Singular limit of perturbed nonlinear semigroups

Ph. Bénilan*and N. Igbida*

December 1995

$$
\begin{aligned}
& \text { Abstract } \\
& \text { In this paper, we consider evolution problems } \\
& \left\{\begin{array}{l}
\frac{d u_{m}}{d t}+A_{m} u_{m} \ni F_{m}\left(., u_{m}\right) \text { in }(0, T), \\
u_{m}(0)=u_{0 m}
\end{array}\right.
\end{aligned}
$$

where for $m=1,2, \ldots \infty, A_{m}$ are m-accretive operators in a Banach space $X, F_{m}:(0, T) \times \overline{\mathcal{D}\left(A_{m}\right)} \rightarrow X$ are Caratheodory functions satisfying some assumptions, $u_{0 m} \in \overline{\mathcal{D}\left(A_{m}\right)}$ and u_{m} the mild solution of the problems. Assuming that, as $m \rightarrow \infty, A_{m} \rightarrow A_{\infty}$ in the sense of resolvent and $F_{m} \rightarrow F_{\infty}$ in the natural sense, we prove that if $e^{-t A_{m}} u_{0 m} \rightarrow e^{-t A_{\infty}} u_{0 \infty}$ for $t>0$, then $\quad u_{m} \rightarrow u_{\infty} \quad$ in $\mathcal{C}((0, T) ; X)$. And, we apply this result to the limit as $m \rightarrow \infty$, of the solution u_{m} of

$$
\left\{\begin{array}{l}
u_{t}=\Delta u^{m}+g(., u) \quad \text { on }(0, T) \times \Omega \\
u^{m}=0 \text { on }(0, T) \times \partial \Omega, u(0, .)=f \geq 0 \text { on } \Omega
\end{array}\right.
$$

AMS classifications : 35A05, 35B20, 35B25, 35D10.
Key words : Nonlinear semigroup, m-T-accretive operator, Mild solution, Singular limit, Porous medium problem .

[^0]
1 Introduction.

Consider the following problem
$\left(P_{m}\right) \quad \begin{cases}u_{t}=\Delta u^{m}+g(u) & \text { on } Q=(0, T) \times \Omega \\ u^{m}=0 & \text { on } \Sigma=(0, T) \times \partial \Omega \\ u(0, x)=f(x) & \text { on } \Omega\end{cases}$
where Ω is a bounded open set in $\mathbb{R}^{N}, f \in L^{\infty}(Q), f \geq 0$ and $g: \mathbb{R}_{+} \rightarrow \mathbb{R}$ is continuous with

$$
\begin{equation*}
g(0) \geq 0, \frac{d g}{d r} \leq K \quad \text { in } \mathcal{D}^{\prime}(0, \infty) \tag{1.1}
\end{equation*}
$$

with $K \in \mathcal{C}\left(\mathbb{R}_{+}\right)$; the time $T>0$ is such that the solution of the o.d.e

$$
M^{\prime}=g(M), \quad g(0)=\|f\|_{\infty}
$$

is defined on $[0, T)$. Then for every $m \geq 1$, there exists a unique solution of $\left(P_{m}\right)$ in the sense

$$
\left\{\begin{array}{l}
u \in \mathcal{C}\left([0, T) ; L^{1}(\Omega)\right) \cap L_{l o c}^{\infty}([0, T) \times \bar{\Omega}), u \geq 0, u(0, .)=f \tag{1.2}\\
u^{m} \in L_{l o c}^{2}\left([0, T) ; H_{0}^{1}(\Omega)\right), u_{t}=\Delta u^{m}+g(u) \text { in } \mathcal{D}^{\prime}(Q)
\end{array}\right.
$$

Let denote this solution by u_{m}; one has

$$
\begin{equation*}
0 \leq u_{m} \leq M \quad \text { a.e. on } Q \quad \text { for every } m \geq 1 \tag{1.3}
\end{equation*}
$$

In the case $g \equiv 0$, it has been proved in [4] (see also [11], [13]) that

$$
u_{m}(t) \rightarrow \underline{f}=f \chi_{[w=0]}+\chi_{[w>0]} \quad \text { in } L^{1}(\Omega) \text { for any } t \in(0, T)
$$

where w is the unique solution of the 'mesa problem'

$$
\begin{gathered}
\underline{w} \in H_{0}^{1}(\Omega), \Delta \underline{w} \in L^{\infty}(\Omega), \underline{w} \geq 0 \\
0 \leq \Delta \underline{w}+f \leq 1, \underline{w}(\Delta \underline{w}+f-1)=0 \text { a.e } \Omega .
\end{gathered}
$$

We extend this result for any function g satisfying the assumptions above, and prove that

$$
u_{m} \rightarrow u_{\infty} \quad \text { in } \mathcal{C}\left((0, T) ; L^{1}(\Omega)\right)
$$

where u_{∞} is the unique solution of
$\left(P_{\infty}\right) \quad\left\{\begin{array}{l}u_{\infty} \in \mathcal{C}\left([0, T) ; L^{1}(\Omega)\right) \cap L_{l o c}^{\infty}([0, T) \times \bar{\Omega}), 0 \leq u_{\infty} \leq 1, \\ u_{\infty}(0, .)=\underline{f}, \exists w_{\infty} \in L_{l o c}^{2}\left([0, T) ; H_{0}^{1}(\Omega)\right), w_{\infty} \geq 0, \\ w_{\infty}\left(u_{\infty}-1\right)=0 \text { and } \frac{\partial u_{\infty}}{\partial t}=\Delta w_{\infty}+g\left(u_{\infty}\right) \text { in } \mathcal{D}^{\prime}(Q),\end{array}\right.$
with \underline{f} defined above.
Let \underline{u} be the solution of the o.d.e

$$
\frac{\partial \underline{u}}{\partial t}=g(\underline{u}) \text { on } Q, \quad \underline{u}(0, .)=\underline{f} \text { on } \Omega .
$$

Notice that \underline{u} is well defined on $Q, \underline{u} \geq 0$ and that

$$
\underline{u} \leq 1 \text { on } Q \quad \Leftrightarrow \quad u_{\infty}=\underline{u} \text { on } Q .
$$

This is in particular the case if $g(1) \leq 0$. In other words, if $g(1) \leq 0$ then

$$
u_{m} \rightarrow \underline{u} \quad \text { in } \mathcal{C}\left((0, T), L^{1}(\Omega)\right) \text { as } m \rightarrow \infty
$$

This last convergence has been shown in [14] for $g(u) \equiv-u^{p}$, by proving again in the perturbed problem all the estimates of the case $g \equiv 0$. Our approach is completely different .

