�u(t)]
(0� F (t, u(t)))+


Z
(�g(t, ., 0))+ = 0,

and then u � 0 a.e. on Q. On the other hand v ⌘ M 2 W
1,1

⇣
0, T ;L1(⌦)

⌘
is

a supersolution of
dv

dt
+ Amv 3 M

0 in the sense of [2] ; then we have

d

dt

Z
(u(t)�M(t))+ 

Z

[u(t)�M(t)]
(F (t, u(t))�M

0(t))+


Z
(g(t, .,M(t))�M

0(t))+ + k(t)
Z
(u(t)�M(t))+

 k(t)
Z
(u(t)�M(t))+

and the conclusion u  M follows.

Denote by H the Hilbert space H
�1(⌦) with the scalar product (., .)

H
=

< (��)�1
., . >, where < ., . > is the duality between H

1
0 (⌦) and H

�1(⌦),
and � : H ! [0,1) be the convex l.s.c functionnal defined by

�(u) =
1

m+ 1

Z

⌦
|u|m+1 on D (�) = L

m+1(⌦).

One has (see [8])

@�(u) = ��(|u|m�1
u) on

D(@�) =
n
u 2 L

m+1(⌦) ; |u|m�1
u 2 H

1
0 (⌦)

o
;

in particular @�\ (L1(⌦)⇥L
1(⌦)) = Am \ (H ⇥H). Denote by Y the space

L
1(⌦) +H

�1(⌦) endowed with the norm

kukY = inf
n
ku1kL1 + ku2kH�1 ; u1 2 L

1(⌦), u2 2 H
�1(⌦) ;

u = u1 + u2

o
.
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We have Am

Y

= @�
Y

, and by classical interpolation, this operator denoted
by B is m-accretive in Y.

Now let u be solution of (3.1). Since h = g(., u) 2 L
1(Q) and u

m 2
L
2
⇣
0, T ;H1

0 (⌦)
⌘
, we have u 2 W

1,1
⇣
0, T, L1(⌦) +H

�1(⌦)
⌘
and

du

dt
(t) +

@�(u(t)) 3 h(t) for a.e. t 2 [0, T ) ; then u is mild solution (in Y ) of
du

dt
+ Bu 3 h ; since the mild solution (in X) of

du

dt
+ Au 3 h, u(0) = f is

clearly mild solution (in Y ) of
du

dt
+Bu 3 h it follows that u is actually mild

solution (in X) of
du

dt
+ Amu 3 h. We may assume R � kuk1, such that

h = F (., u) and then u is the mild solution of (3.5).

To end up the proof we show that the mild solution u of (3.5) satisfies
(3.1). We already know that u 2 L

1(Q), u � 0, h := F (., u) = g(., u). Set
hn,l = (h ^ n) _ (�l) and let un,l be the mild solution of

dun,l

dt
+ Amun,l 3 hn,l , un,l(0) = f.

We have un,l # un as l " 1 and un " u as n " 1. Since hn,l 2 L
1(Q) ⇢

L
2
⇣
0, T ;H�1(⌦)

⌘
, un,l is solution (in H) of

dun,l

dt
+ @�(un,l) 3 hn,l, that

is 8
>><

>>:

wn,l := |un,l|m�1
un,l 2 L

2
⇣
0, T ;H1

0 (⌦)
⌘
and

@un,l

@t
= �wn,l + hn,l in D0(Q).

(3.7)

First, since (u+
n,l
)
m 2 L

2
⇣
0, T ;H1

0 (⌦)
⌘
, we have

Z Z
|r(u+

n,l
)
m|2  1

m+ 1

Z

⌦
f
m+1 +

Z Z
hn,l(u

+
n,l
)m ;

since
Z Z

hn,l(u
+
n,l
)
m 

Z Z
(h+ ^ n)(u+

n,l
)
m #

Z Z
(h+ ^ n)(u+

n
)m as l " 1

and Z Z
(h+ ^ n)(u+

n
)m 

Z Z
h
+
u
m  khk1Rm

,

13



we deduce that
lim sup
n!1

lim sup
l!1

Z Z
|r(u+

n,l
)
m|2 < 1,

and then u
m = u

+m 2 L
2
⇣
0, T ;H1

0 (⌦)
⌘
.

On the other hand integrating (3.7) in time,

��(
Z

T

0
|wn,l(s, .)ds) = f � un,l(T, .) +

Z
T

0
hn,l(s, .)ds

is bounded in L
1(⌦), and then

Z Z
wn,l is bounded ; by monotone convergence

Theorem, it follows that wn,l ! wn := |un|m�1
un in L

1(Q) as l ! 1 and

wn ! u
m in L

1(Q) ; passing to the limit in (3.7), we get
@u

@t
= �u

m + h in

D0(Q). ut

Proof of Lemma 4. To proof the ‘only if’ part, we exactly follow the
second part of the proof of Lemma 3, using the l.s.c convex functionnal � on
H = H

�1(⌦), defined by

�(u) = 0 on D(�) = {u 2 L
1(⌦) ; |u|  1} .

