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Abstract

In this paper, we study a suitable notion of solution for which a nonlinear elliptic problem
governed by a general Leray-Lions operator is well posed for any diffuse measure data. In
terms of the paper [12], we study the notion of solution for which any diffuse measure is ”good
measure”.
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1 Introduction and main results

Our aim is to study existence and uniqueness of a solution for the nonlinear boundary value problem
of the form

P (β, µ)


−∇ · a(x,∇u) + β(u) 3 µ in Ω,

u = 0 on ∂Ω,

where β is a maximal monotone graph on R such that 0 ∈ β(0), a is a Leray-Lions operator, µ is a
diffuse measure and Ω ⊂ IRN is a smooth bounded domain (N ≥ 1).

Recall that a Leray-Lions operator is a Carathéodory function a : Ω× IRN → IRN (i.e. a(x, ξ)
is measurable in x ∈ Ω for every ξ ∈ RN and continuous in ξ ∈ RN for almost every x ∈ Ω) such that

• there exists λ > 0 such that ∀ξ ∈ RN and a.e. x ∈ Ω,

a(x, ξ).ξ ≥ λ|ξ|p; (1.1)

• for any (ξ, η) ∈ RN × RN with ξ 6= η and a.e. x ∈ Ω,(
a(x, ξ)− a(x, η)

)
.
(
ξ − η

)
> 0; (1.2)

• there exists Λ > 0 such that for a.e. x ∈ Ω and for any ξ ∈ RN ,∣∣∣a(x, ξ)
∣∣∣ ≤ Λ

(
j1(x) + |ξ|p−1

)
(1.3)

where j1 is a nonnegative function in Lp′(Ω) with p′ =
p

p− 1
.

A Radon measure µ is said to be diffuse with respect to the capacity W 1,p
0 (Ω) (p−capacity for
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short) if µ(E) = 0 for every set E such that capp(E,Ω) = 0. The p−capacity of every subset E
with respect to Ω is defined as :

capp(E,Ω) = inf
{∫

Ω
|∇u|pdx

}
and the infimum is taken on all functions u ∈W 1,p

0 (Ω) ∩C0(Ω) such that u = 1 almost everywhere
on E, u ≥ 0 almost everywhere on Ω. The set of diffuse measures is denoted byMp

b(Ω).

In the case where µ ∈ W−1,p′(Ω), it is known (cf. [22], [15] and [4]) that P (β, µ) has a unique
solution in the standard sense, the so called weak solution. That is a couple (u,w) ∈W 1,p

0 (Ω)×L1(Ω)
such that w ∈ β(u), LN − a.e. in Ω, and∫

Ω
a(x,∇u).∇ξdx+

∫
Ω
wξdx =

∫
Ω
ξdµ,∀ξ ∈W 1,p

0 (Ω) ∩ L∞(Ω).

For diffuse measure, existence and uniqueness of a renormalized and/or entropic solution (some
extension of the results of [4]) is treated in [9] for the case of continuous β defined in all IR (we
refer the reader to the paper [18] for an extensive references concerning existence and uniqueness of
solutions for P (β, µ)). But, in general P (β, µ) has no solution (see [3], [17], [6] and the references
therein). This nonexistence mechanism is connected with the domain of the nonlinearity β and also
with the regularity of the measure µ. This phenomena was analyzed and studied in [17] for the case

−∆u+ β(u) = µ in Ω,

u = 0 on ∂Ω.
(1.4)

In particular, the authors of [17] introduced the concept of “good measure” which is a Radon measure
µ such that P (β, µ) has a weak solution. Moreover, they have introduced the notion of “reduced
measure” denoted by µ∗ associated with µ. It corresponds to the right measure that we can associate
with µ such that (1.4) with µ replaced by µ∗ has a unique weak solution. Indeed, by using natural
approximation scheme (keep µ fixed and approximate β or keep β fixed and approximate µ) and
passing to the limit in the equation they have characterized the right part of µ for which the problem
is well posed. This approach was deeply analyzed and studied in the literature for the Laplacian
(see [12], [13], [14] and [17]).

Our approach here is different, indeed as a consequence of the preceding arguments it is clear
that the standard notion of weak solution neither standard renormalized/entropic solution is not the
natural one for P (β, µ) when µ is a Radon measure. Indeed, the singular part of µ with respect to
Lebesgue measure creates an obstruction to the existence of such kind of solutions. This is related
to the fact that passing to the limit in the approximation scheme, singular parts may appear in
the equation and need to be treated. In this paper we analyze and study the main feature of these
quantities in the case of diffuse measure and maximal monotone graph β. Handling these parts
gives the right notion of solutions for P (β, µ) when µ is diffuse with respect to the p−capacity. This
notion of solution is such that any diffuse measure with respect to the p−capacity is a good measure
for P (β, µ). Recall that, taking the nonlinearity β continuous and satisfies

lim
t↑1

β(t) = +∞, (1.5)

the authors of [17] shows that, there exists a diffuse measure µ with respect to the capacity H1(Ω)
such that the problem (1.4) has no weak solution. So, in general diffuse measure are not good mea-
sure for (1.4) with respect to the standard notion of weak solution. But, it will be good measure
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for (1.4) with respect to our notion of solution.

To give our notion of solution and main results, we set

int(domβ) = (m,M) with −∞ ≤ m ≤ 0 ≤M ≤ +∞.

For any r ∈ R and any measurable function u on Ω, [u = r], [u ≤ r] and [u ≥ r] denote respectively
the sets {x ∈ Ω : u(x) = r}, {x ∈ Ω : u(x) ≤ r} and {x ∈ Ω : u(x) ≥ r}.

The main results in this work are the following theorems.

Theorem 1.1 For any µ ∈ Mp
b(Ω), the problem P (β, µ) has at least one solution (u,w) in the

sense that w ∈ L1(Ω), u is measurable, u ∈ dom(β) LN − a.e. in Ω, Tk(u) ∈ W 1,p
0 (Ω) ∀k > 0,

w ∈ β(u) LN −a.e. in Ω, there exists a measure ν ∈Mb(Ω) such that ν ⊥ LN , for any h ∈ Cc(IR),
h(u) ∈ L∞(Ω, d|ν|), h(u)ν ∈Mp

b (Ω),

ν+ is concentred on [u = M ] ∩ [u 6= +∞], ν− is concentred on [u = m] ∩ [u 6= −∞],∫
Ω
a(x,∇u).∇(h(u)ξ) dx+

∫
Ω
wh(u)ξdx+

∫
Ω
h(u)ξdν =

∫
Ω
h(u)ξdµ, (1.6)

for any ξ ∈W 1,p
0 (Ω) ∩ L∞(Ω) and

lim
n→+∞

∫
[n≤|u|≤n+1]

|∇u|p dx = 0. (1.7)

Here, since Tk(u) ∈ W 1,p
0 (Ω), without abusing we are identifying the function u with its quasi-

continuous representative. So, since the measures µ and ν are diffuse, all the terms of Theorem 1.1
have a sense.

