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Abstract

This paper provides a generalized and simplified proof of the uniqueness of a weak solution for
nonlinear diffusion–convection problems of Stefan type with homogeneous boundary conditions and
continuous convection.
© 2005 Elsevier Inc. All rights reserved.

0. Introduction

Throughout the paper, Ω ⊂ R
N is a bounded open domain of R

N , T > 0, Q =
(0, T )×Ω and Σ = (0, T )×∂Ω . For given f ∈ L1(Q) and u0 ∈ L1(Ω), we are interested
in the uniqueness of a (weak) solution to the evolution problem

⎧⎨
⎩

∂tu = �w + ∇ · F(u,w) + f (t, x), w ∈ β(u) in Q,

w = 0 on Σ,

u(0) = u0 in Ω,

(E(u0, f ))

under the two assumptions:
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(H1) β is a maximal monotone graph such that 0 ∈ β(0);
(H2) F(p,q) = F1(q) + pF2(q), for any (p, q) ∈ R × R, with Fi ∈ C(R;R

N) and
F2(0) = 0.

Following our references, we assume that Ω is a strongly Lipschitz domain. At the end of
the paper, we discuss an extension of the uniqueness results to more general domains and
diffusion operators.

There is an extensive literature on this type of problems, since it serves as a math-
ematical model for a large class of physical problems (cf. [1,10] and the references
therein). We are interested in the question of uniqueness of solutions. In general, i.e.,
without the assumption (H2), one cannot expect that weak solutions are unique. In-
deed, the possible degeneracy of β makes the problem to be hyperbolic in some re-
gions of Ω , precisely in the set where u lives in the plane regions of β . To ensure
uniqueness of solutions in this case, one requires some additional conditions, called,
following Kruzhkov [17], “entropy inequalities,” to single out physically relevant so-
lutions. Recall that in the case β ≡ 0, E(u0, f ) is the hyperbolic scalar conservation
law; the questions of existence and uniqueness were studied in R

N by Kruzhkov [17],
by introducing the notion of an entropy solution. This was generalized to bounded do-
mains by Hil’debrand [11] and Bardos et al. [3] for smooth data, and, more recently,
by Otto [20] for general L∞ data. As to the general case, i.e., if β is a maximal
monotone graph, the problem is said to be hyperbolic–elliptic–parabolic. A first at-
tempt to prove that the problems of this kind are well posed was given in [21], and
recently, Carillo handled very well the problem by introducing the notion of weak en-
tropy solutions and proved existence and uniqueness for continuous flux functions F

(cf. [8]).
For the existence, we refer the reader to the papers [1,2,5,8,13–15], though it has to be

bore in mind that under the structure condition (H2), the proof of existence turns out to be
nonstandard (one can see [2,5,13]).

Our main interest lays in the uniqueness of a weak solution. The question of unique-
ness is well understood if one removes the convection term ∇ · F(u,w) (cf. [6,18]). As to
the case of nonnull convection, still the entropy conditions are expected to be superfluous,
if firstly, the problem becomes linear in the hyperbolic regions; and secondly, the hyper-
bolic regions do not touch the boundary. This is exactly the case of our problem under the
assumption (H2) and homogeneous Dirichlet boundary condition.

The first proof of uniqueness using duality technics appeared in [18], for the case of
sufficiently regular β, β−1 and F1 (one can also see [10]). If β−1 is continuous, then the
problem is elliptic–parabolic, and thanks to [19] for Lipschitz continuous F1, to [4] for
α-Hölder continuous F1, with α � 1/2, and to [7] for continuous F1, the uniqueness of a
weak solution is well understood by now. For general nonlinearity of β and continuous Fi ,
as far as we know, the uniqueness of a weak solution is still open in its generality. In [8],
the uniqueness was established under the additional assumption that β−1(0) = {0}. In [12],
the authors assumed that Fi is Lipschitz continuous, and in [16], it is assumed that F is
continuous and satisfies

∥∥F(u,w)
∥∥ � C‖w‖2, for any w � r0, (0.2)
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where r0 and C are nonnegative constants. It is the purpose of this paper to prove the
uniqueness of a weak solution under the structure condition (H2), by assuming only conti-
nuity of F1 and F2.