We will obtain the results above in an abstract framework of perturbation of nonlinear problem in a Banach space X. We consider evolutions problems

$$
\left\{\begin{array}{l}
\frac{d u_{m}}{d t}+A_{m} u_{m} \ni F_{m}\left(., u_{m}\right) \text { in }(0, T), \\
u_{m}(0)=u_{0 m}
\end{array}\right.
$$

for $m=1,2, \ldots \infty$, where A_{m} are m-accretive operators in $X, F_{m}:(0, T) \times$ $\overline{\mathcal{D}\left(A_{m}\right)} \rightarrow X$ are Caratheodory functions satisfying assumptions, made precise below (corresponding to (1.1) in the concrete case above) and $u_{0 m} \in$ $\overline{\mathcal{D}\left(A_{m}\right)}$. Our main result is : assume that, as $m \rightarrow \infty, A_{m} \rightarrow A_{\infty}$ in the sense of resolvent and $F_{m} \rightarrow F_{\infty}$ in the natural sense (made precise below), if $e^{-t A_{m}} u_{0 m} \rightarrow e^{-t A_{\infty} u_{0 \infty}} \quad$ in X for $t>0$, then $\quad u_{m} \rightarrow u_{\infty} \quad$ in
$\mathcal{C}((0, T) ; X)$.
The asumptions and the main result in the abstract framework are presented in section 2. In section 3, we show how it applies for the concrete problems $\left(P_{m}\right)$ and in section 4, we made present other examples which will be developed in [15].

2 Abstract framework.

Let X be a Banach space with norm |.| and braket [.,.] defined by :

$$
[x, y]=\inf _{\lambda>0} \frac{|x+\lambda y|-|x|}{\lambda} .
$$

If A is a m-accretive operator in X, i.e $A: X \rightarrow \mathcal{P}(X)$ has a nonexpansive resolvent $\mathcal{J}_{\lambda}^{A}=(I+\lambda A)^{-1}$ everywhere defined in X for every $\lambda>0$, then for $u_{0} \in \overline{\mathcal{D}(A)}$ (the closure in X of the effective domain $\mathcal{D}(A)=\{x \in X ; A x \neq$ $\emptyset\})$ and $f \in L_{l o c}^{1}([0, T), X)$, the evolution problem

$$
\left\{\begin{array}{l}
\frac{d u}{d t}+A u \ni f \quad \text { on }(0, T) \\
u(0)=u_{0}
\end{array}\right.
$$

is well posed in the sense of mild solution (or integral solution) (see [3], [5], [12]). If $f \equiv 0$, this solution is given by the exponential formula

$$
u(t)=e^{-t A} u_{0}:=\lim _{n \rightarrow \infty}\left(I+\frac{t}{n} A\right)^{-n} u_{0}
$$

In general one has :
Lemma 1 . Let A be m-accretive in $X, u_{0} \in \overline{\mathcal{D}(A)}$ and $F:(0, T) \times \overline{\mathcal{D}(A)} \rightarrow$ X satisfy
i) F is Caratheodory, i.e. $t \rightarrow F(t, x)$ is measurable for any $x \in \overline{\mathcal{D}(A)}$, and $x \rightarrow F(t, x)$ is continuous for a.a. $t \in(0, T)$
ii) $\quad[x-\hat{x}, F(t, x)-F(t, \hat{x})] \leq k(t)|x-\hat{x}|$, for every $x \hat{x} \in \overline{\mathcal{D}(A)}$, and a.a. $t \in(0, T)$ with $k \in L_{l o c}^{1}([0, T))$
iii) $|F(t, x)| \leq c(t)$, for any $x \in \overline{\mathcal{D}(A)}$ and a.a. $t \in(0, T)$, with $c \in L_{l o c}^{1}([0, T))$.

Then there exists a unique $u \in \mathcal{C}([0, T) ; X)$ mild solution of
$P\left(A, F, u_{0}\right)$

$$
\left\{\begin{array}{l}
\frac{d u}{d t}+A u \ni F(., u) \quad \text { on }(0, T), \\
u(0)=u_{0}
\end{array}\right.
$$

Notice that, by the assumptions, $F(., u) \in L_{l o c}^{1}(0, T, X)$ for any $u \in \mathcal{C}([0, T) ; X)$. Lemma 1 is well known if $F(t, x)=f(t)+F_{0}(x)$ (since then $A-F_{0}+k I$ is m -accretive) ; we will give a proof of the general case at the end of this section.

We state the main result of this section :
Theorem 1 . For $m=1,2, \ldots \infty$, let A_{m} be m-accretive operators in X, $u_{0 m} \in \overline{\mathcal{D}\left(A_{m}\right)}, F_{m}:(0, T) \times \overline{\mathcal{D}\left(A_{m}\right)} \rightarrow X$ satisfy the assumptions $\left.\left.i\right), i i\right)$, iii $)$ of Lemma 1 with k, c independent of m and $u_{m} \in \mathcal{C}([0, T) ; X)$ be the mild solution of $P\left(A_{m}, F_{m}, u_{0 m}\right)$. Assume that, as $m \rightarrow \infty$,
a) $\left(I+A_{m}\right)^{-1} x \rightarrow\left(I+A_{\infty}\right)^{-1} x \quad$ in X for any $x \in X$,
b) $\quad F_{m}\left(t, x_{m}\right) \rightarrow F_{\infty}\left(t, x_{\infty}\right) \quad$ in X for a.a. $t \in(0, T)$ and $\left(x_{m}\right) \in \prod_{m=1,2 \ldots \infty} \overline{\mathcal{D}\left(A_{m}\right)}$ such that $x_{\infty}=\lim _{m \rightarrow \infty} x_{m}$,
c) $e^{-t A_{m}} u_{0 m} \rightarrow e^{-t A_{\infty}} u_{0 \infty} \quad$ in X for $t>0$.

Then $\quad u_{m} \rightarrow u_{\infty} \quad$ in $\mathcal{C}((0, T) ; X)$ as $m \rightarrow \infty$.
Proof of Theorem 1. Let first assume, instead of c); that

$$
u_{0 m} \rightarrow u_{0 \infty} \quad \text { in } X \text { as } m \rightarrow \infty ;
$$

as it is well known (see [9]), this assumption (together with a)) implies c), more generally (see [3], [5]) : let $f \in L_{l o c}^{1}(0, T, X)$ and, for $m=1,2, \ldots \infty, v_{m}$ be the mild solution of

$$
\left\{\begin{array}{l}
\frac{d v_{m}}{d t}+A_{m} v_{m} \ni f \quad \text { on }(0, T), \\
v_{m}(0)=u_{0 m}
\end{array}\right.
$$

then $\quad v_{m} \rightarrow v_{\infty} \quad$ in $\mathcal{C}([0, T) ; X)$ as $m \rightarrow \infty$. We apply this result with $f=F_{\infty}\left(., u_{\infty}\right)$ such that $v_{\infty}=u_{\infty}$. We have (see [3], [5])

$$
\begin{aligned}
\frac{d}{d t}\left|u_{m}-v_{m}\right| & \leq\left[u_{m}-v_{m}, F_{m}\left(., u_{m}\right)-F_{\infty}\left(., u_{\infty}\right)\right] \\
& \leq k\left|u_{m}-v_{m}\right|+\left|F_{m}\left(., v_{m}\right)-F_{\infty}\left(., u_{\infty}\right)\right| \quad \text { in } \mathcal{D}^{\prime}(0, T)
\end{aligned}
$$

where we have used the assumption $i i$). Then

$$
\left|u_{m}(t)-v_{m}(t)\right| \leq \int_{0}^{t} e^{e_{s}^{t} k(\tau) d \tau} \varepsilon_{m}(s) d s
$$

with $\varepsilon_{m}=\left|F_{m}\left(., v_{m}\right)-F_{\infty}\left(., u_{\infty}\right)\right|$. Since $v_{m} \rightarrow u_{\infty}$ in $\mathcal{C}([0, T) ; X)$, thanks to $b)$ and $i i i)$, one has $\varepsilon_{m} \rightarrow 0$ in $L_{l o c}^{1}([0, T))$, and then $u_{m}-v_{m} \rightarrow 0 \quad$ in $\mathcal{C}([0, T) ; X)$. The conclusion $u_{m} \rightarrow u_{\infty}$ in $\mathcal{C}([0, T) ; X)$ follows.