See that, if M = +∞ (resp. m = −∞), then ν+ ≡ 0 (resp. ν− ≡ 0). In the particular case
where the domain of β is equal to IR, Theorem 1.1 implies the existence of a renormalized solution
in the standard sense. More precisely, we have

Corollary 1.1 Assume that
D(β) = IR,

for any µ ∈Mp
b(Ω), the problem P (β, µ) has at least one solution (u,w) in the sense that w ∈ L1(Ω),

u is measurable, Tk(u) ∈W 1,p
0 (Ω) ∀k > 0, w ∈ β(u) LN − a.e. in Ω, for any h ∈ Cc(IR), we have∫

Ω
a(x,∇u).∇(h(u)ξ) dx+

∫
Ω
wh(u)ξdx =

∫
Ω
h(u)ξdµ, (1.8)

for any ξ ∈W 1,p
0 (Ω) ∩ L∞(Ω) and

lim
n→+∞

∫
[n≤|u|≤n+1]

|∇u|p dx = 0. (1.9)

The uniqueness of a solution in the sense of Theorem 1.1 and Corollary 1.1 is not clear in general.
Thanks to [18], the uniqueness of a solution in the sense of Corollary 1.1 holds to be true for the so
called comparable solutions. That is any two solutions (u1, w1) and (u2, w2) such that the difference
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u1 − u2 is bounded. We’ll not abort this question in this paper and refer the reader to the papers
[18] and [19] for more details in this direction.

The connexion between our notion of solution and the entropic formulation of the solution is
given in the following Theorem. In particular, this equivalent formulation is very useful for the
proof of the uniqueness of solution for P (β, µ) in the case where the domain of β is bounded (see
Theorem 1.3). We believe that it could be also useful for the proof of uniqueness in a more general
setting like those of [18] and [19].

Theorem 1.2 If (u,w) is a solution of P (β, µ), then (u,w) is a solution in the following sense :
for any ξ ∈W 1,p

0 (Ω) ∩ L∞(Ω) such that ξ ∈ domβ,∫
Ω
a(x,∇u).∇Tk(u− ξ)dx+

∫
Ω
wTk(u− ξ)dx ≤

∫
Ω
Tk(u− ξ)dµ, for any k > 0. (1.10)

In the case where the domain of β is bounded, the renormalization with the function h is not
necessary in Theorem 1.1. We can take h ≡ 1. Moreover, by using Theorem 1.2 we have uniqueness.
This is summarize in the following theorem.

Theorem 1.3 If −∞ < m ≤ 0 ≤ M < ∞, then, for any µ ∈ Mp
b(Ω), the problem P (β, µ) has

a unique solution (u,w) in the sense that (u,w) ∈ W 1,p
0 (Ω) × L1(Ω), u ∈ dom(β) LN − a.e. in Ω,

w ∈ β(u) LN − a.e. in Ω, there exists ν ∈Mp
b(Ω) such that ν ⊥ LN ,

ν+ is concentred on [u = M ], ν− is concentred on [u = m]

and ∫
Ω
a(x,∇u).∇ξdx+

∫
Ω
wξdx+

∫
Ω
ξdν =

∫
Ω
ξdµ, (1.11)

for any ξ ∈W 1,p
0 (Ω) ∩ L∞(Ω). Moreover

ν+ ≤ µsb [u = M ] (1.12)

and
ν− ≤ −µsb [u = m]. (1.13)

Remark 1.1 1. If −∞ < m ≤ 0 ≤ M < ∞, for any µ ∈ Mp
b(Ω), the “good measure” with

respect to the notion of weak solution associated with µ is given by

µ∗ = µ− ν.

2. Assuming that M < ∞ (resp. −∞ < m) and D(β) = (−∞,M ] (resp. D(β) = [m,∞) ), we
can prove also that, if (u,w) is a solution in the sense of Theorem 1.1, then

ν+ ≤ µsb [u = M ] and ν− ≡ 0

(resp.
ν− ≤ µsb [u = m] and ν+ ≡ 0).

3. If the measure µ is regular (i.e. absolutely continuous with respect to Lebesgue measure),
Theorem 1.3 and the previous remark shows that ν = 0 and a solution in the sense of Theorem
1.1 coincides with the usual renormalized solution for P (β, µ), which corresponds to the unique
weak solution in the case where D(β) is bounded.
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Notice that this kind of formulation for the solution has already appeared in previous work, for
instance in [10], [23] and [1] to deal with nonlinearities β depending on x. It appeared also in [13]
to treat the obstacle problem associated with (1.4) ; i.e. the case where D(β) = [m,M ]. Our results
here are some kind of generalization of the last result to general nonlinearity β and Leray-Lions
operator a.

The paper is organized as follows. In section 2, we state some technical results, in section 3, we
deal with the proof of Theorem 1.1 and in section 4, we deal with the proof of Theorem 1.2 and
Theorem 1.3.

2 Preliminaries

If (u,w) is a solution of P (β, µ), choosing ξ = Tk(u), k > 0 in (1.11) , we get the following estimate:

∀k > 0,
1

k

∫
[|u|<k]

|∇u|pdx ≤ K, (2.1)

with 0 < K < +∞.
We denote by T 1,p

0 (Ω), the space of measurable functions u : Ω→ R such that for any k > 0, Tk(u) ∈
W 1,p

0 (Ω). The proof of the following two lemmas may be found in [4].

Lemma 2.1 Let 1 < p < N, Ω be as above and let u ∈ T 1,p
0 (Ω) be such that (2.1) holds. Then

there exists C = C(N, p) > 0 such that

meas
(

[|u| > k]
)
≤ CK

N
N−pk−p1 (2.2)

with p1 =
N(p− 1)

N − p
.

Lemma 2.2 Let 1 < p < N and assume that u ∈ T 1,p
0 (Ω) satisfies (2.1) for every k > 0. Then for

every h > 0 we have
meas

(
[|∇u| > h]

)
≤ C(N, p)K

N
N−1h−p2 (2.3)

with p2 = N(p−1)
N−1 .

Now, let us prove the following result which will be useful in the sequel.

Lemma 2.3 Let (βn)n≥1 be a sequence of maximal monotone graphs such that βn −→ β in the
sense of graphs. We consider (zn)n≥1 and (wn)n≥1 two sequences of L1(Ω), such that wn ∈
βn(zn), LN−a.e. in Ω, for any n ∈ N∗. If

(wn)n≥1 is bounded in L1(Ω) and zn −→ z in L1(Ω),

then
z ∈ dom(β) LN − a.e. in Ω.

The main tool for the proof of Lemma 2.3 is the "biting lemma of Chacon" (see [16]).
Let us recall it.
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Lemma 2.4 The “biting lemma of Chacon” Let Ω be an open bounded subset of RN and (fn)n
a bounded sequence in L1(Ω). Then, there exist f ∈ L1(Ω), a subsequence (fnk)k and a sequence
of measurable sets (Ej)j , Ej ⊂ Ω, ∀j ∈ N with Ej+1 ⊂ Ej and lim

j→+∞
|Ej | = 0, such that for any

j ∈ N, fnk ⇀ f in L1 (Ω\Ej) .

