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Abstract

The paper deals with stationary equation governed by the operator −∇ · A(x, ∇u) = μ in the case where 
A(x, ξ) is a maximal monotone graph and μ is a Radon measure. Our main interest concerns the typical 
situation where A(x, .) is defined only in a bounded region of IRn; so that A(x, .) does not satisfy the 
standard polynomial growth control condition.
© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The study of several mechanical and physical structures results in the description locally how 
changes in a parameter u, usually called density, are related to changes in the flux, that we denote 
by �. Such description is usually conceived in a PDE relating u, � and input parameters which 
are assumed to be known. In our case, the input parameter is a given Radon measure μ, and the 
PDE use a differential operator in the following form

−∇ · �(x) = μ(x) and �(x) = A(x,∇u(x)), for x ∈ �, (1)

where � ⊂ IRn is an open bounded domain, n ≥ 1 and A : � × IRn → IRn. An important class 
of these PDEs falls into the scope of the so called Leray–Lions operator (cf. [25]). That is A
is a Carathéodory function (measurable with respect to x ∈ � and continuous with respect to 
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ξ ∈ IRn) satisfying A(., 0) = 0 and, there exists 1 < p < ∞, such that the following assumptions 
are fulfilled:

(A1) there exists C > 0 such that, for any ξ ∈ IRn A(x, ξ).ξ ≥ C|ξ |p for a.e. x ∈ �

(A2) for any ξ, η ∈ IRn such that ξ 	= η
(
A(x, ξ) − A(x, η)

)
.(ξ − η) ≥ 0 a.e. x ∈ �

(A3) there exists σ > 0 and k ∈ Lp′
(�) such that |A(x, ξ)| ≤ σ(k(x) + |ξ |p−1) a.e. x ∈ � and 

for any ξ ∈ IRn, where p′ = p

p − 1
.

Our aim here is to study the equation (1) in the peculiar situation where A(x, .) is a maximal 
monotone graph in IRn × IRn defined only in a bounded region of IRn. In particular, this implies 
that A(x, .) may grow as fast as the condition (A3) falls to be true. Typical examples appear in 
the study of non-Newtonian fluids, where A is given by the constitutive law A(x, ξ) = f (x, |ξ |) ξ
and f (x, r) is a nonnegative function which becomes very large when r is close to some critical 
values. This kind of problems appears also in the description of sub-gradient flows dynamics; 
that is dynamical system governed by a gradient constraint, like for granular matter.

To begin with, recall that the equation (1) corresponds to the Euler–Lagrange equation asso-
ciated with the optimization problem

min

⎧⎨
⎩
∫
�

J (x,∇z) −
∫
�

f z ; z ∈ A

⎫⎬
⎭ , (2)

where J : � ×R
n → [0, ∞]. Here the minimization problem is related to the energy description 

of the structure, the set A is the so called energy space and J is such that A(x, ξ) = ∂ξJ (x, ξ), 
where ∂ξ denotes the sub-differential with respect to ξ . The assumption (A1) and (A2) are related 
to the coercivity and the convexity of the function J (x, ξ) with respect to ξ , respectively. They 
incorporate the key ingredient for the existence of a solution to the optimization problem (2). As 
to the assumption (A3), it insures the behavior of the variation of J (x, ∇u) for large values of 
∇u so that the critical points of (2) turn into a solution of (1).

There is a huge literature concerning the study of existence uniqueness as well as the con-
nection between the problem (1) and (2) under the standard assumptions (A1)–(A3). Driven by 
diverse applications, some types of nonlinear operators A and functional J appeared beyond 
the scope of the assumptions (A1)–(A3). They motivated new studies and new developments in 
the theory of nonlinear elliptic and parabolic PDE. For instance, in the borderline case p = 1
(p′ = ∞), the equation (1) as well as the associate evolution problem appears as a model for 
heat and mass transfer in turbulent fluids or in the theory of phase transitions (see [5]). Some 
variant appears also in the context of image denoising and reconstruction (see [5]). In this sit-
uation the equation (1) appears as a borderline case with respect to the standard assumptions 
(A1–A3). Its study has developed many new theoretical and numerical tools (see [5]) currently 
essential for nonlinear PDEs analysis in the spaces BV , the set of function of bounded variation. 
Indeed, due to the linear growth condition, the natural energy space to study (1) in this case is 
the space of functions of bounded variation and the flux is a bounded Lebesgue function. Typical 
examples for the opposite borderline case p → ∞ (p′ = 1) appear in the study of sub-gradient 
flow dynamics. Nowadays, the Monge–Kantorovich equation which corresponds to the limit as 
p → ∞, in the p-Laplacien operator is extensively used in the study of optimal mass transporta-
tion problem (cf. [1,20]) as well as in the optimal mass transfer problem (cf. [8]). It is also used 
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in the description of the dynamic of granular matter like the sandpile (cf. [26,20] and [19]) and 
also in the deformation of polymer plastic during compression molding (cf. [4]). In this situation 
A(x, ξ) = ∂IIB(0,1)(ξ), and due to the gradient constraint, the flow is singular in general. The 
natural energy space in this case is the space of Lipschitz continuous function and the flux is 
a vector valued measure. This is a typical example where the assumption (A3) falls to be true. 
Its study allowed the development of new useful tools like tangential gradient with respect to a 
Radon measure. The pioneering work in this direction which opened a possible way to manage 
the difficulties related to PDE with singular flux is [9], where Bouchitté, Buttazzo and Seppecher 
introduced a new notion of tangent space to a measure on IRn. They use these tools in order to 
model the elastic energy of low-dimensional structures. One can see also the paper [10] where 
these tools were used for the first time in the study of the limit as p → ∞ in the p-Laplacian
equation.

Other situation where the assumption (A3) falls to be true appears when A(x, .) is defined 
in all IRn and grows rapidly for large values of ξ . Recall that these cases fall into the scope 
of the theory of elliptic equations in Orlicz–Sobolev space (cf. [17] and [18]). Our aim and 
approach here are different. To study the problem we handle the equation (1) in the context of 
nonlinear PDE with singular flux. Indeed, without the assumption (A3), the flux is not a Lebesgue 
function in general. It is a vector valued Radon measure and we use the theory of tangential 
gradient to characterize the state equation that gives the connection between the flux and the 
gradient of the solution. The particular situations where A(x, ξ) = ∂IIC(x)(ξ), and C(x) ⊂ IRN

is a bounded closed convex set, the equation (1) with Neumann boundary condition is used in 
[24] in connection with the optimal mass transport problem. Our aim here is to treat (1) in the 
general case where A(x, .) is a maximal monotone graph defined in a bounded region of IRn.

More precisely, we are interested into the equation

⎧⎪⎪⎨
⎪⎪⎩

−∇ · � = μ

� ∈ A(x,∇u)

}
in �

u = g on ∂�,

(3)

in the case where μ ∈ Mb(�) is a given Radon measure, g ∈ C(∂�) and A(x, .) is a maximal 
monotone graph in IRn given by

A(x, ξ) = ∂ξJ (x, ξ), (4)

where J : � ×R
n → [0, ∞); J (x, ξ) is continuous with respect to x, and l.s.c. with respect to ξ , 

and satisfies J (x, 0) = 0, for any x ∈ �. Moreover, denoting by D(x) the domain of J (x, .); i.e.

D(x) := D(J (x, .)) := {ξ ∈R
n : J (x, ξ) < ∞},

we assume that J satisfies the following assumptions

(J1) There exists M in L∞(�) such that D(x) ⊆ B(0, M(x)) for any x in �.
(J2) For any x ∈ �, J (x, .) is convex.
(J3) There exists α > 0, such that B(0, α) ⊆ Int(D(x)), for any x in �.
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Using the assumptions (J1–J2), we prove that the optimization problem (2) has a continuous 
Lipschitz solution u. Then, assuming moreover the assumption (J3), we prove that there exists a 
Radon vector-valued measure �, such that (u, �) is a solution to the PDE (3) in a suitable sense 
(see Section 3). We combine simultaneously a connection between the regular part of � and 
A(x, ∇u), and between the singular part of � and the support function of the domain of J (x, .). 
At last, we give the equivalence between the solutions of (2), (3) and a flux maximization problem 
related to Legendre–Fenchel’s duality.