We prove now the result with the general assumption $c)$; for $\delta \in(0, T)$, set

$$
F_{m}^{\delta}(t, x)=\chi_{(\delta, T)} F_{m}(t, x)
$$

and let u_{m}^{δ} be the mild solution of $P\left(A_{m}, u_{0 m}, F_{m}^{\delta}\right)$. Clearly

$$
u_{m}^{\delta}(t)=e^{-t A_{m}} u_{0 m} \quad \text { for } t \in[0, \delta],
$$

and then by assumption c)

$$
u_{m}^{\delta}(\delta) \rightarrow u_{\infty}^{\delta}(\delta) \quad \text { as } m \rightarrow \infty
$$

Applying the first part of the proof on the interval (δ, T), one has

$$
u_{m}^{\delta} \rightarrow u_{\infty}^{\delta} \quad \text { in } \mathcal{C}([\delta, T), X) \text { as } m \rightarrow \infty
$$

On the other hand, using $i i$,,$i i i$, we have

$$
\begin{aligned}
\frac{d}{d t}\left|u_{m}-u_{m}^{\delta}\right| & \leq\left[u_{m}-u_{m}^{\delta}, F_{m}\left(., u_{m}\right)-F_{m}^{\delta}\left(., u_{m}^{\delta}\right)\right] \\
& \leq c \chi_{[0, \delta]}+k\left|u_{m}-u_{m}^{\delta}\right| \chi_{(\delta, T)} \quad \text { in } \mathcal{D}^{\prime}(0, T)
\end{aligned}
$$

such that

$$
\left|u_{m}(t)-u_{m}^{\delta}(t)\right| \leq e^{\int_{\delta}^{t} k(\tau) d \tau} \int_{0}^{\delta} c(s) d s \quad \text { for } t \in[\delta, T)
$$

Then for $0<\delta \leq t_{1}<t_{2}<T$,

$$
\limsup _{m \rightarrow \infty, t \in\left[t_{1}, t_{2}\right]}\left|u_{m}(t)-u_{\infty}(t)\right| \leq 2 e^{t_{\delta}^{t_{2}} k(\tau) d \tau} \int_{0}^{\delta} c(s) d s
$$

such that the conclusion $\quad u_{m} \rightarrow u_{\infty} \quad$ in $\mathcal{C}((0, T) ; X)$ follows.

Proof of the Lemma 1. Uniqueness is clear since, if u, \hat{u} are two mild solutions of $P\left(A, F, u_{0}\right)$, one has

$$
\begin{aligned}
\frac{d}{d t}|u-\hat{u}| & \leq[u-\hat{u}, F(., u)-F(., \hat{u})] \\
& \leq k|u-\hat{u}| \quad \text { in } \mathcal{D}^{\prime}((0, T)),
\end{aligned}
$$

and then $u=\hat{u}$. To prove existence we may assume $T<\infty$ and $k, c \in$ $L^{1}(0, T)$.
Let \mathcal{X} be the Banach space $L^{1}(0, T, \rho d t, X)$ with the weight $\rho(t)=e^{-\int_{0}^{t}(1+k(\tau)) d \tau}$ and \mathcal{A} be the operator in \mathcal{X} defined by $f \in \mathcal{A} u \quad \Leftrightarrow \quad f \in L^{1}(0, T, X), u \in \mathcal{C}([0, T) ; X)$ is a mild solution of

$$
\left\{\begin{array}{l}
\frac{d u}{d t}+A u-(k+1) u \ni f \quad \text { on }(0, T) \\
u(0)=u_{0}
\end{array}\right.
$$

The operator \mathcal{A} is m-accretive in \mathcal{X}; indeed for $f \in \mathcal{A} u, \hat{f} \in \mathcal{A} \hat{u}$

$$
\rho[u-\hat{u}, f-\hat{f}] \geq \rho \frac{d}{d t}|u-\hat{u}|+\rho^{\prime}|u-\hat{u}| \quad \text { in } \mathcal{D}^{\prime}(0, T),
$$

such that

$$
\begin{aligned}
{[u-\hat{u}, f-\hat{f}] \mathcal{X} } & =\int_{0}^{T}[u-\hat{u}, f-\hat{f}] \rho d t \\
& \geq \rho(T)|u(T)-\hat{u}(T)| \geq 0
\end{aligned}
$$

on the other hand for $f \in L^{1}(0, T, X)$, using Banach fixed point Theorem, one proves the existence of a mild solution of $\frac{d u}{d t}+A u \ni k u+f$ on $(0, T)$, $u(0)=u_{0}$, and then $R(I+\mathcal{A})=\mathcal{X}$.
Let \mathcal{B} be the map defined on

$$
\overline{\mathcal{D}(\mathcal{A})} \subset\{u \in \mathcal{X} ; u(t) \in \overline{\mathcal{D}(A)} \text { a.a. } t \in(0, T)\}
$$

by $\quad \mathcal{B} u(t)=k(t) u(t)-F(t, u(t))$; using $i i), \mathcal{B}$ is accretive and, thanks to ${ }^{i}$) and $i i i$), \mathcal{B} is continuous in \mathcal{X}. Then $\mathcal{A}+\mathcal{B}$ is m-accretive (see [1], [5]) and
there exists $u \in \overline{\mathcal{D}(\mathcal{A})}$ satisfying $\quad u+\mathcal{A} u+\mathcal{B} u \ni 0$, that is a mild solution of $P\left(A, F, u_{0}\right)$.

Remarks. The assumption i iii) in Lemma 1 may be relaxed : for instance with the same proof, one has existence of a mild solution to $P\left(A, F, u_{0}\right)$ only with i), $i i$) and

$$
|F(t, x)| \leq c_{0}|x|+c, \quad c_{0} \in \mathbb{R}_{+}, c \in L_{l o c}^{1}([0, T])
$$

Notice that one could also take multivalued perturbations F_{m} in Theorem 1 : see [15] for such examples.