Proof of Lemma 2.3 Since the sequence (wn)n≥1 is bounded in L1(Ω), using the “biting lemma of
Chacon” there exist w ∈ L1(Ω), a subsequence (wnk)k≥1 and a sequence of mesurable sets (Ej)j∈N
in Ω such that Ej+1 ⊂ Ej ,∀j ∈ N, lim

j→+∞
|Ej | = 0 and ∀j ∈ N, wnk ⇀ w in L1(Ω\Ej). Since

znk −→ z in L1(Ω) and so in L1(Ω\Ej),∀j ∈ N and βnk −→ β in the sense of graphs, we have
w ∈ β(z) a.e. in Ω\Ej . Thus z ∈ dom(β) a.e. in Ω\Ej . Finally we obtain z ∈ dom(β) a.e. in Ω �

3 Proof of Theorem 1.1

For every ε > 0, we consider the Yosida regularization βε of β given by

βε =
1

ε

(
I − (I + εβ)−1

)
.

Thanks to [11], there exists j a non negative, convex and l.s.c. function defined on R, such that

β = ∂j.

To regularize β, we consider

jε(s) = min
r∈R

{
1

2ε
|s− r|2 + j(r)

}
, ∀s ∈ R, ∀ε > 0.

By Proposition 2.11 in [11] we have
dom(β) ⊂ dom(j) ⊂ dom(j) = dom(β),

jε(s) =
ε

2
|βε(s)|2 + j(Jε(s)) where Jε := (I + εβ)−1,

jε is a convex, Frechet-differentiable function and βε = ∂jε,
jε ↑ j as ε ↓ 0.

Moreover, for any ε > 0, βε is a nondecreasing and Lipschitz-continuous function.
For any measure µ assumed diffuse with respect to the capacity W 1,p

0 (Ω), a well known result in
[9] allows us to write

µ = f −∇ · F (3.1)

where f ∈ L1(Ω) and F ∈
(
Lp
′
(Ω)
)N

. To regularize µ, for any ε > 0, we define the functions

fε(x) = T 1
ε
(f(x)) for any x ∈ Ω

and
µε = fε −∇ · F for any ε > 0.

Then, we consider the following approximating scheme problem

Pε(βε, µε)


−∇ · a(x,∇uε) + βε(uε) = µε in Ω,

uε = 0 on ∂Ω.
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Thanks to [8], we know that Pε(βε, µε) admits a unique weak solution uε in the sense that uε ∈
W 1,p

0 (Ω), βε(uε) ∈ L1(Ω) and ∀ϕ ∈W 1,p
0 (Ω) ∩ L∞(Ω),∫

Ω
a(x,∇uε).∇ϕdx+

∫
Ω
βε(uε)ϕdx =

∫
Ω
fεϕdx+

∫
Ω
F.∇ϕdx. (3.2)

Let us prove the following result.

Proposition 3.1
(i) There exists 0 < C < +∞ such that for any k > 0,∫

[|uε|≤k]
|∇uε|pdx ≤ Ck. (3.3)

(ii) The sequence (βε(uε))ε>0 is uniformly bounded in L1(Ω).
(iii) For any k > 0, the sequence (βε(Tk(uε)))ε>0 is uniformly bounded in L1(Ω).
(iv) There exists u ∈ T 1,p

0 (Ω) such that u ∈ dom(β) a.e. in Ω and

uε −→ u in measure and a.e. in Ω, as ε→ 0. (3.4)

Proof (i) For any k > 0, we take ϕ = Tk(uε) as test function in (3.2). We get∫
Ω
a(x,∇uε).∇Tk(uε)dx+

∫
Ω
βε(uε)Tk(uε)dx =

∫
Ω
fεTk(uε)dx+

∫
Ω
F.∇Tk(uε)dx. (3.5)

Since ∣∣∣∣∫
Ω
fεTk(uε)dx+

∫
Ω
F.∇Tk(uε)dx

∣∣∣∣ =

∣∣∣∣∫
Ω
Tk(uε)dµε

∣∣∣∣ ≤ k|µ|(Ω) ≤ Ck

and ∫
Ω
βε(uε)Tk(uε)dx ≥ 0,

we deduce that ∫
Ω
a(x,∇uε).∇Tk(uε)dx ≤ Ck.

Using (1.1), we obtain λ
∫

Ω
|∇Tk(uε)|pdx ≤ Ck and (i) follows.

(ii) For any k > 0, the first term of (3.5) is non negative, then it follows that∫
Ω
βε(uε)Tk(uε)dx ≤ k|µ|(Ω) ≤ Ck.

Dividing by k, we get
1

k

∫
Ω
βε(uε)Tk(uε)dx ≤ C.

Letting k goes to 0, we deduce from the inequality above∫
Ω
βε(uε)sign0(uε)dx ≤ C,

which implies
∫

Ω
|βε(uε)|dx ≤ C and so (βε(uε))ε is bounded in L1(Ω).

(iii) Since ∫
Ω
|βε(Tk(uε))|dx ≤

∫
Ω
|βε(uε)|dx,
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(iii) follows obviously from (ii).

(iv) Using (i) we can assert that for all k > 0, the sequence
(
∇Tk(uε)

)
ε>0

is bounded in Lp(Ω),

thus the sequence (Tk(uε))ε>0 is bounded in W 1,p
0 (Ω). Then up to a subsequence, we can assume

that as ε → 0, (Tk(uε))ε>0 converges strongly to some function σk in Lq(Ω) and a.e. in Ω for any

1 ≤ q < p∗ =
Np

N − p
. Let us see that the sequence (uε)ε>0 is Cauchy in measure.

Indeed, let s > 0 and define

E1 := [|uε1 | > k], E2 := [|uε2 | > k] and E3 := [|Tk(uε1)− Tk(uε2)| > s]

where k > 0 is to be fixed. We note that

[|uε1 − uε2 | > s] ⊂ E1 ∪ E2 ∪ E3

and hence
meas

(
[|uε1 − uε2 | > s]

)
≤ meas(E1) + meas(E2) + meas(E3). (3.6)

Let θ > 0. Using Lemma 2.1, we choose k = k(θ) such that

meas(E1) ≤ θ/3 and meas(E2) ≤ θ/3. (3.7)

Since (Tk(uε))ε>0 converges strongly in Lq(Ω) then it is a Cauchy sequence in Lq(Ω).
Thus

meas(E3) ≤ 1

sq

∫
Ω
|Tk(uε1)− Tk(uε2)|qdx ≤ θ

3
, (3.8)

for all ε1, ε2 ≥ n0(s, θ). Finally from (3.6), (3.7) and (3.8) we obtain

meas
(

[|uε1 − uε2 | > s]
)
≤ θ for all ε1, ε2 ≥ n0(s, θ). (3.9)

Relation (3.9) means that the sequence (uε)ε>0 is Cauchy in measure, so uε −→ u in measure and up
to a subsequence, we have uε −→ u a.e. in Ω. Hence σk = Tk(u) a.e. in Ω and so u ∈ T 1,p

0 (Ω). Using
Lemma 2.3, we have Tk(u) ∈ domβ a.e. in Ω for any k > 0. This implies that u ∈ domβ a.e. in Ω �

Proposition 3.2 For any k > 0, as ε tends to 0, we have

(i) a(x,∇Tk(uε)) ⇀ a(x,∇Tk(u)) weakly in
(
Lp
′
(Ω)
)N

.