As in [8] (see also [12,16]), we tend to establish that weak solutions are weak entropy
solutions in the sense of [8], thus they are unique and satisfy the L1 comparison principle.
The main simplification and novelty is that we drop out the unnecessary, for the uniqueness,
growth condition (0.2) used in [16] to treat the boundary term. Indeed, we start by showing
in the standard way (see [8,12,16]) that a weak solution satisfies the entropy inequality in
the interior of Ω (in the sense of [8]). Then, in contrast to [16], where the existence of
normal traces of divergence-measure fields (cf. [9]) has been used in order to show that
the entropy inequalities still hold up to the boundary, we simply use the weak formulation
of the solution in its standard consequence (2.1) combined with the hint of Lemma 1 (see
Section 3).

The definition of weak solution we have in mind and our main result are given in
Section 1. In Section 2, we give the proofs. In Sections 3 and 4, we briefly indicate the
extensions of our results to nonlinear diffusion operators ∇ · a(∇w) of Leray–Lions type,
and to non-Lipschitz domains Ω .

1. The main result

Definition 1. Given u0 ∈ L1(Ω) and f ∈ L1(Q), a weak solution of E(u0, f ) is a couple
of functions (u,w) such that u ∈ L1(Q), w ∈ L2 (0, T ;H 1

0 (Ω)), w ∈ β(u), F(u,w) ∈
(L2(Q))N , and

∫ ∫
Q

((∇w + F(u,w)
) · ∇ξ − uξt

) =
∫ ∫
Q

f ξ −
∫
Ω

ξ(0)u0

for any test function ξ ∈ D((−∞, T ) × Ω).

Our main result is

Theorem 1. Under the assumptions (H1) and (H2), if, for i = 1,2, u0i ∈ L1(Ω), fi ∈
L1(Q) and (ui,wi) is a weak solution of E(u0i , fi), then

∫
Ω

(
u1(t) − u2(t)

)+ �
∫
Ω

(u01 − u02)
+ +

t∫
0

∫
Ω

η(f1 − f2), (1.1)

with η ∈ Sign+(u1 − u2) a.e. in Q. In particular, for given u0 ∈ L1(Ω) and f ∈ L1(Q),
there exists a unique u such that the couple (u,w) is a weak solution of E(u0, f ).
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The proof of this theorem will follow as a consequence of a sequence of lemmas that
we next present. In fact, we will focus our attention on the problem⎧⎨

⎩
∂t j (v) = �ϕ(v) + ∇ · F(j (v),ϕ(v)) + f (t, x) in Q,

ϕ(v) = 0 on Σ,

j (v)(0) = u0 in Ω,

(E′(v0, f ))

where j,ϕ : R → R are nondecreasing continuous functions such that j (0) = ϕ(0) = 0.
Indeed, by taking ϕ = (I +β−1)−1, j = (I +β)−1 and v := u+w, one sees that E(u0, f )

and E′(u0, f ) are equivalent. Next, let us recall the definition of a solution of E′(u0, f ).

Definition 2. Given u0 ∈ L1(Ω) and f ∈ L1(Q), a weak solution of E′(v0, f ) is a measur-
able function v such that the couple (u, v) is a solution of E(u0, f ), where u = j (v) and
w = ϕ(v).

As it is said in the introduction, the notion of entropy solutions is an important ingredient
that we will use for the proof of uniqueness of weak solutions. The definition was intro-
duced for the first time in [8]; since then, it was used and adapted for numerous problems
and questions. In the following, let us give the definition of [8] and set the corresponding
uniqueness result.

Definition 3. Given u0 ∈ L1(Ω) and f ∈ L1(Q), a weak entropy solution of E′(v0, f ) is a
weak solution v satisfying, in addition, the so-called entropy inequalities:∫ ∫

Q

{
−(

j (v) − j (k)
)+

ξψt

+ (∇ϕ(v) + F
(
j (v),ϕ(v)

) − F
(
j (k),ϕ(k)

)) · ∇ξψ Sign+
0 (v − k)

}
�

∫ ∫
Q

f ξψ Sign+
0 (v − k) −

∫
Ω

ξψ(0)(u0 − k)+ (IE+)

and ∫ ∫
Q

{
−(

j (v) − j (−k)
)−

ξψt

+ (∇ϕ(v) + F
(
j (v),ϕ(v)