Before to give the plan of the paper, let us take a while to comment the assumptions (J1)–(J3). 
The convexity assumption (J2) is standard and is connected to the monotonicity condition (A2) 
for Leray–Lions operator. As to the condition (J1) this is connected to our peculiar situations 
which describe fast grow behavior of the energy when the gradient approaches critical values, 
and also the description of subgradient flow phenomena. See here, that while this assumption 
predicts the coercivity, it makes us lose the suitable control on the flux to perform it Lebesgue 
integrable. As to the assumption (J3), even if it seems here to be just technically important for 
the control of the total mass of the flux (see Proof of Lemma 2), we do not know if in general 
the results of the paper holds to be true or not. Thanks to Remark 2 and the studies of the cases 
A(x, ξ) = ∂IIC(x) (cf. [24]), this assumption seems to be related to the degeneracy of the Finsler 
metric behind the problem. However, we are not able to make this fact in evidence rigorously in 
this paper.

In the following section, we begin with some preliminaries recalling the main tools we use
to handle a PDE with singular flux, like tangential measure and tangential gradient. Then, we 
prove two technical results that will be useful for the proof of our main result. In Section 3, we 
present our main results. Under the assumptions (J1)–(J3), we begin with the characterization 
of the solution of the optimization problem (2) as a solution of the PDE (1)–(4) with Dirichlet 
boundary condition. Actually, we show that the flux is a vector valued measure. The regular part 
(with respect to Lebesgue measure) leaves in A(x, ∇u) and, the singular part is concentrated on 
the boundary of D(J (x, .)) and is connected to the tangential gradient of u through the support 
function of D(J (x, .)). Then, we present equivalent characterization using the notion of varia-
tional solution and duality. In Section 4, we give the proof of our main results. We consider a 
regularization of the problem (2) by taking Yoshida approximation of J , and we use compactness 
arguments for the proofs.

2. Preliminaries

2.1. Vector valued Radon measure

Let � ⊂ IRn be a bounded open domain with Lipschitz boundary. We denote by M(�) the 
space of Radon measure in IRn supported in �; i.e. μ(A) = μ(A ∩�), for any Borel set A ⊆ IRn. 
We recall that M(�) can be identified with the dual space of the set of continuous functions 

defined in �; i.e. M(�) =
(
C(�)

)∗
, in the sense that, every μ ∈M(�) is equal to ξ ∈ C(�) →∫

ξ dμ. Then M(�) denotes the space of Radon measures supported in �. See here that M(�)

can be identified with the subset of M(�) of measures μ such that |μ|(∂�) = 0. Thus M(�)

can be identified with 
(
C0(�)

)∗
, the dual of the space of continuous functions in � that are null 

on the boundary.
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For any μ ∈M(�), we denote by μ+, μ− and |μ| the positive part, negative part and the total 
variation measure associated with μ, respectively. Then we denote, Mb(�) the space of Radon 
measures with bounded total variation |μ|(�). Recall that Mb(�) (resp. Mb(�)) equipped with 
the norm |μ|(�) (resp. |μ|(�)) is a Banach space.

We denote by M(�)n the space of IRn-valued Radon measures of �; i.e. X ∈ M(�)n if and 
only if X = (X1, ..., Xn) with Xi ∈ M(�). We recall that the total variation measure associated 
with X ∈ M(�)n, denoted again by |X |, is defined by

|X |(B) = sup

{ ∞∑
i=1

|X (Bi)| ; B = ∪∞
i=1Bi, Bi a Borelean set

}

and belongs to M+(�), the set of nonnegative Radon measure. The subspace Mb(�)n equipped 
with the norm ‖X‖ = |X |(�) is a Banach space. It is clear that M(�)n endowed with the norm 
‖ ‖ is isometric to the dual of C(�)n. The duality is given by

〈
X , ξ

〉
=

n∑
i=1

∫
�

ξi dXi ,

for any X = (X1, .., Xn) ∈ C(�)n and ξ = (ξ1, . . . , ξn) ∈ C(�)n. Similarly, M(�)n endowed 
with the norm ‖ ‖ is isometric to the dual of C0(�)n, and the duality is given by

〈
X , ξ

〉
=

n∑
i=1

∫
�

ξi dXi ,

for any X = (X1, .., Xn) ∈ M(�)n and ξ = (ξ1, ..., ξn) ∈ C0(�)n.
We denote by Ln the n-dimensional Lebesgue measure of IRn. For any 1 ≤ p ≤ +∞, Lp(�)

denotes the standard Lebesgue space with respect to Ln, and we use 
∫

udx to denote the 
Lebesgue integral of u with respect to Ln. Otherwise, we denote by Lp(�, dμ), the Lp space 
with respect to the measure μ and 

∫
udμ to denote the Lebesgue integral of u with respect to μ. 

The set W 1,p(�) denotes the standard Sobolev space, and for a given g ∈ C(∂�), we’ll use the 
notation

W
1,p
g (�) :=

{
u ∈ W 1,p(�) : u = g on ∂�

}
.

For any X ∈ Mb(�)n and ν ∈ Mb(�)+, X is absolutely continuous with respect to ν; de-
noted by X � ν, provided ν(A) = 0 implies |X |(A) = 0, for any Borel set A ⊂ �. Thanks to 
Radon–Nikodym decomposition Theorem, we know that for any X ∈ Mb(�)n and ν ∈ Mb(�)

such that X � ν, there exists unique bounded IRn-valued Radon measure denoted by 
dX
dν

, such 

that

X (A) =
∫

dX
dν

dν for any A ⊆ �.
A
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Indeed, 
dX
dν

∈ Mb(�)n is the density of X with respect to ν, and can be computed by differ-

entiating. In particular, it is not difficult to see that, for any X ∈ Mb(�)n, we have X � |X |, 
dX
d|X | ∈ L1(�, d|X |)n and 

∣∣∣∣ dX
d|X |

∣∣∣∣= 1, |X |-a.e. in � (see for instance [27]). In connection with 

the polar factorization, in general 
dX
d|X | is denoted by 

X
|X | . So, for any X ∈Mb(�)n, we have

X (A) =
∫
A

X
|X | d|X |, for any A ⊆ �,

and, every X ∈Mb(�)n (resp. X ∈ Mb(�)n) can be identified with the linear function

η ∈ C(�)n →
∫ X

|X | · η d|X | (resp. η ∈ C0(�)n →
∫ X

|X | · η d|X |.

To simplify the presentation, for any η ∈ C(�)n, we shall systematically use the notation

∫
η dX

to denote 
∫ X

|X | · η d|X |.
For a given μ ∈Mb(�) (resp. μ ∈ Mb(�)), we say that X ∈ Mb(�)n satisfies the PDE

−∇ ·X = μ (5)

if and only if

∫
∇ξ dX =

∫
ξ dμ for any ξ ∈ C1(�) (resp. ξ ∈ C1

0(�)).

We denote by S(μ) the set of vector valued Radon measure X ∈ Mb(�)n satisfying the PDE 
(5). For any X ∈Mb(�)n, we denote by XrLn +Xs the Radon–Nikodym decomposition of the 
vector valued measure X with respect to Ln. So, for a given μ ∈ Mb(�) (resp. μ ∈ Mb(�)), 
X ∈ S(μ) is equivalent to say that

∫
∇ξ ·Xr dx +

∫
∇ξ dXs =

∫
ξ dμ for any ξ ∈ C1(�) (resp. ξ ∈ C1

0(�)).