3 An application.

Let Ω be a bounded open set in $\mathbb{R}^{N}, f \in L^{\infty}(\Omega)$ with $f \geq 0, T>0, Q=$ $(0, T) \times \Omega$, and $g: Q \times \mathbb{R}_{+} \rightarrow \mathbb{R}$ satisfy
i) $g(t, x, r)$ is continuous in $r \in \mathbb{R}_{+}$for a.a. $(t, x) \in Q$,
ii) $g(., r) \in L_{l o c}^{1}([0, T) \times \bar{\Omega})$ for any $r \in \mathbb{R}_{+}$,
iii) $\frac{\partial g}{\partial r}(t, x,) \leq$.$K in \mathcal{D}^{\prime}(0, \infty)$ for a.a. $(t, x) \in Q$ with $K \in \mathcal{C}\left(\mathbb{R}_{+}\right)$,
iv) $g(., 0) \geq 0 \quad$ a.e. on Q,
$v) \quad$ there exists $M \in W_{l o c}^{1,1}([0, T))$ such that

$$
M^{\prime}(t) \geq g(t, x, M(t)) \quad \text { for a.a.. }(t, x) \in Q \text { and } M(0) \geq\|f\|_{\infty} .
$$

Notice that these assumptions implies

$$
g(., u) \in L_{l o c}^{1}([0, T) \times \bar{\Omega}) \quad \text { for any } u \in L_{l o c}^{\infty}([0, T) \times \Omega)
$$

since

$$
g(., R)-\tilde{K}(R) \cdot R \leq g(., r) \leq g(., 0)+\tilde{K}(R) \cdot R \quad \text { for } 0 \leq r \leq R,
$$

where $\tilde{K}(R)=\max _{[0, R]} K$.
For $m \geq 1$, we consider the problem
$\left(P_{m}\right) \quad \begin{cases}u_{t}=\Delta u^{m}+g(., u) & \text { on } Q \\ u=0 & \text { on } \Sigma=(0, T) \times \partial \Omega \\ u(0, .)=f & \text { on } \Omega .\end{cases}$

One has :
Lemma 2 . Under assumptions above, for any $m \geq 1$ there exists a unique solution of $\left(P_{m}\right)$ in the sense
(3.1) $\left\{\begin{array}{l}u \in L_{l o c}^{\infty}([0, T) \times \Omega) \cap \mathcal{C}\left([0, T) ; L^{1}(\Omega)\right), u \geq 0, u(0, .)=f(.), \\ u^{m} \in L_{l o c}^{2}\left((0, T) ; H^{1}(\Omega)\right) \text { and } \frac{\partial u}{\partial t}=\Delta u^{m}+g(., u) \text { in } \mathcal{D}^{\prime}(Q) .\end{array}\right.$

Moreover $\quad u \leq M \quad$ a.e. on Q.
This result follows from the general theory of porous medium problem. We will below relate it to Lemma 1.

As $m \rightarrow \infty$, the problem $\left(P_{m}\right)$ formally tends to
$\left(P_{\infty}\right) \quad \begin{cases}\frac{\partial u}{\partial t}=\Delta w+g(., u) & \text { on } Q, \\ 0 \leq u \leq 1, w \geq 0,(u-1) w=0 & \text { on } Q, \\ w=0 & \text { on } \Sigma, \\ u(0, .)=\underline{f} & \text { on } \Omega,\end{cases}$
where $\underline{f}=f \chi_{[\underline{w}=0]}+\chi_{[\underline{w}>0]}$, with \underline{w} the unique solution of the 'mesa problem'

$$
\begin{gathered}
\underline{w} \in H_{0}^{1}(\Omega), \Delta \underline{w} \in L^{\infty}(\Omega), \underline{w} \geq 0, \\
0 \leq \Delta \underline{w}+f \leq 1, \underline{w}(\Delta \underline{w}+f-1)=0 \text { a.e } \Omega .
\end{gathered}
$$

One has
Theorem 2 . Under assumptions above, for $m \geq 1$, let u_{m} be the solution of $\left(P_{m}\right)$, given in Lemma 2. Then,

1) $\quad u_{m} \rightarrow u_{\infty} \quad$ in $\mathcal{C}\left((0, T) ; L^{1}(\Omega)\right)$ as $m \rightarrow \infty$.
2) Assuming $\quad g(., 1) \leq \tilde{g} \quad$ in $\mathcal{D}^{\prime}(Q)$ with $\tilde{g} \in L_{\text {loc }}^{2}\left([0, T), H^{-1}(\Omega)\right)$, there exists a unique (u, w) solution of $\left(P_{\infty}\right)$ in the sense

$$
\left\{\begin{array}{l}
u \in \mathcal{C}\left([0, T) ; L^{1}(\Omega)\right), w \in L_{\text {loc }}^{2}\left((0, T), H_{0}^{1}(\Omega)\right), \tag{3.2}\\
u(0, .)=\underline{f}(.), 0 \leq u \leq 1, w \geq 0,(u-1) w=0 \\
\text { and } \frac{\partial u}{\partial t}=\Delta w+g(., u) \text { in } \mathcal{D}^{\prime}(Q),
\end{array}\right.
$$

and we have $u_{\infty}=u$.
3) Assuming $g(., 1) \leq 0$ a.e. on $Q, \quad u_{\infty}=\underline{u}$ where \underline{u} is the solution of the o.d.e

$$
\frac{\partial \underline{u}}{\partial t}=g(t, x, \underline{u}) \text { on } Q, \quad \underline{u}(0)=\underline{f} \text { on } \Omega .
$$

Proof of Theorem 2. To apply the result of Theorem 1, let $X=L^{1}(\Omega)$ and consider L the (linear) Dirichlet-Laplace operator in $L^{1}(\Omega): L u=\Delta u$, with $\mathcal{D}(L)=\left\{u \in W_{0}^{1,1}(\Omega) ; \Delta u \in L^{1}(\Omega)\right.$ and $\int_{\Omega} u \Delta v=\int_{\Omega} v \Delta u$ for any $v \in$ $H_{0}^{1}(\Omega) \cap L^{\infty}(\Omega)$ with $\left.\Delta v \in L^{\infty}(\Omega)\right\}$; notice that if Ω has a smooth boundary, then $\mathcal{D}(L)=\left\{u \in W_{0}^{1,1}(\Omega) ; \Delta u \in L^{1}(\Omega)\right\}$ (see [10]).
For $m \geq 1$, we define the singlevalued operator A_{m} in X by

$$
A_{m} u=-\Delta\left(|u|^{m-1} u\right), \quad \mathcal{D}\left(A_{m}\right)=\left\{u \in L^{m}(\Omega) ;|u|^{m-1} u \in \mathcal{D}(L)\right\}
$$

For $m=\infty$, we define the multivalued operator A_{∞} in X by

$$
A_{\infty} u=\{-\Delta w ; w \in \mathcal{D}(L), u \in \operatorname{sign}(w) \text { a.e. on } \Omega\} .
$$

Thanks to [10], A_{m} is m-accretive in X for $m \in[1, \infty]$; and, thanks to [6], we have

$$
\begin{equation*}
\left(I+A_{m}\right)^{-1} u \rightarrow\left(I+A_{\infty}\right)^{-1} u \quad \text { in } X \text { as } m \rightarrow \infty \text { for any } u \in X \tag{3.3}
\end{equation*}
$$

At last, thanks to [4], we have

$$
\begin{equation*}
e^{-t A_{m}} f \rightarrow e^{-t A_{\infty}} \underline{f} \quad \text { in } X \text { for any } t>0 \tag{3.4}
\end{equation*}
$$