) − F
(
j (−k),ϕ(−k)

)) · ∇ξψ Sign+
0 (−k − v)

}
�

∫ ∫
Q

f ξψ Sign+
0 (−k − v) −

∫
Ω

ξψ(0)
(
u0 − j (−k)

)− (IE−)

for any (k, ξ,ψ) ∈ R × H 1
0 (Ω) ×D(−∞, T ) and also for any (k, ξ,ψ) ∈ R

+ × H 1(Ω) ×
D(−∞, T ).
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Theorem 2. (Cf. [8]) If, for i = 1,2, u0i ∈ L1(Ω), fi ∈ L1(Q) and vi is a weak entropy
solution of E′(u0i , fi), then

∫
Ω

(
j (v1)(t) − j (v2)(t)

)+ �
∫
Ω

(u01 − u02)
+ +

t∫
0

∫
Ω

η(f1 − f2), (1.2)

with η ∈ Sign+(j (v1) − j (v2)) a.e. in Q.

Then Theorem 1 is a direct consequence of the following proposition, that we prove in
the next section.

Proposition 1. For given u0 ∈ L1(Ω) and f ∈ L1(Q), if v is a weak solution of E′(v0, f ),
then v is a weak entropy solution.

2. Proofs

Throughout this section, f ∈ L1(Q), u0 ∈ L1(Ω), v is a weak solution of E′(u0, f ),
u and w denote j (v) and ϕ(v), respectively. We will also assume that u0 is such that there
exists a measurable function v0 such that

u0 = j (v0) a.e. Ω.

For any ε > 0, we denote

Hε(r) = inf
(
1, r+/ε

)
for any r ∈ R.

Lemma 1. For any k ∈ R, ψ ∈ D((−∞, T )), ψ � 0, and ξ ∈ H 1(Ω) ∩ L∞(Ω) such that
ξ � 0 and Hε(w − ϕ(k))ξ ∈ L2(0, T ;H 1

0 (Ω)), we have

lim
ε→0

∫ ∫
Q

(∇w + F(u,w)
) · ∇(

ξHε

(
w − ϕ(k)

))
ψ

�
∫ ∫
Q

f ξψ Sign+
0

(
w − ϕ(k)

) +
∫ ∫
Q

ξψt

v∫
k

Sign+
0

(
ϕ(s) − ϕ(k)

)
dj (s)

−
∫
Ω

ξψ(0)

v0∫
k

Sign+
0

(
ϕ(s) − ϕ(k)

)
dj (s). (2.1)

Proof. The proof is quite standard by now. Indeed, since Hε(w − ϕ(k))ξψ ∈
L2(0, T ;H 1(Ω)), then using the chain rule lemma (cf. [1,8]), we get
0
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∫ ∫
Q

(
−ξψt

v∫
k

Hε

(
ϕ(s) − ϕ(k)

)
dj (s) + (∇w + F(u,w)

) · ∇(
Hε

(
w − ϕ(k)

)
ξ
)
ψ

)

�
∫ ∫
Q

Hε

(
w − ϕ(k)

)
f ξ −

∫
Ω

ξψ(0)

v0∫
k

Hε

(
ϕ(s) − ϕ(k)

)
dj (s).

Letting ε → 0 and using Lebesgue’s dominated convergence theorem, we get the re-
sult. �
Lemma 2. For any (k, ξ,ψ) ∈ R × H 1

0 (Ω) ×D((−∞, T )), (IE+) is fulfilled.

Proof. The proof is given in [8] for the elliptic problem associated with E′(v0, f ), and
in [12,16] for the evolution problem. Here, let us recall the main lines of the proof. We
introduce the function

ϕ−1
0 (x) = min

{
ϕ−1(x)

}
and define the set

E = {
r ∈ R: ϕ−1

0 is discontinuous at r
}
.