(ii) ∇Tk(uε) −→ ∇Tk(u) a.e. in Ω.
(iii) a(x,∇Tk(uε)).∇Tk(uε) −→ a(x,∇Tk(u)).∇Tk(u) a.e. in Ω and strongly in L1(Ω).
(iv) ∇Tk(uε) −→ ∇Tk(u) strongly in (Lp(Ω))N .

Proof : (i) Using (1.3) we see that the sequence (a(x,∇Tk(uε)))ε>0 is bounded in
(
Lp
′
(Ω)
)N

,

then up to a subsequence

a(x,∇Tk(uε)) ⇀ Hk in
(
Lp
′
(Ω)
)N

.

Let us prove that Hk = a(x,∇Tk(u)) a.e. in Ω. The proof consists in four steps.
Step1 : For every function h ∈W 1,+∞(R), h ≥ 0 with supp(h) compact,

lim sup
ε→0

∫
Ω
a(x,∇uε).∇

[
h(uε)(Tk(uε)− Tk(u))

]
dx ≤ 0. (3.10)
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Taking h(uε)(Tk(uε)− Tk(u)) as test function in (3.2), we have∫
Ω
a(x,∇uε).∇

[
h(uε)(Tk(uε)− Tk(u))

]
dx+

∫
Ω
βε(uε)h(uε)(Tk(uε)− Tk(u))dx

=

∫
Ω
fεh(uε)(Tk(uε)− Tk(u))dx+

∫
Ω
F.∇

[
h(uε)(Tk(uε)− Tk(u))

]
dx.

(3.11)

In addition, we see that h(uε)(Tk(uε) − Tk(u)) ⇀ 0 weakly in W 1,p
0 (Ω). Indeed, the sequence

(h(uε)(Tk(uε) − Tk(u)))ε>0 is bounded in W 1,p
0 (Ω) and converges to zero almost everywhere in Ω.

This implies that

lim
ε→0

∫
Ω
F.∇

[
h(uε)(Tk(uε)− Tk(u))

]
dx = 0.

Note also that, by the generalized dominated convergence Theorem, we have

lim
ε→0

∫
Ω
fεh(uε)(Tk(uε)− Tk(u))dx = 0.

Let us now prove that

lim sup
ε→0

∫
Ω
βε(uε)h(uε)(Tk(uε)− Tk(u))dx ≥ 0. (3.12)

For any 0 < r sufficiently small we consider

ur = (Tl(u) ∧ (M − r)) ∨ (m+ r),

where l is such that supp(h) ⊂ [−l,+l]. For any k > 0, Tk(ur) ∈W 1,p
0 (Ω). Furthermore, since∫

Ω
h(uε)(βε(uε)− βε(ur))(Tk(uε)− Tk(ur))dx ≥ 0,

we have ∫
Ω
βε(uε)h(uε)(Tk(uε)− Tk(u))dx ≥

∫
Ω
h(uε)βε(ur)(Tk(uε)− Tk(ur))dx

+

∫
Ω
h(uε)βε(uε)(Tk(ur)− Tk(u))dx.

See that
max(m+ r,−l) ≤ ur ≤ min(M − r, l),

so that
βε(max(m+ r,−l)) ≤ βε(ur) ≤ βε(min(M − r, l)).

Using Lebesgue dominated convergence Theorem, we get that

lim sup
ε→0

∫
Ω
h(uε)βε(ur)(Tk(uε)− Tk(ur))dx =

∫
Ω
h(u)β0(ur)(Tk(u)− Tk(ur))dx.

As to the last term
I :=

∫
Ω
h(uε)βε(uε)(Tk(ur)− Tk(u))dx,
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see that

I =

∫
Ω
fεh(uε)(Tk(ur)− Tk(u))dx+

∫
Ω
F.∇

[
h(uε)(Tk(ur)− Tk(u))

]
dx

−
∫

Ω
a(x,∇uε).∇

[
h(uε)(Tk(ur)− Tk(u))

]
dx

=

∫
Ω
fεh(uε)(Tk(ur)− Tk(u))dx+

∫
Ω
F.∇

[
h(uε)(Tk(ur)− Tk(u))

]
dx

−
∫

Ω
h(uε)a(x,∇uε).∇(Tk(ur)− Tk(u))dx−

∫
Ω
h′(uε)(Tk(ur)− Tk(u))a(x,∇uε).∇uεdx.

We need to let first ε→ 0 and next r → 0. The three first terms are obvious. As to the last term,
see that

|Tk(ur)− Tk(u)| ≤ |(Tk(u)− Tk(M − r))χ[M−r≤u≤M ]|+ |(Tk(u)− Tk(m+ r))χ[m≤u≤m+r]|

≤ 2r,

which implies that

lim
r→0

lim sup
ε→0

∣∣∣∣∫
Ω
h′(uε)(Tk(ur)− Tk(u))a(x,∇uε).∇uεdx

∣∣∣∣ ≤ lim
r→0

lim sup
ε→0

2r

∫
Ω

∣∣h′(uε)a(x,∇uε).∇uε
∣∣ dx

= 0,

where we use the fact that
∫

Ω

∣∣h′(uε)a(x,∇uε).∇uε
∣∣ dx is bounded.

Now, see that
h(u)β0(ur)(Tk(u)− Tk(ur)) ≥ 0.

Indeed,

h(u)β0(ur)(Tk(u)− Tk(ur)) = h(u)β0(M − r)(Tk(u)− Tk(M − r))χ[M−r≤u≤M ]

+h(uε)β0(m+ r)(Tk(u)− Tk(m+ r))χ[m≤u≤m+r] ≥ 0,

where we use the fact that β0(M−r) ≥ 0 and β0(m+r) ≤ 0 (since 0 ∈ β(0) andm+r ≤ 0 ≤M−r).
This gives (3.12).
Passing to the limit in (3.11) and using the above results we obtain the inequality (3.10).

Step2 : We prove that

lim sup
l→+∞

lim sup
ε→0

∫
[l<|uε|<l+1]

a(x,∇uε).∇uεdx ≤ 0. (3.13)

Taking wl(uε) as test function in (3.2), where wl(r) = T1(r − Tl(r)), we get∫
Ω
a(x,∇uε).∇T1(uε − Tl(uε))dx+

∫
Ω
βε(uε)T1(uε − Tl(uε))dx
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=

∫
Ω
fεT1(uε − Tl(uε))dx+

∫
Ω
F.∇T1(uε − Tl(uε))dx.

Since ∫
Ω
βε(uε)T1(uε − Tl(uε))dx ≥ 0

and ∫
Ω
a(x,∇uε).∇T1(uε − Tl(uε))dx =

∫
[l<|uε|<l+1]

a(x,∇uε).∇uεdx,

we get∫
[l<|uε|<l+1]

a(x,∇uε).∇uεdx ≤
∫

Ω
fεT1(uε − Tl(uε))dx+

∫
Ω
F.∇T1(uε − Tl(uε))dx. (3.14)

Recall that by step1, we have

lim
ε→0

∫
Ω
fεT1(uε − Tl(uε))dx =

∫
Ω
fT1(u− Tl(u))dx.