As in the proof of Lemma 1, we may assume without loss of generality that $T<\infty$ and the function $M(t)$ is bounded on $[0, T)$.
Let $R \geq \max _{[0, T)} M$, and define $F:(0, T) \times X \rightarrow X$ by

$$
F(t, u)=g\left(t, ., u^{+} \wedge R\right), \quad \text { for a.a. } t \in(0, T) \text { and any } u \in L^{1}(\Omega) .
$$

Thanks to the assumptions on g, F satisfies the assumptions of Lemma 1, with $k(t)=\tilde{K}(R)$ and $c(t)=\left\|g(t, ., 0)^{+}\right\|_{1}+\left\|g(t, ., R)^{-}\right\|_{1}+|\Omega| R \tilde{K}(R)$. The relation between problems $\left(P_{m}\right)$ and the abstract framework is given by the next Lemma

Lemma 3 . For $m \geq 1$, the unique mild solution u (see Lemma 1) of

$$
\begin{equation*}
\frac{d u}{d t}+A_{m} u \ni F(., u) \text { on }(0, T), \quad u(0)=f \tag{3.5}
\end{equation*}
$$

is caracterised by (3.1) of Lemma 2 (and in particular independent of $R \geq$ $\max _{[0, T)} M$.)

This Lemma 3, together with Lemma 1, proves Lemma 2. Also using Lemma 3 together with (3.3), (3.4) the part 1) of the Theorem 2 follows immediatly from Theorem 1: actually

$$
u_{m} \rightarrow u_{\infty} \quad \text { in } \mathcal{C}\left((0, T) ; L^{1}(\Omega)\right)
$$

where u_{∞} is the mild solution of

$$
\left\{\begin{array}{l}
\frac{d u_{\infty}}{d t}+A_{\infty} u_{\infty} \ni F\left(., u_{\infty}\right) \quad \text { on }(0, T), \\
u_{\infty}(0)=\underline{f} .
\end{array}\right.
$$

The part 3) of Theorem 2 is an immediate consequence of the part 2): if $g(., 1) \leq 0$ a.e. on Q, since $0 \leq \underline{f} \leq 1$, the solution of the o.d.e satisfies $0 \leq \underline{u} \leq 1$ such that $(\underline{u}, 0)$ is the solution of (3.2).

At last since $u_{\infty} \in \mathcal{C}\left([0, T) ; L^{1}(\Omega)\right)$ and $0 \leq u_{\infty} \leq 1$, the part 2) of Theorem 2 follows clearly from the next Lemma. This will end the proof of the results.

Lemma 4 . Let $u \in \mathcal{C}\left([0, T) ; L^{1}(\Omega)\right), 0 \leq u \leq 1$ a.e. on Q and $h \in L^{1}(Q)$ with $h \chi_{[u=1]} \leq \tilde{g}$ in $\mathcal{D}^{\prime}(Q)$ where $\tilde{g} \in L^{2}\left(0, T ; H^{-1}(\Omega)\right)$. Then u is a mild solution of

$$
\begin{equation*}
\frac{d u}{d t}+A_{\infty} u \ni h \quad \text { on }(0, T) \tag{3.6}
\end{equation*}
$$

iff

$$
\left\{\begin{array}{l}
\exists w \in L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right), w \geq 0, w(u-1)=0 \\
\text { and } \frac{\partial u}{\partial t}=\Delta w+h \text { in } \mathcal{D}^{\prime}(Q) .
\end{array}\right.
$$

Proof of Lemma 3. First we show that the mild solution u of (3.5), satisfy $0 \leq u \leq M$; as a consequence the mild solution is independent of $R \geq \max _{[0, T]} M$. Recall that A_{m} is T-accretive. We have

$$
\begin{aligned}
\frac{d}{d t} \int(0-u(t))^{+} & \leq \int_{[0 \geq u(t)]}(0-F(t, u(t)))^{+} \\
& \leq \int(-g(t, ., 0))^{+}=0
\end{aligned}
$$

and then $u \geq 0$ a.e. on Q. On the other hand $v \equiv M \in W^{1,1}\left(0, T ; L^{1}(\Omega)\right)$ is a supersolution of $\quad \frac{d v}{d t}+A_{m} v \ni M^{\prime} \quad$ in the sense of [2] ; then we have

$$
\begin{aligned}
\frac{d}{d t} \int(u(t)-M(t))^{+} & \leq \int_{[u(t) \geq M(t)]}\left(F(t, u(t))-M^{\prime}(t)\right)^{+} \\
& \leq \int\left(g(t, ., M(t))-M^{\prime}(t)\right)^{+}+k(t) \int(u(t)-M(t))^{+} \\
& \leq k(t) \int(u(t)-M(t))^{+}
\end{aligned}
$$

and the conclusion $u \leq M$ follows.
Denote by H the Hilbert space $H^{-1}(\Omega)$ with the scalar product (., . $)_{H}=$ $<(-\Delta)^{-1} ., .>$, where $<., .>$ is the duality between $H_{0}^{1}(\Omega)$ and $H^{-1}(\Omega)$, and $\phi: H \rightarrow[0, \infty)$ be the convex l.s.c functionnal defined by

$$
\phi(u)=\frac{1}{m+1} \int_{\Omega}|u|^{m+1} \quad \text { on } \quad \mathcal{D}(\phi)=L^{m+1}(\Omega)
$$

One has (see [8])

$$
\begin{aligned}
& \partial \phi(u)=-\Delta\left(|u|^{m-1} u\right) \text { on } \\
& \mathcal{D}(\partial \phi)=\left\{u \in L^{m+1}(\Omega) ;|u|^{m-1} u \in H_{0}^{1}(\Omega)\right\} ;
\end{aligned}
$$

in particular $\partial \phi \cap\left(L^{1}(\Omega) \times L^{1}(\Omega)\right)=A_{m} \cap(H \times H)$. Denote by Y the space $L^{1}(\Omega)+H^{-1}(\Omega)$ endowed with the norm

$$
\begin{aligned}
&\|u\|_{Y}=\inf \left\{\left\|u_{1}\right\|_{L^{1}}+\left\|u_{2}\right\|_{H^{-1}} \quad ; \quad u_{1} \in L^{1}(\Omega), u_{2} \in H^{-1}(\Omega) ;\right. \\
&\left.u=u_{1}+u_{2}\right\} .
\end{aligned}
$$

We have ${\overline{A_{m}}}^{Y}=\overline{\partial \phi}^{Y}$, and by classical interpolation, this operator denoted by B is m -accretive in Y.

Now let u be solution of (3.1). Since $h=g(., u) \in L^{1}(Q)$ and $u^{m} \in$ $L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)$, we have $u \in W^{1,1}\left(0, T, L^{1}(\Omega)+H^{-1}(\Omega)\right)$ and $\frac{d u}{d t}(t)+$ $\partial \phi(u(t)) \ni h(t)$ for a.e. $t \in[0, T)$; then u is mild solution (in Y) of $\frac{d u}{d t}+B u \ni h$; since the mild solution (in X) of $\frac{d u}{d t}+A u \ni h, u(0)=f$ is clearly mild solution (in Y) of $\frac{d u}{d t}+B u \ni h$ it follows that u is actually mild solution (in X) of $\frac{d u}{d t}+A_{m} u \ni h$. We may assume $R \geq\|u\|_{\infty}$, such that $h=F(., u)$ and then u is the mild solution of (3.5).