It is clear that

Sign+
0

(
ϕ(s) − ϕ(k)

) = Sign+
0 (s − k) for any k /∈ E,

so that, using (H2) and Lemma 1, one proves that (IE+) is fulfilled for any (k, ξ) ∈
(R \ E) × H 1

0 (Ω). To prove that (IE+) is fulfilled for k ∈ E and ξ ∈ H 1
0 (Ω), take

[m,M] = ϕ−1(r). One sees first that (IE+) remains valid for k = M , then derives an en-
tropy inequality for k = m (by taking a sequence kn ↑ m such that ϕ(kn) /∈ E). Using
again (H2) and [8, Lemma 2] exactly in the way of [12], one can pass to the interior of
[m,M] and get (IE+) for any k ∈ [m,M]. We omit here the details of the proof to avoid an
unnecessary duplication of arguments. �
Lemma 3. The entropy inequality (IE+) remains true for any (k, ξ,ψ) ∈ R

+ × H 1(Ω) ×
D([0, T )).

Proof. Let (k, ξ,ψ) ∈ R
+ × H 1(Ω) × D([0, T )) and consider a sequence (ξn)n∈N such

that ξn ∈ H 1
0 (Ω), 0 � ξn � 1 and ξn → 1 in L1(Ω). Since ξξn ∈ H 1

0 (Ω), then thanks to
Lemma 2, we have

∫ ∫ (−(
u − j (k)

)+
ξψt + (∇w + F(u,w) − F

(
j (k),ϕ(k)

)) · ∇ξ Sign+
0 (u − k)

)
ξn
Q
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� −
∫ ∫
Q

(∇w + F(u,w) − F
(
j (k),ϕ(k)

)) · ∇ξnξ Sign+
0

(
u − j (k)

)

+
∫ ∫
Q

f ξξn Sign+
0

(
u − j (k)

) −
∫
Ω

ξξnψ(0)
(
u0 − j (k)

)+
. (2.2)

Let us write the term

In := −
∫ ∫
Q

(∇w + F(u,w) − F
(
j (k),ϕ(k)

)) · ∇ξnξ Sign+
0 (u − k)

as

In = lim
ε→0

∫ ∫
Q

(∇w + F(u,w) − F
(
j (k),ϕ(k)

)) · ∇(1 − ξn)ξHε

(
w − ϕ(k)

)

= lim
ε→0

∫ ∫
Q

(∇w + F(u,w) − F
(
j (k),ϕ(k)

)) · ∇(
(1 − ξn)Hε

(
w − ϕ(k)

))
ξ

− lim
ε→0

∫ ∫
Q

(
F(u,w) − F

(
j (k),ϕ(k)

)) · ∇wH ′
ε

(
w − ϕ(k)

)
ξ(1 − ξn)

= lim
ε→0

I 1
n,ε − lim

ε→0
I 2
n,ε.

First, one sees that I 2
n,ε = ∫∫

Q
Fε · ∇(ξ(1 − ξn)), where

Fε =
w∫

0

(
F

(
j
(
ϕ−1

0 (r)
)
, r

) − F
(
j (k),ϕ(k)

))
H ′

ε

(
r − ϕ(k)

)
dr

= 1

ε

min(w,ϕ(k)+ε)∫
min(w,ϕ(k))

(
F

(
j
(
ϕ−1

0 (r)
)
, r

) − F
(
j (k),ϕ(k)

))
dr,

which implies that limε→0 I 2
n,ε = 0. As to I 1

n,ε , we have

lim
ε→0

I 1
n,ε = lim

ε→0

∫ ∫
Q

(∇w + F(u,w) − F
(
j (k),ϕ(k)

)) · ∇(
(1 − ξn)Hε

(
w − ϕ(k)

)
ξ
)

−
∫ ∫ (∇w + F(u,w) − F

(
j (k),ϕ(k)

)) · ∇ξ(1 − ξn)Sign+
0

(
w − ϕ(k)

)
.

Q
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Since k ∈ R
+, we have Hε(w − ϕ(k))(1 − ξn)ξ ∈ L2(0, T ;H 1

0 (Ω)). Using Lemma 1, we
get

lim
ε→0

I 1
n,ε �

∫ ∫
Q

(
ψt

v∫
k

Sign+
0

(
ϕ(s) − ϕ(k)

)
dj (s) + f ψ Sign+

0

(
w − ϕ(k)

))
(1 − ξn)ξ

−
∫ ∫
Q

(∇w + F(u,w) − F
(
j (k),ϕ(k)

)) · ∇ξ(1 − ξn)Sign+
0

(
w − ϕ(k)

)

−
∫
Ω

ξ(1 − ξn)ψ(0)

v0∫
k

Sign+
0

(
ϕ(s) − ϕ(z)

)
dj (s).