So, using the fact that T1(u − Tl(u)) −→ 0 a.e. in Ω as l → +∞ and the Lebesgue dominated
convergence Theorem, we obtain

lim
l→+∞

lim
ε→0

∫
Ω
fεT1(uε − Tl(uε))dx = 0.

Now, let us see that lim
l→+∞

lim
ε→0

∫
Ω
F.∇T1(uε − Tl(uε))dx = 0. Indeed, we begin by proving that

lim
l→+∞

lim
ε→0

∫
[l<|uε|<l+1]

|∇uε|pdx = 0.

Thanks to (1.1), we have

λ

∫
[l<|uε|<l+1]

|∇uε|pdx ≤
∫

[l<|uε|<l+1]
a(x,∇uε).∇uεdx

≤
∫

Ω
fεT1(uε − Tl(uε))dx+

∫
[l<|uε|<l+1]

F.∇uεdx.

Using Young’s inequality, for every ε̃ > 0, we get∫
[l<|uε|<l+1]

F.∇uεdx ≤
(ε̃)1−p′

p′

∫
[l<|uε|<l+1]

|F |p′dx+
ε̃

p

∫
[l<|uε|<l+1]

|∇uε|pdx.

Taking ε̃ =
p

2
λ we obtain

λ

2

∫
[l<|uε|<l+1]

|∇uε|pdx ≤
∫

Ω
fεT1(uε − Tl(uε))dx+ C(λ, p)

∫
[l<|uε|<l+1]

|F |p′dx.

Furthermore ∫
[l<|uε|<l+1]

|F |p′dx ≤
∫

[|uε|>l]
|F |p′dx

and
lim
ε→0

∫
[|uε|>l]

|F |p′dx ≤
∫

[|u|≥l]
|F |p′dx.
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Since
meas([|u| ≥ l])→ 0, as l→ +∞ by (2.2)

we have
lim
l→+∞

lim
ε→0

∫
[l<|uε|<l+1]

|F |p′dx = 0.

Hence, lim
l→+∞

lim
ε→0

∫
[l<|uε|<l+1]

|∇uε|pdx = 0. Now, using the above results we obtain

lim
l→+∞

lim
ε→0

∫
Ω
F.∇T1(uε − Tl(uε))dx = 0.

Then passing to the limit as ε→ 0 and as l→ +∞ in (3.14) we get (3.13).

Step3: We prove that for every k > 0,

lim sup
ε→0

∫
Ω
a(x,∇Tk(uε)).

[
∇Tk(uε)−∇Tk(u)

]
dx ≤ 0. (3.15)

Indeed, for all l > 0 we define the function hl by hl(r) = inf{1, (l + 1− |r|)+}. For l > k, we have∫
Ω
a(x,∇uε).∇

[
hl(uε)(Tk(uε)− Tk(u))

]
dx

=

∫
[|uε|≤k]

hl(uε)a(x,∇Tk(uε)).
[
∇Tk(uε)−∇Tk(u)

]
dx

+

∫
[|uε|>k]

hl(uε)a(x,∇uε)(−∇Tk(u))dx

+

∫
Ω
h
′
l(uε)(Tk(uε)− Tk(u))a(x,∇uε).∇uεdx

:= (E1) + (E2) + (E3).

Since l > k, on the set [|uε| ≤ k] we have hl(uε) = 1 so that we can write (E1) as

(E1) =

∫
[|uε|≤k]

a(x,∇Tk(uε)).
[
∇Tk(uε)−∇Tk(u)

]
dx

=

∫
Ω
a(x,∇Tk(uε)).

[
∇Tk(uε)−∇Tk(u)

]
dx.

Hence we obtain

lim sup
ε→0

(E1) = lim sup
ε→0

∫
Ω
a(x,∇Tk(uε)).

[
∇Tk(uε)−∇Tk(u)

]
dx.

Let us write the term (E2) as

(E2) = −
∫

[|uε|>k]
hl(uε)a(x,∇Tl+1(uε)).∇Tk(u)dx.

Using Lebesgue dominated convergence theorem, we get

lim
ε→0

(E2) = −
∫

[|u|≥k]
hl(u)Hl+1.∇Tk(u)dx = 0.
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For the term (E3), we have(
−
∫

Ω
h
′
l(uε)(Tk(uε)− Tk(u))a(x,∇uε).∇uεdx

)
≤

∣∣∣∣∫
Ω
h
′
l(uε)(Tk(uε)− Tk(u))a(x,∇uε).∇uεdx

∣∣∣∣
≤ 2k

∫
[l<|uε|<l+1]

a(x,∇uε).∇uεdx.

Using the result of the step2 we deduce that

lim sup
l→+∞

lim sup
ε→0

(
−
∫

Ω
h
′
l(uε)(Tk(uε)− Tk(u))a(x,∇uε).∇uεdx

)
≤ 0.

Applying (3.10) with h replaced by hl, l > k we get

lim sup
ε→0

∫
Ω
a(x,∇Tk(uε)).

[
∇(Tk(uε)−∇Tk(u))

]
dx

≤ lim sup
ε→0

(
−
∫

Ω
h
′
l(uε)(Tk(uε)− Tk(u))a(x,∇uε).∇uεdx

)
,

so that letting l→ +∞ yields the inequality (3.15).

Step4: In this step we prove by standard monotonicity arguments that for all k > 0, Hk =
a(x,∇Tk(u)) a.e. in Ω. Let ϕ ∈ D(Ω) and α̃ ∈ R∗. Using (3.15), we have

α̃ lim
ε→0

∫
Ω
a(x,∇Tk(uε)).∇ϕdx

≥ lim sup
ε→0

∫
Ω
a(x,∇Tk(uε)).

[
∇Tk(uε)−∇Tk(u) +∇(α̃ϕ)

]
dx

≥ lim sup
ε→0

∫
Ω
a(x,∇(Tk(u)− α̃ϕ)).

[
∇Tk(uε)−∇Tk(u) +∇(α̃ϕ)

]
dx

≥ lim sup
ε→0

∫
Ω
a(x,∇(Tk(u)− α̃ϕ)).∇(α̃ϕ)dx

≥ α̃

∫
Ω
a(x,∇(Tk(u)− α̃ϕ)).∇ϕdx.

Dividing by α̃ > 0 and by α̃ < 0, passing the limit with α̃→ 0 we obtain

lim
ε→0

∫
Ω
a(x,∇Tk(uε)).∇ϕdx =

∫
Ω
a(x,∇Tk(u)).∇ϕdx.

This means that ∀k > 0,

∫
Ω
Hk.∇ϕdx =

∫
Ω
a(x,∇Tk(u)).∇ϕdx and then

Hk = a(x,∇Tk(u)) in D′(Ω)

for all k > 0. Hence Hk = a(x,∇Tk(u)) a.e. in Ω and so a(x,∇Tk(uε)) ⇀ a(x,∇Tk(u)) weakly in(
Lp
′
(Ω)
)N

.

(ii) Thanks to (3.15), we deduce that that for all k > 0

lim
ε→0

∫
Ω

[
a(x,∇Tk(uε))− a(x,∇Tk(u))

]
.
[
∇Tk(uε)−∇Tk(u)

]
dx = 0.
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Since
gε(.) :=

[
a(.,∇Tk(uε))− a(.,∇Tk(u))

]
.
[
∇Tk(uε)−∇Tk(u)

]
≥ 0,

up to a subsequence we have
gε(.) −→ 0 a.e. in Ω.