2.2. Tangential measure and tangential gradient

As we notice in the introduction, the PDE (1) involves Lipschitz continuous functions as an 
energy space and vector valued measure flux. So, the standard Sobolev space and the standard 
gradient defined with respect to Lebesgue measure are not enough to handle the state equation 
(4). To overcome these difficulties, we’ll use the notion of tangential gradient introduced by Bou-
chitté, Buttazzo and Seppecher in [9]. For a given � ∈ Mb(�)n, let us consider γ ∈ Mb(�)+
and σ ∈ L1(�, dγ )n be such that � = σγ . Notice that this is always possible, since one can 
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take γ = |�| and σ = �
|�| . Among the objective of the “tangential gradient” theory is to give 

a sense to the variation of a Lipschitz continuous function in the Lebesgue space with respect 
to γ , so that the integration by part formula has a sense Actually, for a suitable vector valued 
Radon measure � such that ∇ · � =: ν ∈ Mb(�) and a given Lipschitz continuous function u
the formula ∫

u dν =
∫

′′∇u′′ · σ dγ

remains valid for a suitable “∇u”; the tangential gradient of u with respect to γ . Thanks to 
[9], this is possible if the measure � is a tangential measure. That is σ(x) ∈ Tγ (x), γ -a.e., 
where Tγ (x) ⊆ IRn is the tangential space with respect to γ . In the case where γ coincides 
with the k-dimensional Hausdorff measure on a smooth k-dimensional manifold S ⊂ IRn, Tγ (x)

coincides γ -a.e. with the usual tangent bundle TS given by differential geometry. In general, it 
coincides with

Tγ (x) = γ − ess ∪
{
σ(x) ; σ ∈ L1

γ (�)n, ∇ · (σ γ ) ∈ Mb(�)
}

.

Here, the γ -essential union is defined as a γ -measurable closed multifunction given by

• if σ ∈ L1
γ (�)n and ∇ · (σγ ) ∈Mb(�), then σ(x) ∈ Tγ (x), for γ -a.e. x ∈ �.

• between all the multifunctions with the previous property, the γ essential union is minimal 
with respect to the inclusion γ -a.e.

Notice that the multifunction Tγ (x) is local on open subsets of IRn; i.e. Tγ = Tν , γ -a.e. on �, 
if γ � = ν �. Now, denoting by Pγ (x) the orthogonal projection on Tγ (x), for γ -a.e x ∈ �, 
we have

Proposition 1 (cf. [7]). The linear operator u ∈ C1(�) → Pγ (x)∇u(x) ∈ L∞
γ (�)n can be ex-

tended uniquely to a continuous linear operator:

∇γ : Lip(�) → ∇γ u ∈ L∞
γ (�)n

where Lip(�), the set of Lipschitz continuous function in �, is equipped with the uniform con-
vergence on a bounded subsets of �, and L∞

γ (�)n is equipped with the weak* topology. Then, 
∇γ u is called the tangential gradient of u with respect to γ .

Then, for the integration by part formula we have

Proposition 2 (cf. [7]). Let γ ∈Mb(�)+ and σ ∈ L1(�, dγ )n be such that σ(x) ∈ Tγ (x), γ -a.e.
and −∇ · (σ γ ) =: μ ∈Mb(�). We have

∫
u dμ =

∫
σ · ∇γ u dγ, for any u ∈ Lip(�).

The question now is to identify the set of vector valued Radon measure for which the integra-
tion by part formula is true. Thanks to the previous proposition, let us define
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MT (�) = {σγ ; γ ∈Mb(�)+, σ (x) ∈ Tγ (x), γ -a.e.
} ;

the so called tangential space of �.

Proposition 3 (cf. [7]). Let λ ∈ Mb(�)n be given. Then, λ ∈ MT (�) if and only if there exists 
� ∈ L1(�)n such that ∇ · λ = ∇ · � in D′(�).

Thanks to Proposition 3, we see in particular that if λ ∈ Mb(�)n and ∇ · λ ∈ Mb(�), then 
λ ∈ MT (�) and the integration by part formula of Proposition 2 remains true. Notice here, that 
formally the outward normal boundary value of a measure λ ∈Mb(�)n such that ∇ ·λ ∈Mb(�)

is null. This is not true in general if ∇ · λ ∈ Mb(�). So, when dealing with test functions that 
are not null on the boundary, we need to handle the outward normal trace of such vector valued 
measures. To this aim, we prove the following results.

Proposition 4. Let μ ∈Mb(�), γ ∈ Mb(�)+ and � := σγ ∈ S(μ), where σ ∈ L1(�, dγ ). We 
have

(1) σ(x) ∈ Tγ (x), γ -a.e. in �.
(2) For any g ∈ C1(∂�), there exists Tg(�) ∈ IR, such that

∫
�

∇γ ξ · σ dγ + Tg(ψ) =
∫
�

ξ dμ, (6)

for any ξ ∈ W
1,∞
g (�).

In particular, T0(�) = 0. And, moreover X ∈ S(μ) if and only if

∫
∇ξ(x) ·Xr (x) dx +

∫
∇|Xs |ξ dXs =

∫
ξ dμ − Tg(ψ), (7)

for any ξ ∈ W
1,∞
g (�).

Proof.

(1) For any ϕ ∈D(�), we see that ∇ · (ϕX ) ∈ Mb(�). This implies that ϕ(x)X (x) ∈MT (�). 
So, for any ϕ ∈ D(�), ϕ(x)σ (x) ∈ Tγ (x), γ -a.e. in �. Thus, σ(x) ∈ Tγ (x), γ -a.e. in �.

(2) To prove the second part of the proposition, we define η ∈ D′(IRn) by

〈
η, ξ
〉
=
∫

ξ dμ −
∫

∇ξ d�, for any ξ ∈ D(IRn).

It is not difficult to see that η is a distribution of order 1 and, since � ∈ S(μ), supp(η) ⊆ ∂�. 
In particular, for a fixed g ∈ C1(∂�), considering an arbitrary g̃ ∈ C1(�) such that g̃ = g

on ∂�, we can define

< η, g̃ >=: Tg(�).
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It is clear here, that such definition is independent of the choice of g̃ in �, and for any 
ξ ∈ C1(�) such that ξ = g on ∂�, we have∫

�

ξ dμ =
∫
�

∇ξ · σ dγ + Tg(ψ)

=
∫
�

Pγ (x)∇ξ(x) · σ(x) dγ (x) + Tg(ψ)

=
∫
�

∇γ ξ · σ dγ + Tg(ψ),

where we use the fact that σ(x) ∈ Tγ (x), γ -a.e. in �. Then, using Proposition 1, we deduce 
that (6) remains true for any ξ ∈ W 1,∞(�), such that ξ = g on ∂�.

At last, the last part is a simple consequence of (1), (2) and the fact that � ∈ S(μ) implies that 
�s ∈ T|�s |(x), |�s |-a.e. in �. �
Remark 1. It is clear that Tg(ψ) is connected to the trace of ψ on ∂�. Indeed, formally Tg(ψ) =∫
∂�

g ′′ψ · n′′dLn−1, where n is the outward normal to ∂�. Thanks to G.Q. Chen and H. Frid 
(cf. [12–14]), this trace ′′ψ · n′′ can be defined rigorously under regularity assumptions on ∂�. 
However, in general it is not a measure and not even in the dual space of Lip(�) (unless ψ ∈
Lp(�, dLn)n, with 1 < p ≤ ∞). Since in our situation the test functions have a trace g which 
is C1, we choose to work with a C1-recovery of g in � to define the quantity Tg(ψ) and avoid all 
the technical arguments related to the weak trace in the sense of G.Q. Chen and H. Frid.