We have,
@�(u) =

n
��w ; w 2 H

1
0 (⌦), u 2 sign(w)

o

and as in the proof of Lemma 3 : @� \ (L1(⌦) ⇥ L
1(⌦)) = A1 \ (H ⇥ H),

B = A1
Y

= @�
Y

is m-acretive in Y. For h 2 L
1(Q), if u 2 C

⇣
[0, T );L1(⌦)

⌘

satisfies
8
>><

>>:

9w 2 L
2
⇣
0, T ;H1

0 (⌦)
⌘
, u 2 sign(w) a.e. on Q and

@u

@t
= �w + h in D0(Q),

then u is mild solution in Y of
du

dt
+ Bu 3 h and then it is mild solution in

X of (3.6).

Conversly let u be mild solution of
du

dt
+ A1u 3 h with 0  u  1

and h�[u=1]  g̃ 2 L
2
⇣
0, T ;H�1(⌦)

⌘
. As in the proof of Lemmma 3, let

14



hn,l = (h^ n)_ (�l) and un,l the corresponding solution ; there exists wn,l 2
L
2
⇣
0, T ;H1

0 (⌦)
⌘
such that

8
><

>:

un,l 2 sign(wn,l) a.e. on Q, and
@un,l

@t
= �wn,l + hn,l in D0(Q).

wn,l is unique and actually

wn,l = w � L
2
⇣
0, T ;H1

0 (⌦)
⌘
� lim

m ! 1w
(m)
n,l

,

where u
(m)
n,l

and w
(m)
n,l

are the solution of (3.7) with u
(m)
n,l

(0) = f ; indeed

u
(m)
n,l

! un,l in C
⇣
[0, T );L1(⌦)

⌘
as m ! 1 and

n@u(m)
n,l

@t
; m � 1

o
is bounded

in L
2
⇣
0, T ;H�1(⌦)

⌘
since

k
@u

(m)
n,l

@t
k
2

L2(0,T,H�1(⌦)
 |⌦|

m+ 1
+ khn,lk2L2(0,T,H�1(⌦)k

@u
(m)
n,l

@t
k
2

L2(0,T,H�1(⌦)
.

It follows that wn,l # wn as l " 1 and wn " w as n " 1 ; we have un 2
sign(wn) and u 2 sign(w) ; then in particular w+

n
= 0 on [u < 1] and w � 0.

We have
Z Z

|rw
+
n,l
|2 =

Z Z
hn,lw

+
n,l

 n

Z Z
w

+
n,l
.

It follows that w+
n,l

2 L
2
⇣
0, T ;H1

0 (⌦)
⌘
, (h ^ n)w+

n,l
2 L

1(Q) and

Z Z
|rw

+
n,l
|2 

Z Z
(h ^ n)w+

n,l
=

Z Z

[u=1]
(h ^ n)w+

n,l


Z Z

[u=1]
hw

+
n,l

< g̃, w
+
n,l

>

 Ckrw
+
n,l
kL2(0,T,H1

0 (⌦) ;

then w 2 L
2
⇣
0, T ;H1

0 (⌦)
⌘
. Exactly like in the proof of Lemma 3, we have

@u

@t
= �w + h in D0(Q) and this end up the proof. ut
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4 Remarks.

Similar results may be obtained for other boundary value problems. Let us
mention the following cases developped in [15] :

a) Neuman boundary conditions : We assume that ⌦ has a su�ciently
smooth boundary, g and f being as in section 3. For m � 1 there exists a
unique um solution of

ut = �u
m + g(., u) on Q,

@u
m

@n
= 0 on ⌃, u(0, .) = f on ⌦,

in the sense
8
>>>><

>>>>:

u 2 C
⇣
[0, T );L1(⌦)

⌘
\ L

1
loc
([0, T )⇥ ⌦), u � 0, u

m 2 L
2
loc

⇣
[0, T ), H1(⌦)

⌘

and
Z Z

u
@⇠

@t
+

Z Z
g(., u)⇠ =

Z Z
ru

mr⇠ +
Z
f⇠(0, .), 8⇠ 2 C1(Q)

with supp(⇠) ⇢ [0, T )⇥ ⌦.