To end up the proof we show that the mild solution u of (3.5) satisfies (3.1). We already know that $u \in L^{\infty}(Q), u \geq 0, h:=F(., u)=g(., u)$. Set $h_{n, l}=(h \wedge n) \vee(-l)$ and let $u_{n, l}$ be the mild solution of

$$
\frac{d u_{n, l}}{d t}+A_{m} u_{n, l} \ni h_{n, l}, \quad u_{n, l}(0)=f
$$

We have $u_{n, l} \downarrow u_{n}$ as $l \uparrow \infty$ and $u_{n} \uparrow u$ as $n \uparrow \infty$. Since $h_{n, l} \in L^{\infty}(Q) \subset$ $L^{2}\left(0, T ; H^{-1}(\Omega)\right), u_{n, l}$ is solution (in H) of $\frac{d u_{n, l}}{d t}+\partial \phi\left(u_{n, l}\right) \ni h_{n, l}$, that is

$$
\left\{\begin{array}{l}
w_{n, l}:=\left|u_{n, l}\right|^{m-1} u_{n, l} \in L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right) \text { and } \tag{3.7}\\
\frac{\partial u_{n, l}}{\partial t}=\Delta w_{n, l}+h_{n, l} \quad \text { in } \mathcal{D}^{\prime}(Q)
\end{array}\right.
$$

First, since $\left(u_{n, l}^{+}\right)^{m} \in L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)$, we have

$$
\iint\left|\nabla\left(u_{n, l}^{+}\right)^{m}\right|^{2} \leq \frac{1}{m+1} \int_{\Omega} f^{m+1}+\iint h_{n, l}\left(u_{n, l}^{+}\right)^{m}
$$

since

$$
\iint h_{n, l}\left(u_{n, l}^{+}\right)^{m} \leq \iint\left(h^{+} \wedge n\right)\left(u_{n, l}^{+}\right)^{m} \downarrow \iint\left(h^{+} \wedge n\right)\left(u_{n}^{+}\right)^{m} \text { as } l \uparrow \infty
$$

and

$$
\iint\left(h^{+} \wedge n\right)\left(u_{n}^{+}\right)^{m} \leq \iint h^{+} u^{m} \leq\|h\|_{1} R^{m}
$$

we deduce that

$$
\limsup _{n \rightarrow \infty} \limsup _{l \rightarrow \infty} \iint\left|\nabla\left(u_{n, l}^{+}\right)^{m}\right|^{2}<\infty,
$$

and then $u^{m}=u^{+m} \in L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)$.
On the other hand integrating (3.7) in time,

$$
-\Delta\left(\int_{0}^{T} \mid w_{n, l}(s, .) d s\right)=f-u_{n, l}(T, .)+\int_{0}^{T} h_{n, l}(s, .) d s
$$

is bounded in $L^{1}(\Omega)$, and then $\iint w_{n, l}$ is bounded ; by monotone convergence Theorem, it follows that $w_{n, l} \rightarrow w_{n}:=\left|u_{n}\right|^{m-1} u_{n}$ in $L^{1}(Q)$ as $l \rightarrow \infty$ and $w_{n} \rightarrow u^{m}$ in $L^{1}(Q)$; passing to the limit in (3.7), we get $\frac{\partial u}{\partial t}=\Delta u^{m}+h$ in $\mathcal{D}^{\prime}(Q)$.

Proof of Lemma 4. To proof the 'only if' part, we exactly follow the second part of the proof of Lemma 3, using the l.s.c convex functionnal ϕ on $H=H^{-1}(\Omega)$, defined by

$$
\phi(u)=0 \quad \text { on } \quad \mathcal{D}(\phi)=\left\{u \in L^{\infty}(\Omega) ;|u| \leq 1\right\} .
$$

We have,

$$
\partial \phi(u)=\left\{-\Delta w ; w \in H_{0}^{1}(\Omega), u \in \operatorname{sign}(w)\right\}
$$

and as in the proof of Lemma 3: $\partial \phi \cap\left(L^{1}(\Omega) \times L^{1}(\Omega)\right)=A_{\infty} \cap(H \times H)$, $B={\overline{A_{\infty}}}^{Y}=\overline{\partial \phi}^{Y}$ is m-acretive in Y. For $h \in L^{1}(Q)$, if $u \in \mathcal{C}\left([0, T) ; L^{1}(\Omega)\right)$ satisfies

$$
\left\{\begin{array}{l}
\exists w \in L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right), u \in \operatorname{sign}(w) \text { a.e. on } Q \text { and } \\
\frac{\partial u}{\partial t}=\Delta w+h \text { in } \mathcal{D}^{\prime}(Q),
\end{array}\right.
$$

then u is mild solution in Y of $\frac{d u}{d t}+B u \ni h$ and then it is mild solution in X of (3.6).

Conversly let u be mild solution of $\frac{d u}{d t}+A_{\infty} u \ni h$ with $0 \leq u \leq 1$ and $h \chi_{[u=1]} \leq \tilde{g} \in L^{2}\left(0, T ; H^{-1}(\Omega)\right)$. As in the proof of Lemmma 3, let
$h_{n, l}=(h \wedge n) \vee(-l)$ and $u_{n, l}$ the corresponding solution ; there exists $w_{n, l} \in$ $L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)$ such that

$$
\left\{\begin{array}{l}
u_{n, l} \in \operatorname{sign}\left(w_{n, l}\right) \text { a.e. on } Q, \text { and } \\
\frac{\partial u_{n, l}}{\partial t}=\Delta w_{n, l}+h_{n, l} \text { in } \mathcal{D}^{\prime}(Q) .
\end{array}\right.
$$

$w_{n, l}$ is unique and actually

$$
w_{n, l}=w-L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)-m \lim _{\rightarrow} w_{n, l}^{(m)},
$$

where $u_{n, l}^{(m)}$ and $w_{n, l}^{(m)}$ are the solution of (3.7) with $u_{n, l}^{(m)}(0)=\underline{f}$; indeed $u_{n, l}^{(m)} \rightarrow u_{n, l}$ in $\mathcal{C}\left([0, T) ; L^{1}(\Omega)\right)$ as $m \rightarrow \infty$ and $\left\{\frac{\partial u_{n, l}^{(m)}}{\partial t} ; m \geq 1\right\}$ is bounded in $L^{2}\left(0, T ; H^{-1}(\Omega)\right)$ since

$$
\left\|\frac{\partial u_{n, l}^{(m)}}{\partial t}\right\|_{L^{2}\left(0, T, H^{-1}(\Omega)\right.}^{2} \leq \frac{|\Omega|}{m+1}+\left\|h_{n, l}\right\|_{L^{2}\left(0, T, H^{-1}(\Omega)\right.}^{2}\left\|\frac{\partial u_{n, l}^{(m)}}{\partial t}\right\|_{L^{2}\left(0, T, H^{-1}(\Omega)\right.}^{2}
$$