This implies that, there exists Z ⊂ Ω such that meas(Z) = 0 and gε(.) −→ 0 a.e. in Ω \ Z. Let
x ∈ Ω \ Z. Using the assumptions (1.1) and (1.3), it follows that the sequence (∇Tk(uε(x)))ε>0 is
bounded in RN so we can extract a subsequence which converges to some ξ̃ in RN . Passing to the
limit in the expression of gε(x), we get

0 =
[
a(x, ξ̃)− a(x,∇Tk(u(x)))

]
.
[
ξ̃ −∇Tk(u(x))

]
.

This yields ξ̃ = ∇Tk(u(x)) ∀x ∈ Ω\Z. As the limit does not depend on the subsequence, the whole
sequence (∇Tk(uε(x)))ε>0 converges to ξ̃ in RN . This means that

∇Tk(uε) −→ ∇Tk(u) a.e. in Ω.

(iii) The continuity of a(x, ξ) with respect to ξ ∈ RN gives us

a(x,∇Tk(uε)) −→ a(x,∇Tk(u)) a.e. in Ω

and then we obtain

a(x,∇Tk(uε)).∇Tk(uε) −→ a(x,∇Tk(u)).∇Tk(u) a.e. in Ω.

Setting yε = a(x,∇Tk(uε)).∇Tk(uε) and y = a(x,∇Tk(u)).∇Tk(u), we have
yε ≥ 0, yε −→ y a.e. in Ω, y ∈ L1(Ω),∫

Ω
yεdx −→

∫
Ω
ydx.

Since ∫
Ω
|yε − y|dx = 2

∫
Ω

(y − yε)+dx+

∫
Ω

(yε − y)dx

and (y − yε)+ ≤ y it follows by the Lebesgue dominated convergence theorem that

lim
ε→0

∫
Ω
|yε − y|dx = 0,

which means that

a(x,∇Tk(uε)).∇Tk(uε) −→ a(x,∇Tk(u)).∇Tk(u) strongly in L1(Ω).

(iv) By (1.1), we have |∇Tk(uε)|p ≤
1

λ
a(x,∇Tk(uε)).∇Tk(uε). Using the L1-convergence of (iii) and

the generalized dominated convergence Theorem, we obtain the result of (iv). �

Lemma 3.1 For any h ∈ C1
c (R) and ξ ∈W 1,p

0 (Ω) ∩ L∞(Ω),

∇[h(uε)ξ] −→ ∇[h(u)ξ] strongly in Lp(Ω) as ε→ 0.
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Proof : For any h ∈ C1
c (R) and ξ ∈W 1,p

0 (Ω) ∩ L∞(Ω), we have

∇[h(uε)ξ] = h(uε)∇ξ + h′(uε)ξ∇uε
= h(uε)∇ξ + h′(uε)ξ∇Tl(uε) for l > 0 such that supp(h) ⊂]− l,+l[.

Using the Lebesgue dominated convergence Theorem ,we get

h(uε)∇ξ −→ h(u)∇ξ strongly in Lp(Ω) as ε→ 0.

Moreover, since |h′(uε)ξ∇Tl(uε)| ≤ C|∇Tl(uε)|, then using the generalized convergence Theorem
and Proposition 3.2-(iv) we deduce that

h′(uε)ξ∇Tl(uε) −→ h′(u)ξ∇Tl(u) = h′(u)ξ∇u strongly in Lp(Ω) as ε→ 0.

So Lemma 3.1 follows �

Now, to pass to the limit in βε(uε), let us consider the function h0 = hl0 , l0 > 0 to be fixed later
such that 

h0 ∈ C1
c (R), h0(r) ≥ 0,∀r ∈ R,

h0(r) = 1 if |r| ≤ l0 and h0(r) = 0 if |r| ≥ l0 + 1.

Since, for any k > 0, (hk(uε)zε)ε>0 is bounded in L1(Ω), there exists zk ∈Mb(Ω), such that

hk(uε)βε(uε)
∗
⇀ zk inMb(Ω) as ε→ 0.

Moreover, for any ξ ∈W 1,p
0 (Ω) ∩ L∞(Ω), we have∫

Ω
ξ dzk =

∫
Ω
ξhk(u) dµ−

∫
Ω
a(x,∇u) · ∇(hk(u)ξ)dx,

which implies that zk ∈Mp
b(Ω) and, for any k ≤ l,

zk = zl on [|Tk(u)| < k].

Let us consider the Radon measure z defined by
z = zk, on [|Tk(u)| < k] for k ∈ N∗,

z = 0 on
⋂
k∈N∗

[|Tk(u)| = k].
(3.16)

For any h ∈ Cc(IR), h(u) ∈ L∞(Ω, d|z|) and∫
Ω
h(u)ξ dz = −

∫
Ω
a(x,∇u) · ∇(h(u)ξ)dx+

∫
Ω
h(u)ξdµ,

for any ξ ∈W 1,p
0 (Ω) ∩ L∞(Ω). Indeed, let k0 > 0 be such that supp(h) ⊆ [−k0, k0],∫

Ω
h(u)ξ dz =

∫
Ω
h(u)ξ dzk0

= − lim
ε→0

∫
Ω
a(x,∇uε) · ∇(h(uε)ξ)dx+ lim

ε→0

∫
Ω
h(uε)ξdµε

= − lim
ε→0

∫
Ω
a(x,∇Tk0(uε)) · ∇(h(uε)ξ)dx+ lim

ε→0

∫
Ω
h(uε)ξdµε

= −
∫

Ω
a(x,∇u) · ∇(h(u)ξ)dx+

∫
Ω
h(u)ξdµ.

Moreover, we have

15



Lemma 3.2 The Radon-Nikodym decomposition of the measure z given by (3.16) with respect to
LN ,

z = w LN + ν, with ν⊥LN ,

satisfies the following properties

w ∈ β(u) LN − a.e. in Ω, w ∈ L1(Ω), ν ∈Mp
b(Ω),

ν+ is concentrated on [u = M ] ∩ [u 6= +∞]

and ν− is concentrated on [u = m] ∩ [u 6= −∞].

Proof : Since, for any ε > 0, zε ∈ ∂jε(uε), we have

j(t) ≥ jε(t) ≥ jε(uε) + (t− uε)zε LN − a.e. in Ω, ∀t ∈ R.

Then for any h ∈ Cc(IR), h ≥ 0 and k > 0 such that supp(h) ⊆ [−k, k], we have

ξh(uε)j(t) ≥ ξh(uε)jε(uε) + (t− uε)ξh(uε)hk(uε)zε.

In addition, for any 0 < ε < ε̃, we have

ξh(uε)j(t) ≥ ξh(uε)jε̃(uε) + (t− uε)ξh(uε)hk(uε)zε

and, integrating over Ω yields∫
Ω
ξh(uε)j(t)dx ≥

∫
Ω
ξh(uε)jε̃(uε)dx+

∫
Ω

(t− uε)ξh(uε)hk(uε)zεdx.