2.3. Technical lemmas

Thanks to the assumption (J2), the set D(x) is convex for any x ∈ �. For any x ∈ �, let us 
denote by SD(x) the support function of D(x), given by

SD(x)(p) = sup
{
p · q ; q ∈ D(x)

}
, for any (x,p) ∈ � × IRn.

Recall that, for any x ∈ �, the function ξ ∈ IRn → SD(x)(ξ) is nonnegative, convex and posi-
tively homogeneous. So, thanks to [3] (see also [2]), for any � ∈ Mb(�)n, the Radon measure 
SD(.)(�) ∈ Mb(�) is well defined by the following formula

SD(.)(�)(B) =
∫
B

SD(x)(�r(x)) dx +
∫
B

SD(x)

(
�s(x)

|�s |(x)

)
d|�s |(x),

for any Borel set B ⊆ �.

Moreover, if � � λ, for a given λ ∈Mb(�)+, then

SD(.)(�)(B) =
∫

SD(x)

(
d�

dγ
(x)

)
dγ (x) for any Borel set B ⊆ �.
B
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In particular, for any � ∈Mb(�)n, we have

SD(.)(�)(B) =
∫
B

SD(x)

(
�(x)

|�|(x)

)
d|�|(x) for any Borel set B ⊆ �.

The following result which is based on the possibility of approximating functions such that 
the gradient is in the domain of J by smooth function is important for the proof of our main 
results.

Proposition 5. Let γ ∈ Mb(�)+, g ∈ C1(∂�) and σ ∈ L1(�, dγ )n be such that σ(x) ∈ Tγ (x), 
γ -a.e. x ∈ �. If u ∈ W

1,∞
g (�) is such that ∇u(x) ∈ D(x), Ln-a.e. x ∈ �, then

(1) There exists a sequence (uε)ε>0 in C1(�) such that uε = g on ∂�, ∇uε(x) ∈ D(x), for any 
x ∈ � and uε → u in W 1,∞(�)-weak*; in the sense that uε and ∇uε converges to u and ∇u

in L∞(�)-weak* and L∞(�)n-weak*, respectively.
(2) We have

σ(x) · ∇γ u(x) ≤ SD(x)(σ (x)), γ -a.e. x ∈ �. (8)

Proof. First, let us prove the result in the case where g ≡ 0. Following the same idea of the proof 
of Lemma 3.2 [23], for a given ε > 0, we consider the application Iε : IR → IR, defined by

Iε(r) =
{

0 if |r| ≤ ε

r − sign(r) ε if |r| > ε.

Then, we choose

ũε = Iε(u), a.e. in �.

One sees that ũε is compactly supported in �. Moreover, there exists 0 < α < 1 and ε0 > 0, such 
that

zε = ũε ∗ ραε ∈D(ω), for any 0 < ε < ε0,

where ω ⊂⊂ �. Now, for any x ∈ IRn, let us consider the dual function of SD(x) given by

S∗
D(x)(q) = max

{
q · p ; SD(x)(p) ≤ 1

}
.

Recall that q ∈ D(x) if and only if S∗
D(x)(q) ≤ 1. Now, arguing like in the proof of Lemma 1 of 

[22] (see also the proof of Lemma 3.1 [6]), we consider

ω(δ) := sup
{∣∣∣S∗

D(x)(A) − S∗
D(y)(A)

∣∣∣ ; |x − y| ≤ δ and |A| ≤ ‖∇u‖∞
}

,

the uniform modulus of continuity x → S∗ (A). Then, we set
D(x)
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uε := 1

1 + ω(αε)
zε ∈ D(�).

It is not difficult to see that uε → u in W 1,∞(�)-weak*. Moreover, we have

S∗
D(x)(∇uε(x)) ≤ 1.

Indeed, using Jensen inequality, we have

S∗
D(x)(∇uε(x)) ≤ 1

1 + ω(αε)

∫
ραε(x − y)S∗

D(x)(∇u(y)) dy

≤ 1

1 + ω(αε)

∫
ραε(x − y)S∗

D(y)(∇u(y)) dy

+ 1

1 + ω(αε)

∫
ραε(x − y)

(
S∗

D(x)(∇u(y)) − S∗
D(y)(∇u(y))

)
dy

≤ 1.

Now, for any open subset B ⊂ �, using Proposition 1 and the fact that σ(x) ∈ Tγ (x), γ -a.e. x, 
we have ∫

B

σ · ∇γ u dγ = lim
ε→0

∫
B

σ · ∇γ uε dγ

= lim
ε→0

∫
B

σ · ∇uε dγ

≤ lim
ε→0

∫
B

SD(x)(σ (x)) S∗
D(x)(∇uε(x)) dγ (x)

≤
∫
B

SD(x)(σ (x))dγ (x).

For the general case, we consider g̃ ∈ C1(�) be such that g̃ = g on ∂�. It is clear that ũ =
u − g̃ ∈ W

1,∞
g (�) and, for Ln-a.e. x ∈ �, ∇ũ(x) ∈ {q − ∇g̃(x); q ∈ D(x)} =: D̃(x) which is 

a convex set in turn. Thanks to the first part of the proof, there exists a sequence (ũε)ε>0 in 
D(�), such that ∇ũε(x) ∈ D̃(x), for any x ∈ � and ũε → ũ in W 1,∞(�)-weak*. Now, taking 
uε = ũε + g̃, we see that uε ∈ C1(�), uε = g on ∂�, ∇uε(x) ∈ D(x), for any x ∈ � and uε → u

in W 1,∞(�)-weak*. Using the definition of S
D̃(x)

and SD(x), we see that

S
D̃(x)

(σ (x)) + σ(x) · ∇g̃(x) = SD(x)(σ (x)), γ -a.e. x ∈ �.

Thus
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∫
B

σ · ∇γ u dγ = lim
ε→0

∫
B

σ · ∇uε dγ

= lim
ε→0

∫
B

σ · (∇ũε + ∇g̃) dγ

= lim
ε→0

∫
B

σ · ∇ũε dγ +
∫
B

σ · ∇g̃ dγ

≤
∫
B

(
S

D̃(x)
(σ (x)) + σ(x) · ∇g̃(x)

)
dγ (x)

≤
∫
B

SD(x)(σ (x))dγ (x).

This ends up the proof of the proposition. �
Proposition 6. Let γ ∈Mb(�)+ and σ ∈ L1(�, dγ )n be such that σ(x) ∈ Tγ (x), γ -a.e. x ∈ �. 
If u ∈ W 1,∞(�) and ∇u(x) ∈ D(x), Ln-a.e. x ∈ �, then the following assertions are equivalent:

(1) σ(x) · ∇γ u(x) = SD(x) (σ (x)), γ -a.e. x ∈ �.

(2)
∫

SD(x) (σ (x)) dγ (x) ≤
∫

∇γ u · σ dγ .

Moreover, if ∇γ u(x) ∈ D(x), Ln-a.e. x ∈ �, then (1) and (2) are equivalent to

σ(x) ∈ ∂II
D(x)

(∇γ u(x)) γ -a.e. x ∈ �.

Proof. The proof is a simple consequence of Proposition 5 and the definition of ∂II
D(x)

. �
3. Main results

Let μ ∈ Mb(�) and g ∈ C1(∂�) be given, where � ⊂ IRn is an open bounded domain with 
Lipschitz boundary. Under the condition (4), the equation (1) with Dirichlet boundary condition 
reads

(P1)

⎧⎪⎪⎨
⎪⎪⎩

−∇ · � = μ

� ∈ ∂ξJ (.,∇u)

}
in �

u = g on ∂�.