In the case g ⌘ 0, it is shown in [4] that um ! f in C
⇣
(0, T );L1(⌦)

⌘
as

m ! 1, where

8
>>><

>>>:

f ⌘ 1 if
1

|⌦|

Z

⌦
f � 1,

f = f�[w=0] + �[w>0] if
1

|⌦|

Z

⌦
f < 1,

with w the unique solution of the variationnal problem

w 2 H
2(⌦), w � 0, 0  �w + f  1,

w(�w + f � 1) = 0 a.e ⌦ and
@w

@n
= 0 on ⌃.

With the same technics, the corresponding conclusion of Theorem 2 holds :

i) um ! u1 in C
⇣
(0, T );L1(⌦)

⌘
as m ! 1.

ii) If
Z Z

g(., 1)⇠ 
Z Z

g̃0⇠ +
i=NX

i=1

g̃i
@⇠

@xi

for any ⇠ 2 C1(Q), ⇠ � 0 and

16



supp(⇠) ⇢ [0, T ) ⇥ ⌦, with g0...gn 2 L
2
loc

⇣
[0, T )⇥ ⌦

⌘
, then there exists a

unique (u, v) solution of

8
>>>>>><

>>>>>>:

u 2 C
⇣
[0, T );L1(⌦)

⌘
\ L

1
loc
([0, T )⇥ ⌦), w 2 L

2
loc

⇣
[0, T ), H1(⌦)

⌘
,

0  u  1, w � 0, w(u� 1) = 0 and
Z Z

u
@⇠

@t
+

Z Z
g(., u)⇠ =

Z Z
rwr⇠ +

Z
f⇠(0, .), 8⇠ 2 C1(Q) with supp(⇠) ⇢ [0, T )⇥ ⌦.

and we have u1 = u.

iii) If g(., 1)  0, then u1 = u where u is the solution of the o.d.e

@u

@t
= g(t, x, u) on Q, u(0) = f on ⌦.

b) Cauchy problem : Let ⌦ = IRN and g, f satisfies the assumptions
of section 3 with moreover g(., 0) 2 L

1(Q⌧ ) for any ⌧ 2 (0, T ) where Q⌧ =
[0, ⌧) ⇥ IRN and f 2 L

1(IRN). Then for any m � 1, there exists a unique
solution um of

8
>>>><

>>>>:

u 2 C
⇣
[0, T );L1(⌦)

⌘
\ L

1(Q⌧ ) for any ⌧ 2 (0, T ), u � 0,

u(0, .) = f(.), g(., u) 2 L
1(Q⌧ ) for any ⌧ 2 (0, T ), and

@u

@t
= �u

m + g(., u) in D0(Q).

As m ! 1, um ! u1 in C
⇣
(0, T );L1(⌦)

⌘
, where u1 is the unique solution

of
8
>>>><

>>>>:

u1 2 C
⇣
[0, T );L1(⌦)

⌘
, 0  u1  1, u1(0, .) = f, g(., u1) 2 L

1(Q⌧ )

for any ⌧ 2 (0, T ), 9w1 2 L
1(Q⌧ ) for any ⌧ 2 (0, T ) s.t. w1 � 0,

w1(u1 � 1) = 0 and
@u

@t
= �w + g(., u) in D0(Q),

where f = f�[w=0] + �[w>0], w is the unique solution of the mesa problem

w 2 H
2(⌦), w � 0, 0  �w + f  1,

and w(�w + f � 1) = 0 a.e IRN
.
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The case g ⌘ 0 is shown in [4] (see also [11]). In the case g(., 1)  0, u1 = u

the unique solution of the o.d.e :

@u

@t
= g(t, x, u) on Q, u(0) = f on IRN

.

a) Nonlinear di↵usion : Let ⌦, g and f as in b) and 1 < p < 1. For
any m � 1, there exists a unique solution um of

ut = �pu
m + g(., u) on Q, u(0, .) = f on IRN

,

in the sense
8
>>>><

>>>>:

u 2 C
⇣
[0, T );L1(⌦)

⌘
\ L

1(Q⌧ ) for any ⌧ 2 (0, T ), u � 0,

u(0, .) = f(.), g(., u) 2 L
1(Q⌧ ) for any ⌧ 2 (0, T ),

u
m 2 L

p

loc

⇣
[0, T );W 1,p(IRN)

⌘
and

@u

@t
= �pu

m + g(., u) in D0(Q).

Assuming that f is radial nonincreasing, i.e. f(x) = f̃(|x|) with f̃ : IRN !
IR+ nonincreasing, then um ! u1 in C

⇣
(0, T );L1(IRN)

⌘
as m ! 1. If

moreover g(., 1)  0, then u1 = u the unique solution of the o.d.e.

@u

@t
= g(t, x, u) a.e. Q, u(0) = f�[|x|<a] + �[|x|�a] on IRN

,

with a the unique positive number such that

Z 1

0
f̃(ar)drN = 1.

The case g ⌘ 0 is shown in [7] (see also [15]).
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