As ε→ 0, we get by using Fatou’s Lemma∫
Ω
ξh(u)j(t)dx ≥

∫
Ω
ξh(u)jε̃(u)dx+ lim inf

ε→0

∫
Ω

(t− uε)ξh(uε)hk(uε)zεdx.

Now, for any ξ ∈ C1
c (Ω) and t ∈ R, setting

h̃(r) = (t− r)h(r),

we have

lim
ε→0

∫
Ω

(t− uε)h(uε)ξhk(uε)zεdx = lim
ε→0

∫
Ω
h̃(uε)ξhk(uε)zεdx

=

∫
Ω

(t− u)h(u)ξdzk

=

∫
Ω

(t− u)h(u)ξdz.

So, ∫
Ω
ξh(u)j(t)dx ≥

∫
Ω
ξh(u)jε̃(u)dx+

∫
Ω
ξ(t− u)h(u)dz.

As ε̃→ 0, we get by using again Fatou’s Lemma∫
Ω
ξh(u)j(t)dx ≥

∫
Ω
ξh(u)j(u)dx+

∫
Ω
ξ(t− u)h(u)dz.
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From the inequality above we have

h(u)j(t) ≥ h(u)j(u) + (t− u)h(u)z, inMb(Ω), ∀t ∈ R. (3.17)

Using the Radon-Nikodym decomposition of z we have z = wLN + ν with ν⊥LN , w ∈ L1(Ω), then
comparing the regular part and the singular part of (3.17), for any h ∈ Cc(IR), we obtain

h(u)j(t) ≥ h(u)j(u) + (t− u)h(u)w LN − a.e. in Ω, ∀t ∈ R (3.18)

and
(t− u)h(u)ν ≤ 0 inMb(Ω), ∀ t ∈ dom(j). (3.19)

From (3.18) we get
j(t) ≥ j(u) + (t− u)w LN − a.e. in Ω, ∀t ∈ R,

so that w ∈ ∂j(u) LN − a.e in Ω. As to (3.19), this implies that for any t ∈ dom(j),

ν ≥ 0 in [u ∈ (t,∞) ∩ supp(h)] (3.20)

and
ν ≤ 0 in [u ∈ (−∞, t) ∩ supp(h)]. (3.21)

In particular, this implies that
ν([m < u < M ]) = 0.

Moreover, if m 6= −∞ (resp. M 6= +∞), then (3.21) (resp. (3.20)) implies that

ν− is concentrated on [u = m] (resp. ν+ is concentrated on [u = M ] ).

By construction of z, we see that
ν([u = ±∞]) = 0

and the proof of the Lemma 3.2 is finished �

To finish the proof of Theorem 1.1, we consider ξ ∈W 1,p
0 (Ω)∩L∞(Ω) and h ∈ C1

c (R). Then, we
take h(uε)ξ as test function in (3.2). We get∫

Ω
a(x,∇uε).∇[h(uε)ξ]dx+

∫
Ω
βε(uε)h(uε)ξdx =

∫
Ω
h(uε)ξfεdx+

∫
Ω
F.∇[h(uε)ξ]dx. (3.22)

Using Lemma 3.1, it is not difficult to see that

lim
ε→0

(∫
Ω
h(uε)ξfεdx+

∫
Ω
F.∇[h(uε)ξ]dx

)
=

∫
Ω
h(u)ξdµ.

The first term of (3.22) can be written as∫
Ω
a(x,∇uε).∇[h(uε)ξ]dx =

∫
Ω
a(x,∇Tl0+1(uε)).∇[h0(uε)ξ]dx,

for some l0 > 0 so that, by Proposition 3.2-(i) and Lemma 3.1, we have

lim
ε→0

∫
Ω
a(x,∇uε).∇[h(uε)ξ]dx = lim

ε→0

∫
Ω
a(x,∇Tl0+1(uε)).∇[h0(uε)ξ]dx

=

∫
Ω
a(x,∇Tl0+1(u)).∇[h0(u)ξ]dx

=

∫
Ω
a(x,∇u).∇[h(u)ξ]dx.
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Thanks to the convergence of Lemma 3.1 and Proposition 3.2-(i) we have from (3.22)

lim
ε→0

∫
Ω
βε(uε)h(uε)ξdx =

∫
Ω
h(u)ξdµ−

∫
Ω
a(x,∇u).∇[h(u)ξ]dx.

=

∫
Ω
h(u)ξdz

=

∫
Ω
h(u)wξdx+

∫
Ω
h(u)ξdν.

Letting ε goes to 0 in (3.22) it yields that (u,w) is a solution of the problem P (β, µ).
To end the proof of Theorem 1.1, we prove (1.9). We take ϕ = T1(uε − Tn(uε)) as test function in
(3.2) to get∫

Ω
a(x,∇uε).∇[T1(uε − Tn(uε))]dx+

∫
Ω
βε(uε)T1(uε − Tn(uε))dx =

∫
Ω
T1(uε − Tn(uε))fεdx

+

∫
Ω
F.∇[T1(uε − Tn(uε))]dx. (3.23)

Since
∫

Ω
βε(uε)T1(uε − Tn(uε))dx ≥ 0 and ∇[T1(uε − Tn(uε))] = ∇uεχ[n<|uε|<n+1], we have from

equality (3.23)∫
[n<|uε|<n+1]

a(x,∇uε).∇uεdx ≤
∫

Ω
T1(uε − Tn(uε))fεdx+

∫
Ω
F.∇[T1(uε − Tn(uε))]dx. (3.24)

As ε→ 0 in (3.24), we get∫
[n≤|u|≤n+1]

a(x,∇u).∇udx ≤
∫

Ω
T1(u− Tn(u))fdx+

∫
Ω
F.∇[T1(u− Tn(u))]dx. (3.25)

Using assumption (1.1), it follows

λ

∫
[n≤|u|≤n+1]

|∇u|pdx ≤
∫

Ω
T1(u− Tn(u))fdx+

∫
Ω
F.∇[T1(u− Tn(u))]dx. (3.26)

Using the proof of Proposition 3.2 (i) Step 2 ), one sees that lim
n→+∞

∫
Ω
T1(u − Tn(u))fdx = 0 and

lim
n→+∞

∫
Ω
F.∇[T1(u− Tn(u))]dx = 0 so that we get (1.9).

4 Proof of Theorem 1.2 and Theorem 1.3

The existence part of Theorem 1.3 follows by Theorem 1.1 and the fact that u in this case is
bounded. As we said in the introduction, the proof of the uniqueness follows by the using entropic
formulation of the solution. So let us first prove Theorem 1.2.

Proof of Theorem 1.2 : Let us consider the function hn, n > 0 defined on R by hn(r) =
inf{1, (n + 1 − |r|)+}. If (u,w) is a solution of P (β, µ), we take h = hn in (1.8). We have for any
ϕ ∈W 1,p

0 (Ω) ∩ L∞(Ω)∫
Ω
a(x,∇u).∇(hn(u)ϕ) dx+

∫
Ω
whn(u)ϕdx+

∫
Ω
hn(u)ϕdν =

∫
Ω
hn(u)ϕdµ. (4.1)
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Since ∇(hn(u)ϕ) = hn(u)∇ϕ+ h
′
n(u)ϕ∇u, it follows from (4.1)∫

Ω
hn(u)a(x,∇u).∇ϕdx+

∫
Ω
h
′
n(u)ϕa(x,∇u).∇udx+

∫
Ω
whn(u)ϕdx+

∫
Ω
hn(u)ϕdν =

∫
Ω
hn(u)ϕdµ.