To set our first main result, we consider

K :=
{
z ∈ W 1,∞

g (�) : ∇z(x) ∈ D(x), Ln-a.e. x ∈ �
}
.
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See here that, in general K could be an empty set. Indeed, it is necessary to assume moreover 
that the function g ∈ G, where

G :=
{
g ∈ C(∂�) : ∃g0 ∈ W 1,∞

g (�), ∇g0(x) ∈ D(x), Ln-a.e. x ∈ �
}
.

Remark 2.

(1) G 	= ∅. Indeed, 0 ∈ G.
(2) Thanks to [21], if D(x) is closed then

G =
{
g ∈ C(∂�) : g(x) − g(y) ≤ SJ (y, x)

}
,

where, for any y, x ∈ �,

SJ (y, x) = inf

⎧⎨
⎩

1∫
0

S∗
D(ϕ(t))(ϕ̇(t))dt : ϕ ∈ Ly,x

⎫⎬
⎭

and

Ly,x =
{
ϕ ∈ C1([0,1],�) : ϕ(0) = y,ϕ(1) = x

}
.

Indeed, to find g0 ∈ W 1,∞(�), such that ∇g0(x) ∈ D(x), a.e. x ∈ �, and g0 = g on ∂�, is 
equivalent to find a subsolution u to the Hamilton–Jacobi equation (in a viscosity sense)⎧⎨

⎩
F(x,∇u) = 1 in �

u = g on ∂�,

(9)

where F(x, p) = S∗
D(x)(p), for any (x, p) ∈ � × IRN . Thanks to [21], u is a subsolution of 

F(x, ∇u) = 1 in � if and only if u(x) − u(y) ≤ SJ (y, x), for any x, y ∈ �. So, in one hand, 
by continuity we have

G ⊆
{
g ∈ C(∂�) : g(x) − g(y) ≤ SJ (y, x)

}
.

On the other hand, thanks again to [21] (see Proposition 4.7), if g ∈ C(∂�) satisfies 
g(x) − g(y) ≤ SJ (y, x), for any x, y ∈ ∂�, then the equation has a subsolution given by 
the Hopf–Lax explicit formula

u(x) = min
{
g(y) + SJ (y, x) : y ∈ ∂�

}
.

Now, throughout this section we assume that g ∈ G ∩ C1(∂�), and we fix g0 ∈ C1(�) such 
that

∇g0(x) ∈ D(x), Ln-a.e. x ∈ � and g0 = g on ∂�.
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Theorem 1. Assume that J satisfies the assumptions (J1)–(J2). For any μ ∈ Mb(�) and g ∈
G ∩ C1(∂�), the problem

(P2) min

⎧⎨
⎩
∫
�

J (x,∇z(x)) dx −
∫
�

z dμ ; z ∈ W 1,∞
g (�)

⎫⎬
⎭

has a solution u. If, moreover J satisfies (J3), then u is a solution of (P2) if and only if u ∈ K

and, there exists � ∈Mb(�)n such that

�r(x) ∈ ∂ξJ (x,∇u(x)), Ln-a.e. x ∈ � (10)

�s

|�s | (x) · ∇|�s |u(x) = SD(x)

(
�s

|�s | (x)

)
, |�s |-a.e. in � (11)

and

∫
�

�r · ∇ξ dx +
∫
�

∇|�s |ξ d�s =
∫
�

ξ dμ, for any ξ ∈ C1
0(�). (12)

Thanks to Proposition 6, if ∇|�s |u(x) ∈ D(x), |�s |-a.e. x ∈ �, then (11) is equivalent to

�s

|�s | (x) ∈ ∂II
D(x)

(∇|�s |u(x)) |�s |-a.e. x ∈ �. (13)

Roughly speaking (11) with the fact that ∇u(x) ∈ D(x), Ln-a.e. x ∈ �, is a generalized formu-
lation of the standard one (13).

Corollary 1. Assume that J satisfies the assumptions (J1)–(J3). If, we assume moreover that 
J (x, .) is symmetric for any x ∈ �, then u is a solution of (P2) if and only if u ∈ K and there 
exists � ∈ Mb(�)n such that (10), (12) and (13) are fulfilled.

Formally, we can say that the problem (P1) is governed by the following formulation

(P ′
1)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−∇ · � = μ

�r ∈ ∂ξJ (x,∇u), �s · ∇|�s |u = SD(x)(�s)

⎫⎬
⎭ in �

u = g on ∂�.

Throughout the paper, the couple (u, �) ∈ W 1,∞(�) × Mb(�)n given by Theorem 1 will be 
called a weak solution of (P1), and (P ′

1) will be called the weak formulation of (P1). As to the 
problem (P2), thanks to Theorem 2, it is simply the minimization problem associated with (P1).

Corollary 2. For any μ ∈ Mb(�) and g ∈ G ∩ C1(∂�), the problem (P1) has a weak solution 
(u, �).
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In particular, by using (11) we can deduce the existence of a solution for variational formula-
tion associated with the problem (P1) as well as its equivalence with a weak formulation and the 
minimization problem.

Corollary 3. Under the assumptions (J1–J3), let μ ∈ Mb(�), g ∈ G ∩ C1(∂�) and u ∈ K be 
given. Then, u is a solution of (P2) if and only if there exists � ∈ L1(�)n such that �(x) ∈
∂ξJ (x, ∇u(x)), Ln-a.e. x ∈ �, and

∫
�

∇(u(x) − ξ(x)) · �(x) dx ≤
∫
�

(u − ξ) dμ, for any ξ ∈ K. (14)

The equation (14) will be called the variational formulation associated with (P1) and (u, �) ∈
K × L1(�)n given by Corollary 3 is a variational solution of (P1).

The equivalence between the three formulations is summarized in the following Corollary

Corollary 4. Under the assumptions (J1–J3), let μ ∈ Mb(�), g ∈ G ∩ C1(∂�) and (u, �) ∈
K × Mb(�)n be given. The following propositions are equivalent:

(1) (u, �) is a weak solution of (P1).
(2) (u, �r) is a variational solution of (P1).
(3) u is a solution of the minimizing problem.

To study Legendre–Fenchel’s duality associated with the problem (P2), we define J ∗ : � ×
R

n → R the dual function of J (., ξ) as follows:

J ∗(x, y∗) = sup
{
〈y∗, ξ 〉 − J (x, ξ) : ξ ∈R

n
}
; for any x ∈ �.

We have

Theorem 2. Under the assumptions (J1–J3), for any μ ∈Mb(�) and g ∈ G ∩ C1(∂�) the prob-
lem

(P3) min

⎧⎨
⎩
∫
�

J ∗(x,ψr(x)) dx +
∫
�

SD(x)

(
ψs(x)

|ψs |(x)

)
d|ψs |(x) − Tg(ψ) ; ψ ∈ S(μ)

⎫⎬
⎭

has a solution � ∈ S(μ). Moreover, � is a solution (P3) if and only if there exists u ∈ K such 
that (u, �) is a weak solution of (P1).

4. Proofs of the main results

Thanks to the assumption (J1), it is clear that, for any p ≥ 1,

J (x, ξ) ≥ ((|ξ | − M(x))+)p, for any (x, ξ) ∈ � × IRn. (15)

To prove our main results, we begin by fixing p > n and consider the Yosida approximation of 
J given by
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Jλ(x, δ) = min
y∈D(x)

{
J (x, y) + 1

pλp−1
‖y − δ‖p

}
.

We note that Jλ(x, .) is convex, C1 and its gradient ∇ξ Jλ(x, .) is Lipschitz continuous.

4.1. Regularized problem and compactness

First, we begin with the regular minimizing problem:

min

⎧⎨
⎩
∫
�

Jλ(x,∇z) −
∫
�

zdμ ; z ∈ W
1,p
g (�)

⎫⎬
⎭ . (16)

Lemma 1. For any λ > 0, there exists uλ ∈ W 1,∞
g (�) solution of the problem (16). Moreover 

wλ := ∇ξ Jλ(x, ∇u) ∈ L1(�)n satisfies the PDE

−∇ · wλ = μ in � (17)

Proof. Let us consider the functional

z ∈ W 1,p(�) → I(z) =
∫
�

Jλ(x,∇z) −
∫
�

zdμ.