It follows that $w_{n, l} \downarrow w_{n}$ as $l \uparrow \infty$ and $w_{n} \uparrow w$ as $n \uparrow \infty$; we have $u_{n} \in$ $\operatorname{sign}\left(w_{n}\right)$ and $u \in \operatorname{sign}(w)$; then in particular $w_{n}^{+}=0$ on $[u<1]$ and $w \geq 0$. We have

$$
\begin{aligned}
\iint\left|\nabla w_{n, l}^{+}\right|^{2} & =\iint h_{n, l} w_{n, l}^{+} \\
& \leq n \iint w_{n, l}^{+} .
\end{aligned}
$$

It follows that $w_{n, l}^{+} \in L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right),(h \wedge n) w_{n, l}^{+} \in L^{1}(Q)$ and

$$
\begin{aligned}
\iint\left|\nabla w_{n, l}^{+}\right|^{2} & \leq \iint(h \wedge n) w_{n, l}^{+}=\iint_{[u=1]}(h \wedge n) w_{n, l}^{+} \\
& \leq \iint_{[u=1]} h w_{n, l}^{+} \leq<\tilde{g}, w_{n, l}^{+}> \\
& \leq C\left\|\nabla w_{n, l}^{+}\right\|_{L^{2}\left(0, T, H_{0}^{1}(\Omega)\right.} ;
\end{aligned}
$$

then $w \in L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)$. Exactly like in the proof of Lemma 3, we have $\frac{\partial u}{\partial t}=\Delta w+h$ in $\mathcal{D}^{\prime}(Q)$ and this end up the proof.

4 Remarks.

Similar results may be obtained for other boundary value problems. Let us mention the following cases developped in [15] :
a) Neuman boundary conditions: We assume that Ω has a sufficiently smooth boundary, g and f being as in section 3 . For $m \geq 1$ there exists a unique u_{m} solution of

$$
u_{t}=\Delta u^{m}+g(., u) \text { on } Q, \frac{\partial u^{m}}{\partial n}=0 \text { on } \Sigma, u(0, .)=f \text { on } \Omega,
$$

in the sense

$$
\left\{\begin{array}{l}
u \in \mathcal{C}\left([0, T) ; L^{1}(\Omega)\right) \cap L_{l o c}^{\infty}([0, T) \times \bar{\Omega}), u \geq 0, u^{m} \in L_{l o c}^{2}\left([0, T), H^{1}(\Omega)\right) \\
\text { and } \iint u \frac{\partial \xi}{\partial t}+\iint g(., u) \xi=\iint \nabla u^{m} \nabla \xi+\int f \xi(0, .), \forall \xi \in \mathcal{C}^{\infty}(\bar{Q}) \\
\text { with } \operatorname{supp}(\xi) \subset[0, T) \times \bar{\Omega}
\end{array}\right.
$$

In the case $g \equiv 0$, it is shown in [4] that $\quad u_{m} \rightarrow \underline{f} \quad$ in $\mathcal{C}\left((0, T) ; L^{1}(\Omega)\right)$ as $m \rightarrow \infty$, where

$$
\left\{\begin{array}{l}
\underline{f} \equiv 1 \quad \text { if } \frac{1}{|\Omega|} \int_{\Omega} f \geq 1, \\
\underline{f}=f \chi_{[w=0]}+\chi_{[w>0]} \quad \text { if } \frac{1}{|\Omega|} \int_{\Omega} f<1,
\end{array}\right.
$$

with \underline{w} the unique solution of the variationnal problem

$$
\begin{gathered}
\underline{w} \in H^{2}(\Omega), \underline{w} \geq 0,0 \leq \Delta \underline{w}+f \leq 1 \\
\underline{w}(\Delta \underline{w}+f-1)=0 \text { a.e } \Omega \text { and } \frac{\partial \underline{w}}{\partial n}=0 \text { on } \Sigma .
\end{gathered}
$$

With the same technics, the corresponding conclusion of Theorem 2 holds :
i) $u_{m} \rightarrow u_{\infty}$ in $\mathcal{C}\left((0, T) ; L^{1}(\Omega)\right)$ as $m \rightarrow \infty$.
ii) If $\iint g(., 1) \xi \leq \iint \tilde{g}_{0} \xi+\sum_{i=1}^{i=N} \tilde{g}_{i} \frac{\partial \xi}{\partial x_{i}}$ for any $\xi \in \mathcal{C}^{\infty}(\bar{Q}), \xi \geq 0$ and
$\operatorname{supp}(\xi) \subset[0, T) \times \bar{\Omega}$, with $g_{0} \ldots g_{n} \in L_{l o c}^{2}([0, T) \times \bar{\Omega})$, then there exists a unique (u, v) solution of

$$
\left\{\begin{array}{l}
u \in \mathcal{C}\left([0, T) ; L^{1}(\Omega)\right) \cap L_{l o c}^{\infty}([0, T) \times \bar{\Omega}), w \in L_{l o c}^{2}\left([0, T), H^{1}(\Omega)\right) \\
0 \leq u \leq 1, w \geq 0, w(u-1)=0 \text { and } \iint u \frac{\partial \xi}{\partial t}+\iint g(., u) \xi= \\
\iint \nabla w \nabla \xi+\int f \xi(0, .), \forall \xi \in \mathcal{C}^{\infty}(\bar{Q}) \text { with } \operatorname{supp}(\xi) \subset[0, T) \times \bar{\Omega}
\end{array}\right.
$$

and we have $u_{\infty}=u$.
iii) If $g(., 1) \leq 0$, then $u_{\infty}=\underline{u}$ where \underline{u} is the solution of the o.d.e

$$
\frac{\partial \underline{u}}{\partial t}=g(t, x, \underline{u}) \text { on } Q, \quad \underline{u}(0)=\underline{f} \text { on } \Omega .
$$

b) Cauchy problem : Let $\Omega=\mathbb{R}^{N}$ and g, f satisfies the assumptions of section 3 with moreover $g(., 0) \in L^{1}\left(Q_{\tau}\right)$ for any $\tau \in(0, T)$ where $Q_{\tau}=$ $[0, \tau) \times \mathbb{R}^{N}$ and $f \in L^{1}\left(\mathbb{R}^{N}\right)$. Then for any $m \geq 1$, there exists a unique solution u_{m} of

$$
\left\{\begin{array}{l}
u \in \mathcal{C}\left([0, T) ; L^{1}(\Omega)\right) \cap L^{\infty}\left(Q_{\tau}\right) \text { for any } \tau \in(0, T), u \geq 0 \\
u(0, .)=f(.), g(., u) \in L^{1}\left(Q_{\tau}\right) \text { for any } \tau \in(0, T), \text { and } \\
\frac{\partial u}{\partial t}=\Delta u^{m}+g(., u) \text { in } \mathcal{D}^{\prime}(Q) .
\end{array}\right.
$$