(4.2)
We have hn(u) −→ 1 a.e. in R as n→ +∞. Excepted the second term, all the terms in (4.2) pass
to the limit by Lebesgue dominated convergence Theorem and when n→ +∞, we get∫

Ω
a(x,∇u).∇ϕdx+ lim sup

n→+∞

∫
Ω
h
′
n(u)ϕa(x,∇u).∇udx+

∫
Ω
wϕdx+

∫
Ω
ϕdν =

∫
Ω
ϕdµ. (4.3)

For the second term in (4.3), we have∣∣∣ ∫
Ω
h
′
n(u)ϕa(x,∇u).∇udx

∣∣∣ ≤
∫

[n≤|u|≤n+1]

∣∣∣h′n(u)ϕa(x,∇u).∇u
∣∣∣dx

≤ ‖ϕ‖∞
∫

[n≤|u|≤n+1]

∣∣∣a(x,∇u).∇u
∣∣∣dx

≤ Λ‖ϕ‖∞
∫

[n≤|u|≤n+1]

(
j1(x)|∇u|+ |∇u|p

)
dx

≤ Λ‖ϕ‖∞

‖j1‖Lp′ (Ω)

(∫
[n≤|u|≤n+1]

|∇u|pdx

) 1
p

+

∫
[n≤|u|≤n+1]

|∇u|pdx


−→ 0 as n→ +∞ (thanks to (1.9)).

Now, we replace ϕ by Tk(u− ξ) in (4.3) to get∫
Ω
a(x,∇u).∇Tk(u− ξ)dx+

∫
Ω
wTk(u− ξ)dx+

∫
Ω
Tk(u− ξ)dν =

∫
Ω
Tk(u− ξ)dµ. (4.4)

Note that, since ξ ∈ domβ,∫
Ω
Tk(u− ξ)dν =

∫
Ω
Tk(u− ξ)dν+ −

∫
Ω
Tk(u− ξ)dν−

=

∫
[u=M ]

Tk(u− ξ)dν+ −
∫

[u=m]
Tk(u− ξ)dν−

≥ 0;

then (1.10) follows from (4.4)�

Proof of Theorem 1.3: Now, let us prove the uniqueness of the solution for P (β, µ) when
−∞ < m ≤ 0 ≤ M < ∞. Suppose that (u1, w1), (u2, w2) are two solutions of P (β, µ). For u1, we
choose ξ = u2 as test function in (1.10), we have∫

Ω
a(x,∇u1).∇Tk(u1 − u2)dx+

∫
Ω
w1Tk(u1 − u2)dx ≤

∫
Ω
Tk(u1 − u2)dµ.

Similarly we get for u2∫
Ω
a(x,∇u2).∇Tk(u2 − u1)dx+

∫
Ω
w2Tk(u2 − u1)dx ≤

∫
Ω
Tk(u2 − u1)dµ.
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Adding these two last inequalities yields∫
Ω

(
a(x,∇u1)− a(x,∇u2)

)
.∇Tk(u1 − u2)dx+

∫
Ω

(w1 − w2)Tk(u1 − u2)dx ≤ 0. (4.5)

For any k > 0, from (4.5) it yields∫
Ω

(
a(x,∇u1)− a(x,∇u2)

)
.∇Tk(u1 − u2)dx = 0. (4.6)

From (4.6), it follows that there exists a constant c such that u1 − u2 = c a.e. in Ω. Using the
fact that u1 = u2 = 0 on ∂Ω we get c = 0. Thus, u1 = u2 a.e. in Ω. At last, let us see that
w1 = w2 a.e. in Ω and ν1 = ν2. Indeed for any ϕ ∈ D(Ω), taking ϕ as test function in (1.11) for the
solutions (u1, w1) and (u1, w2), after substraction of these equalities we get∫

Ω
(w1 − w2)ϕdx+

∫
Ω
ϕd(ν1 − ν2) = 0.

Hence ∫
Ω
w1ϕdx+

∫
Ω
ϕdν1 =

∫
Ω
w2ϕdx+

∫
Ω
ϕdν2.

Therefore
w1LN + ν1 = w2LN + ν2.

Since the Radon-Nikodym decomposition of a measure is unique, we get w1 = w2 a.e. in Ω and
ν1 = ν2.

To complete the proof of Theorem 1.3, it remains to show that (1.12) and (1.13) hold. To this aim,
let us prove the following result.

Lemma 4.1 Let η ∈W 1,p
0 (Ω), Z ∈Mp

b(Ω) and λ ∈ R be such that
η ≤ λ a.e. in Ω (resp. η ≥ λ),

Z = −div a(x,∇η) in D′(Ω).
(4.7)

Then ∫
[η=λ]

ξdZ ≥ 0 (4.8)

(resp.) ∫
[η=λ]

ξdZ ≤ 0, (4.9)

for any ξ ∈ C1
c (Ω), ξ ≥ 0.

Proof : The proof of this lemma follows the same steps of [2]. For seek of completeness, let
us give the arguments. For any n ≥ 1, we set ϕn(r) = inf{1, (nr − nλ + 1)+} ∀r ∈ R. Since
Z ∈ Mp

b(Ω), ϕn(η) −→ χ{η=λ} quasi everywhere, and since Z is diffuse the convergence is also
Z-a.e. Then for any ξ ∈ C1

c (Ω), ξ ≥ 0, we have∫
[η=λ]

ξdZ = lim
n→+∞

∫
Ω
ξϕn(η)dZ

= lim
n→+∞

∫
Ω
a(x,∇η).∇[ξϕn(η)]dx

≥ lim
n→+∞

∫
Ω
ϕn(η)a(x,∇η).∇ξdx.
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Furthermore ∣∣∣∣∫
Ω
ϕn(η)a(x,∇η).∇ξdx

∣∣∣∣ ≤ ‖∇ξ‖∞
∫

[λ− 1
n
≤η≤λ]

|a(x,∇η)|dx

−→ 0 as n→ +∞.

This give (4.8). The proof of (4.9) follows the same way by letting η̃ = −η, λ̃ = −λ, Z̃ = −Z and
ã(x, z) = −a(x,−z) �

Coming back to the proof of (1.12) and (1.13) , we see that since

ν = div a(x,∇u)− wLN + µ,

we have
µ− ν − wLN = −div a(x,∇u).

By Lemma 4.1, for any ξ ∈ C1
c (Ω), ξ ≥ 0, we have∫
[u=M ]

ξdν+ ≤
∫

[u=M ]
ξdµ−

∫
[u=M ]

ξwdx

and ∫
[u=m]

ξdν− ≥
∫

[u=m]
ξdµ−

∫
[u=m]

ξwdx.

The first inequality implies that∫
Ω
ξdν+ ≤

∫
Ω
ξdµb[u = M ]−

∫
Ω
ξwχ[u=M ]dx.

Consequently (1.12) holds. Similarly we get (1.13).
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