Since Jλ is convex, C1 and bounded below, the functional z ∈ W 1,p(�) → ∫
�

Jλ(x, ∇z(x)) dx is 

lower semi-continuous. Thus I is l.s.c. Moreover, since Jλ is coercive in the closed set W 1,p
g (�), 

the minimizing problem (16) has a solution uλ ∈ W
1,p
g (�). At last, since the function Jλ(x, .)

satisfies the growth condition, we deduce the second part of the proof of the lemma (cf. Theo-
rem 3.37 [16]). �
Lemma 2. The sequences (uλ)0<λ<1 and (wλ)0<λ<1 are bounded in W 1,p(�) and L1(�)n, 
respectively. Moreover, there exists C(p) = C(�, p, μ, g0) bounded as p → ∞, such that

(1) for any 0 < λ < 1, we have∫
�

(|∇uλ| − M(x))+p ≤ pC(�,p,μ,g0). (18)

(2) for any ξ ∈ C0(�), such that ξ(x) ∈ D(x), for any x ∈ �, we have∫
�

ξ d�λ ≤
∫
�

J (., ξ) dx + C(p). (19)

Proof. Using the inequality (related to the convexity of ξ ∈ IRn → |ξ |p)

1 |ξ |p ≤ ((|ξ | − M(x))+)p + |M(x)|p .

2p−1
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So, it is clear that by proving the estimate (18), we prove in turn that (uλ)λ>0 is bounded in 
W 1,p(�). To prove (18), we see first that

0 ≤
∫
�

Jλ(x,∇uλ) ≤ Cp

(‖∇(uλ − g0)‖Lp(�) + 1
)
, (20)

where Cp := C(�, p, g0) is a bounded constant as p → ∞. Indeed, since Jλ(x, .) is convex, for 
any x ∈ �, we have

Jλ(x,∇uλ) ≤ ∇ξ Jλ(x,∇uλ) · ∇(uλ − g0) + Jλ(x,∇g0), for any λ > 0.

So, using the fact that uλ − g0 in W 1,p

0 (�), we get

0 ≤
∫
�

Jλ(x,∇uλ) ≤
∫
�

∇ξ Jλ(x,∇uλ) · (∇uλ − ∇g0) +
∫
�

Jλ(x,∇g0)

≤
∫
�

(uλ − g0) dμ +
∫
�

Jλ(x,∇g0)

≤ C(�,p,g0)‖∇(uλ − g0)‖Lp +
∫
�

Jλ(x,∇g0),

where C(�, p, g0) depends only on the constant of Poincaré inequality, on the norm of the 
continuous embedding of L∞(�) in W 1,p(�) and on |μ|(�). Then, since ∇g0(x) ∈ D(x), we 
see that 

∫
�

Jλ(x, ∇g0) converges to 
∫
�

J (x, ∇g0), as λ → 0. Thus 
∫
�

Jλ(x, ∇g0) is bounded 
and (20) follows. Now, we see that

((|ξ | − M(x))+)p ≤ pJλ(x, ξ), for any ξ ∈ IRn and 0 < λ < 1. (21)

Indeed, for a given x ∈ �, any ξ ∈R
n, there exist y ∈ R

n, |y| ≤ M(x), such that

Jλ(x, ξ) = J (y) + 1

pλp−1
|ξ − y|p .

Using the assumption (J1) and the fact that |y| ≤ M(x), we get:

Jλ(x, ξ) ≥ ((|y| − M(x))+)p + 1

p

∣∣∣ |ξ | − |y|
∣∣∣p

≥ 1

p

∣∣∣ |ξ | − |y|
∣∣∣p

≥ 1

p
((|ξ | − M(x))+)p.

Thus (21). Using (20), (21) and Young inequality we get
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∫
�

(|∇uλ| − M(x))+p dx ≤ pCp

(‖∇(uλ − g0)‖Lp(�) + 1
)

≤ pCp

(∥∥(|∇uλ| − M)+
∥∥

Lp + ‖|∇g0| + M‖Lp + 1
)

≤ pCp

⎛
⎝εp

p

∫
�

(|∇uλ| − M(x))+p + 1

εp′
p′ + ‖|∇g0| + M‖Lp + 1

⎞
⎠ .

Taking εp = 1
2Cp

, we have εp′ = 1

(2Cp)
1

p−1
and

∫
�

(|∇uλ| − M(x))+p dx ≤ 2pCp

⎛
⎝ (2Cp)

1
p−1

p′ + ‖|∇g0| + M‖Lp + 1

⎞
⎠=: pC(p).

Since the Poincaré constant C(�, p) is bounded as p tends to +∞ (cf. [15]) and g0 ∈ C1(�), 
we deduce that C(p) is bounded as p → ∞. Thus (18). To prove (19), recall that for any ξ ∈ IRn

and a.e. x ∈ �, we have

wλ(x) · ξ ≤ Jλ(x, ξ) + wλ(x) · ∇uλ(x) − Jλ(x,∇uλ(x))

≤ Jλ(x, ξ) + wλ(x) · ∇uλ(x).

This implies that

∫
�

wλ(x) · ξ dx ≤
∫
�

Jλ(x, ξ) dx +
∫
�

wλ(x) · ∇uλ(x)dx

≤
∫
�

Jλ(x, ξ) dx +
∫
�

(uλ − g0) dμ.

In one hand, thanks to the first part, it is clear that 
∫
�
(uλ − g0) dμ is less or equal to a constant 

that we denote again C(p), which is bounded as p → ∞. Let us prove that (wλ)λ>0 is bounded in 
L1(�)n. Thanks to (J3), for any x ∈ �, we see that 

∫
�

J (x, ξ) dx is bounded for any ξ ∈ B(0, α). 
This implies that wλ · ξ is bounded in L1(�), for any ξ ∈ B(0, α). And then, wλ is bounded in 

L1(�)n. Indeed, it’s enough to take ξ = αwλ

2 |wλ| . This ends up the proof of the lemma. �
Lemma 3. There exists (up, �p) ∈ W 1,p(�) ×Mb(�)n and a subsequence that we denote again 
by λ → 0, such that

uλ → up, in W 1,p(�)-weak (22)

and

ωλ → �p, in Mb(�)n-weak∗. (23)
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Moreover, up = g in ∂� and we have

(1) The measure �p satisfies −∇ · �p = μ, in �.
(2) For any ξ ∈R

n, ϕ ∈D(�), z ∈ C1(�) and 0 < λ0 < 1, we have

∫
�

J (x, ξ)ϕ ≥
∫
�

Jλ0(x,∇up)ϕ +
∫
�

ϕ (ξ − ∇z)d�p +
∫
�

ϕ (z − up) dμ

+
∫
�

(up − z) ∇ϕ d�p. (24)

(3) The sequence 
(
up,�p

)
p≥n

satisfies, for any p ≥ n,

∫
�

(
∣∣∇up

∣∣− M(x))+p ≤ pC(p), (25)

and

∫
�

ξ d�p ≤
∫
�

J (x, ξ) dx + C(p), for any ξ ∈ D(x), (26)

where C(p) is given by Lemma 2.

Proof. Thanks to Lemma 2, there exist up in W 1,p(�), �p ∈Mb(�)n and a subsequence such 
that (22) and (23) are fulfilled. Moreover, up = g on ∂� and by using the Rellich–Kondrachov 
Theorem [11, Theorem 9.16], as λ → 0, we have

uλ → up, in C(�̄)

and

∫
�

uλdμ →
∫
�

up dμ.