As $m \rightarrow \infty, u_{m} \rightarrow u_{\infty}$ in $\mathcal{C}\left((0, T) ; L^{1}(\Omega)\right)$, where u_{∞} is the unique solution of

$$
\left\{\begin{array}{l}
u_{\infty} \in \mathcal{C}\left([0, T) ; L^{1}(\Omega)\right), 0 \leq u_{\infty} \leq 1, u_{\infty}(0, .)=\underline{f}, g\left(., u_{\infty}\right) \in L^{1}\left(Q_{\tau}\right) \\
\text { for any } \tau \in(0, T), \exists w_{\infty} \in L^{1}\left(Q_{\tau}\right) \text { for any } \tau \in(0, T) \text { s.t. } w_{\infty} \geq 0 \\
w_{\infty}\left(u_{\infty}-1\right)=0 \text { and } \frac{\partial u}{\partial t}=\Delta w+g(., u) \text { in } \mathcal{D}^{\prime}(Q)
\end{array}\right.
$$

where $\underline{f}=f \chi_{[\underline{w}=0]}+\chi_{[\underline{w}>0]}, \underline{w}$ is the unique solution of the mesa problem

$$
\begin{aligned}
& w \in H^{2}(\Omega), w \geq 0,0 \leq \Delta w+f \leq 1 \\
& \quad \text { and } w(\Delta w+f-1)=0 \text { a.e } \mathbb{R}^{N} .
\end{aligned}
$$

The case $g \equiv 0$ is shown in [4] (see also [11]). In the case $g(., 1) \leq 0, u_{\infty}=\underline{u}$ the unique solution of the o.d.e :

$$
\frac{\partial \underline{u}}{\partial t}=g(t, x, \underline{u}) \text { on } Q, \quad \underline{u}(0)=\underline{f} \text { on } \mathbb{R}^{N} .
$$

a) Nonlinear diffusion : Let Ω, g and f as in b) and $1<p<\infty$. For any $m \geq 1$, there exists a unique solution u_{m} of

$$
u_{t}=\Delta_{p} u^{m}+g(., u) \text { on } Q, u(0, .)=f \text { on } \mathbb{R}^{N}
$$

in the sense

$$
\left\{\begin{array}{l}
u \in \mathcal{C}\left([0, T) ; L^{1}(\Omega)\right) \cap L^{\infty}\left(Q_{\tau}\right) \text { for any } \tau \in(0, T), u \geq 0 \\
u(0, .)=f(.), g(., u) \in L^{1}\left(Q_{\tau}\right) \text { for any } \tau \in(0, T), \\
u^{m} \in L_{l o c}^{p}\left([0, T) ; W^{1, p}\left(\mathbb{R}^{N}\right)\right) \text { and } \frac{\partial u}{\partial t}=\Delta_{p} u^{m}+g(., u) \text { in } \mathcal{D}^{\prime}(Q)
\end{array}\right.
$$

Assuming that f is radial nonincreasing, i.e. $f(x)=\tilde{f}(|x|)$ with $\tilde{f}: \mathbb{R}^{N} \rightarrow$ \mathbb{R}_{+}nonincreasing, then $\quad u_{m} \rightarrow u_{\infty} \quad$ in $\mathcal{C}\left((0, T) ; L^{1}\left(\mathbb{R}^{N}\right)\right)$ as $m \rightarrow \infty$. If moreover $g(., 1) \leq 0$, then $u_{\infty}=\underline{u}$ the unique solution of the o.d.e.

$$
\frac{\partial \underline{u}}{\partial t}=g(t, x, \underline{u}) \text { a.e. } Q, \quad \underline{u}(0)=f \chi_{[|x|<a]}+\chi_{[|x| \geq a]} \text { on } \mathbb{R}^{N}
$$

with a the unique positive number such that

$$
\int_{0}^{1} \tilde{f}(a r) d r^{N}=1
$$

The case $g \equiv 0$ is shown in [7] (see also [15]).

References

[1] V. Barbu. Nonlinear Semigroups And Differential Equations in Banach Spaces. Norodorff Internationnal Publishing, 1976.
[2] L. Barthélémy and Ph. Bénilan. Subsolution for Abstract Evolution Equations. Potentiel Analysis, 1:93-113, 1992.
[3] Ph. BÉnilan. Équation d'Évolution Dans Un Espace de Banach Quelconque et Applications. Thesis, Orsay, 1972.
[4] Ph. Bénilan, L. Boccardo, and M. Herrero . On The Limit of Solution of $u_{t}=\Delta u^{m}$ as $m \rightarrow \infty$. In M.Bertch et.al., editor, in Some Topics in Nonlinaer PDE's, Torino, 1989. Proceedings Int.Conf.
[5] Ph. Bénilan, M.G. Crandall, and A. Pazy. Evolution Equation Governed by Accretive Operators. (book to appear).
[6] Ph. Bénilan, M.G. Crandall, and P. Sacks. Some L^{1} Existence And Dependence Result For Semilinear Elliptic Equation Under Nonlinear Boundary Conditions. Appl. Math. Optim., 17:203-224, 1988.
[7] Ph. Bénilan and N. Igbida. Sur la Limite Singulière de $u_{t}=\Delta_{p}|u|^{m-1} u$ lorsque $m \rightarrow \infty$. C. R. Acad. Sci. Paris, Ser. t, 321:1323-1328, 1995.
[8] H. Brezis. Monotonicity Methods in Hilbert Space And Some Applications to Nonlinear Partial Differential Equations. In E.Zarantonello, editor, Contribution to Nonlinear Functionnal Analysis. Acad. Press, 1971.
[9] H. Brezis and A. Pazy. Convergence And Approximation of Semigroupes of Nonlinear Operators in Banach Spaces. J. Func. Anal., 9:6374, 1972.
[10] H. Brezis and W. Strauss. Semilinear Elliptic Equations in L ${ }^{1}$. J. Math. Soc. Japan, 25:565-590, 1973.
[11] L.A. Caffarelli and A. Friedman. Asymptotic Behavior of solution of $u_{t}=\Delta u^{m}$ as $m \rightarrow \infty$. Indiana Univ. Math. J., pages 711-728, 1987.
[12] M.G. Crandall. An Introduction to Evolution Governed by Accretive Operators. In J.Hale J.LaSalle L.Cesari, editor, Dynamical Systems-An Internationnal symposium, pages 131-165, New York, 1976. Academic Press.
[13] C.M. Elliot, M.A. Herrero, J.R. King, and J.R.Ockendon. The Mesa Patterns for $u_{t}=\nabla\left(u^{m} \nabla u\right)$ as $m \rightarrow \infty$. IMA J.Appl. Math., 37:147-154, 1986.
[14] K.M. Hui. Singular Limit of Solutions of the Porous Medium Equation With Absorption. (preprint).
[15] N. Igbida . Limite Singulière de Problèmes d'Évolution Non Linéaires. Thèse de doctorat, Université de Franche-Comté, (in preparation).

[^0]: ${ }^{1}$ Equipe de Mathématiques, URA CNRS 741 Université de Franche-Comté, Route de Gray, 25030 Besançon cedex FRANCE