Recall that for any ϕ ∈D(�) such that ϕ ≥ 0, we have

∫
�

J (x, ξ)ϕ ≥
∫

Jλ(x,∇uλ)ϕ +
∫
�

ωλ(ξ − ∇uλ)ϕ.

Since, for any (x, ξ) ∈ � × IRn, (Jλ(x, ξ))λ≥0 is nondecreasing with respect to λ, for any 0 <
λ ≤ λ0 < 1, we have:
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∫
�

Jλ(x, ξ)ϕ ≥
∫
�

Jλ0(x,∇uλ)ϕ +
∫
�

ωλ · (ξ − ∇uλ)ϕ

≥
∫
�

Jλ0(x,∇uλ)ϕ +
∫
�

ωλ · (ξ − ∇z)ϕ +
∫
�

ωλ · ∇(ϕ (uλ − z))

+
∫
�

ωλ · ∇ϕ (uλ − z)

≥
∫
�

Jλ0(x,∇uλ)ϕ +
∫
�

ωλ · (ξ − ∇z)ϕ −
∫
�

ϕ (uλ − z)dμ

+
∫
�

ωλ · ∇ϕ (uλ − z). (27)

Using the convexity and the l.s.c. of ξ ∈ W 1,p(�) → ∫
Jλ0(x, ξ(x)) dx, we deduce that

∫
�

Jλ0(x,∇up)ϕ ≤ lim
λ→0

inf
∫
�

Jλ0(x,∇uλ)ϕ.

So, letting λ → 0 in (27), we get (24). The last part of the lemma follows by letting λ → 0 in 
(18) and (19). �
Lemma 4. Let n ≤ q < ∞, and (up, �p)p≥q be the sequence given by Lemma 3. There exists 
(u, �) ∈ W 1,∞(�) ×Mb(�)n and, a subsequence that we denote again by p → ∞, such that

up → u, in W 1,q (�)-weak, (28)

and

�p → �, in Mb(�)n-weak∗. (29)

Moreover, we have

(1) The measure � satisfies −∇ · � = μ, in �
(2) For any ξ ∈R

n, λ0 > 0 and ϕ ∈D(�) such that ϕ ≥ 0, we have

∫
�

J (x, ξ)ϕ ≥
∫
�

Jλ0(∇u)ϕ +
∫
�

�r · (ξ − ∇u) ϕdx +
∫
�

ϕ(ξ − ∇|�s |u)d�s.

Proof. As in the proof of Lemma 2, combining (26) and (J3), we deduce that the sequence 
(�p)p≥q is bounded in Mb(�)n and (29) holds to be true. As to the sequence (up)p≥q , using 
Holder inequality and (25) we have
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∫
�

(
∣∣∇up

∣∣− M(x))+q ≤
⎛
⎝∫

�

(
∣∣∇up

∣∣− M(x))+p

⎞
⎠

q/p

|�| p−q
p

≤ (pC(p))q/p |�| p−q
p .

(30)

Using the fact that C(p) is bounded as p → ∞, we deduce that (up)p≥q is bounded in W 1,q(�)

and (28) holds to be true. By using Rellich–Kondrachov Theorem [11, Theorem 9.16] again, we 
get

up → u, in C(�̄)

and then

∫
�

updμ →
∫
�

u dμ.

Moreover, we see that letting p → ∞ in (30), we have u ∈ W 1,∞(�). Now, we take z = uε

in (24), where (uε)ε>0 is a sequence of Lipschitz function which converges uniformly to u. 
Letting p → ∞ and then ε → 0, we get

∫
�

J (x, ξ)ϕ ≥
∫
�

Jλ0(x,∇u)ϕ +
∫
�

ϕ�r · (ξ − ∇u)dx + lim inf
ε→0

∫
�

ϕ (ξ − ∇uε)d�s,

where � = �rLn + �s is the Lebesgue decomposition of the measure �. Thanks to Proposi-
tion 4, �s(x) ∈ T|�s |(x), |�s |-a.e. x ∈ �. This implies that, for any ϕ ∈D(�),

lim
ε→0

∫
�

ϕ(ξ − ∇uε)d�s =
∫
�

ϕξd�s − lim
ε→0

∫
�

ϕ
�s

|�s | · ∇uεd|�s |

=
∫
�

ϕξd�s − lim
ε→0

∫
�

ϕ
�s

|�s | · P|�s |∇uεd|�s |

=
∫
�

ϕξd�s −
∫
�

ϕ
�s

|�s | · ∇|�s |ud|�s |

=
∫
�

ϕ(ξ − ∇|�s |u)d�s.

And the proof of the lemma is complete. �
4.2. Proof of the main results

The aim of this section is to proceed to the proof of the main results of Section 3.
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Lemma 5. Under the assumptions of Lemma 4, let us consider the couple (u, �) ∈ W 1,∞(�) ×
Mb(�)n given by Lemma 4. Then, u ∈ K and we have

(1) �r(x) ∈ ∂J (x, ∇u(x)) Ln-a.e. �
(2) �s|�s | (x) · ∇|�s |u(x) = SD(x)

(
�s|�s | (x)

)
, |�s |-a.e. x ∈ �.

Proof. Thanks to Lemma 4, for any ξ ∈ IRn and ϕ ∈D(�), we have

∫
�

J (x, ξ)ϕ ≥
∫
�

Jλ0(x,∇u)ϕ +
∫
�

ϕ�r · (ξ − ∇u)dx +
∫
�

ϕ(ξ − ∇|�s |u)d�s. (31)

In particular, this implies that

J (x, ξ) ≥ Jλ0(x,∇u(x)) + (ξ − ∇u(x)) · �r(x) Ln-a.e. x ∈ �.

Hence, for Ln-a.e. x ∈ �, Jλ0(x, ∇u(x)) is bounded in � with respect to λ0. This implies that

∇u(x) ∈ D(x), Ln-a.e. x ∈ �. (32)

Moreover, letting λ0 → 0 in (31) and using Fatou lemma, we get

∫
�

J (x, ξ)ϕ ≥
∫
�

J (x,∇u)ϕ +
∫
�

ϕ�r · (ξ − ∇u)dx +
∫
�

ϕ(ξ − ∇|�s |u)d�s, (33)

for any ϕ ∈D(�) and ξ ∈ IRn. In one hand, this implies that, for any ξ ∈ IRn, we have

J (x, ξ) ≥ J (x,∇u(x)) + (ξ − ∇u(x)) · �r(x) Ln-a.e. x ∈ �.

Thus �r(x) ∈ ∂ξJ (x, ∇u), Ln-a.e. x ∈ �. On the other hand, (33) implies that for any ξ ∈ D(x)

ξ · �s

|�s | ≤ ∇|�s |u · �s

|�s | , |�s |-a.e. in �.

This implies that

SD(x)

(
�s

|�s | (x)

)
≤ �s

|�s | (x) · ∇|�s |u(x), |�s |-a.e. in �

Combining this with the result of Proposition 5, we deduce the second part of the lemma. �
Lemma 6. For any μ ∈ Mb(�), if (u, �) ∈ W 1,∞(�) × Mb(�)n is a weak solution of the 
problem (P1), then � is a solution of problem (P3).
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Proof. Let us denote by (u, �) ∈ W 1,∞(�) ×Mb(�)n a weak solution of the problem (P1) and 
ψ ∈ S(μ). In one hand, thanks to (10) and (11), we have

∫
�

J ∗(x,�r) +
∫
�

J (x,∇u) +
∫
�

SD(x)

(
�s(x)

|�|s(x)

)
d|�|s(x) − Tg(�)

=
∫
�

�r · ∇u +
∫
�

∇|�s |ud�s − Tg(�)

=
∫
�

udμ,

where we use also Proposition 4 and the fact that −∇ ·� = μ. On the other hand, since ψ ∈ S(μ), 
by using again Proposition 4 and Proposition 5, we have also

∫
�

udμ =
∫
�

ψr · ∇u +
∫
�

∇|ψs |udψs − Tg(ψ)

≤
∫
�

J ∗(x,ψr) +
∫
�

J (x,∇u) +
∫
�

SD(x)

(
ψs(x)

|ψ |s(x)

)
d|ψ |s(x) − Tg(ψ).

This implies that

∫
�

J ∗(x,�r) +
∫
�

SD(x)

(
�s(x)

|�|s(x)

)
d|�|s(x) − Tg(�)

≤
∫
�

J ∗(x,ψr) +
∫
�

SD(x)

(
ψs(x)

|ψ |s(x)

)
d|ψ |s(x) − Tg(ψ).

Recall that � ∈ S(μ) and ψ ∈ S(μ) is arbitrary. Thus,

∫
�

J ∗(x,�r) +
∫
�

SD(x)

(
�s(x)

|�|s(x)

)
d|�|s(x) − Tg(�)

= min
ψ∈S(μ)

⎧⎨
⎩
∫
�

J ∗(x,ψr) +
∫
�

SD(x)

(
ψs(x)

|ψ |s(x)

)
d|ψ |s(x) − Tg(ψ)

⎫⎬
⎭ . �

Lemma 7. For any μ ∈Mb(�), if � is a solution of (P3), then there exists u such that the couple 
(u, �) ∈ W 1,∞(�) ×Mb(�)n is a weak solution of (P1).

Proof. Let (ū, �̄) be the couple given by Lemma 4. First, using the fact that � is a solution of 
(P3), we have



3860 N. Igbida, T.N.N. Ta / J. Differential Equations 262 (2017) 3837–3863
∫
�

J ∗(x,�r) +
∫
�

J (x,∇ū) +
∫
�

SD(x)

(
�s(x)

|�|s(x)

)
d|�|s(x) − Tg(�)

≤ I :=
∫
�

J ∗(x, �̄r ) +
∫
�

J (x,∇ū) +
∫
�

SD(x)

(
�̄s(x)

|�̄|s(x)

)
d|�̄|s(x) − Tg(�).

Moreover, using Proposition 4 and the fact that (ū, �̄) is a solution of (P2), it is not difficult to 
see that

I =
∫

ū dμ.

This implies that

∫
�

J ∗(x,�r) +
∫
�

J (x,∇ū) +
∫
�

SD(x)

(
�s(x)

|�|s(x)

)
d|�|s(x) − Tg(�) ≤

∫
�

ūdμ. (34)

Using again Proposition 4 and the fact that � ∈ S(μ), we have also

∫
�

ūdμ =
∫
�

�r · ∇ū +
∫
�

∇|�s |ūd�s − Tg(�).

Combining this with (34) and the fact that �r ·∇ū ≤ J ∗(x, �r) +J (x, ∇ū) a.e. in � and �s|�s | (x) ·
∇|�s |ū(x) ≤ SD(x)

(
�s|�s | (x)

)
, |�s |-a.e. in �, we deduce that

∫
�

�r · ∇ū =
∫
�

J ∗(x,�r) +
∫
�

J (x,∇ū)

and ∫
�

∇|�s |ūd�s =
∫
�

SD(x)

(
�s(x)

|�|s(x)

)
d|�|s(x).

This ends up the proof of the lemma. �
The following uniqueness result will be useful for the proof of Theorem 1.

Lemma 8. For any μ ∈Mb(�), the problem

min

⎧⎨
⎩
∫
�

J (x,∇z(x)) dx + 1

2

∫
�

z2(x) dx −
∫
�

z dμ ; z ∈ W 1,∞
g (�)

⎫⎬
⎭ ,

has at most one solution.
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Proof.

I(z) =
∫
�

J (x,∇z(x)) dx + 1

2

∫
�

z2(x) dx −
∫
�

z dμ.

Suppose that u1 and u2 are two solutions of minimizing problem. We denote by v = u1+u2
2 and 

we have:

I(v) =
∫
�

J (x,∇ u1 + u2

2
) dx + 1

2

∫
�

(
u1 + u2

2
)2(x) dx −

∫
�

u1 + u2

2
dμ

≤ I(u1) + I(u2)

2
.

From this we get u1 = u2 a.e. �
Proof of Theorem 1. First, thanks to Lemma 5, the problem (P1) has a solution (u, �). More-
over, for any ξ ∈ D(x), we have

∫
�

(ξ − u)dμ =
∫
�

�r · ∇(ξ − u) +
∫
�

∇|�s |(ξ − u)d�s

≤
∫
�

J (x,∇ξ) − J (x,∇u),

where we use the fact that �r ∈ ∂ξJ (x, ∇u). This implies that u is solution of (P2). For the 
converse part, let v be a solution of (P2) and let us denote by h the measure given by

h = μ + v Ln.

Thanks to Lemma 8, it is not difficult to see that v is the unique solution of

min

⎧⎨
⎩
∫
�

J (x,∇z(x)) dx + 1

2

∫
�

z2(x) dx −
∫
�

z dh ; z ∈ W 1,∞
g (�)

⎫⎬
⎭ . (35)

For any λ > 0 and p > n, we consider again the regularization Jλ given in Section 2, and the 
regularized problem

min

⎧⎨
⎩
∫
�

Jλ(x,∇z(x)) dx + 1

2

∫
�

z2(x) dx −
∫
�

z dh ; z ∈ W
1,p
g (�)

⎫⎬
⎭ . (36)

It is not difficult to see that (36) has a solution uλ, and wλ := ∂ξJ (x, ∇uλ) satisfies
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⎧⎨
⎩

−∇ · ωλ = h − uλ Ln in �

uλ = g on ∂�.

Moreover, one sees that the sequence uλ is bounded in L2(�), which implies that h − uλ Ln

is bounded in Mb(�). Now, to let λ → 0 and then p → ∞, one follows the same arguments 
in the same way as in Section 4, except that the second member μ in (17) is replaced here by 
h − uλ Ln which converges in Mb(�)-weak*. As a consequence, we conclude that there exists 
(u, �) ∈ W 1,∞(�) × Mb(�)n such that, u = g on ∂�, and setting � = �rLn + �s , we have 

�r(x) ∈ ∂J (x, ∇u(x)), Ln-a.e. x ∈ �, �s|�s | (x) · ∇|�s |u(x) = SD(x)

(
�s|�s | (x)

)
, |�s |-a.e. in � and

−∇ · � = h − uLn in �.

Thanks to the first part of the proof, it follows that u is a solution of the problem (35). By 
uniqueness, we get u = v, so that h −u = μ and we conclude that (v, �) is solution of (P1). �
Proof of Theorem 2. Thanks to Theorem 1 there exists (u, �) ∈ W 1,∞(�) ×Mb(�)n a weak 
solution of (P1). The proof is a direct consequence of Lemma 6 and Lemma 7. �
Proof of Corollary 1. If J (x, .) is symmetric, then we have

D(x) = B(0,R(x)), for any x ∈ �,

where R : � → [0, ∞). Therefore,

|∇u(x)| < R(x) Ln a.e. x ∈ �.

Using Lemma 1 of [22], there exists uε a sequence in D(�) such that uε → u ∈ C(�) and 
|∇uε(x)| < R(x) a.e. x ∈ �. In particular, this implies that

∣∣P|�s |∇uε

∣∣≤ R(x) |�s |-a.e.

By using the L∞(�, d|�s |)-weak* continuity of the operator ∇|�s | we get

∣∣∇|�s |u(x)
∣∣≤ R(x), |�s |-a.e. in �. (37)

This implies that ∇|�s |u(x) ∈ D(x) |�s |-a.e. in � and the proof of the Corollary follows by using 
Proposition 6. �
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