This implies that limn→∞ limε→0 I 1
ε � 0. Letting n → ∞ in (2.2), we deduce the result of

the lemma. �
Proof of Proposition 1. Thanks to Lemmas 2 and 3, v satisfies (IE+) for any (k, ξ,ψ) ∈
R × H 1

0 (Ω) × D((−∞, T )) and also for any (k, ξ,ψ) ∈ R
+ × H 1(Ω) × D([0, T )). On

the other hand, it is clear that ṽ := −v is a weak solution of the problem

⎧⎨
⎩

∂t j̃ (ṽ) = �ϕ̃(ṽ) + ∇ · F̃ (j̃ (ṽ), ϕ̃(ṽ)) − f (t, x) in Q,

ϕ̃(ṽ) = 0 on Σ,

ũ(0) = −u0 in Ω,

with F̃ (r1, r2) = −F(−r1,−r2) for any r1, r2 ∈ R, and j̃ (r) = −j (−r), ϕ̃(r) = −ϕ(−r)

for any r ∈ R. Thanks to Lemmas 2 and 3, ṽ satisfies (IE+) for any (k, ξ,ψ) ∈ R ×
H 1

0 (Ω) × D((−∞, T )) ∪ R
+ × H 1(Ω) × D([0, T )) with j , ϕ, F , f and u0 replaced

by j̃ , ϕ̃, F̃ , −f and −u0, respectively. This implies that v satisfies (IE−) for any
(k, ξ,ψ) ∈ R × H 1

0 (Ω) × D((−∞, T )) ∪ R
+ × H 1(Ω) × D([0, T )), and the proof of

the proposition is complete. �

3. The case of nonlinear diffusion

Note that the results of this paper can be extended in a straightforward way to the
case of the diffusion–convection equation ∂tu = ∇ · a(∇w) + ∇ · F(u,w) + f (t, x) with
nonlinear diffusion flux a of Leray–Lions type (in particular, �w can be replaced by
the p-Laplacian of w). The definition of a weak solution below should be modified ac-
cordingly, replacing the requirements w ∈ Lp(0, T ;W 1,p

0 (Ω)) and F(u,w) ∈ (L2(Q))N

by w ∈ L2(0, T ;W 1,p

0 (Ω)) and F(u,w) ∈ (Lp′
(Q))N . Indeed, the part of the argu-

ments of Carrillo [8] we use only relies upon the monotonicity of a(·) and the fact that
w �→ ∇ · a(∇w) acts from the appropriate Sobolev space into its dual.
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4. The case of non-Lipschitz Ω

Following Carrillo [8], we adopt the assumption that the domain Ω is strongly Lip-
schitz, i.e., for all x0 ∈ ∂Ω , there exists a neighborhood Bx0 such that ∂Ω ∩ Bx0 can be
represented by the graph of a Lipschitz continuous function Φx0 . This assumption is fur-
ther used in [16] in order to extend the entropy inequalities up to the boundary (in this case,
∂Ω should be assumed “Lipschitz deformable,” cf. [9]).

It is the purpose of this section to indicate an easy generalization of the Carrillo unique-
ness result we use (Theorem 2 cited in Section 1 above), dropping the Lipschitz continuity
assumption on the functions Φx0 . More exactly, let us replace the strong Lipschitz as-
sumption on ∂Ω by the assumption that Ω satisfies the following “two-sided segment
property”:

(H3) for each x0 ∈ ∂Ω , there exists a neighbourhood Bx0 of x0 and a vector vx0 ∈ R
N such

that if y ∈ Ω ∩ Bx0 , then y + tvx0 ∈ Ω for all t ∈ (0,1), and if y ∈ Ωc ∩ Bx0 , then
y − tvx0 ∈ Ωc for all t ∈ (0,1),

where Ωc def= R
N \ Ω . It is sufficient for the proof of Theorem 2 to construct, for each

neighbourhood Bx0 in (H3), a sequence of mollifiers (ρn)n∈N defined on R
N such that, for

n large enough and some constant c > 0,

y �→ ρn

(
x − y

2

)
∈D(Ω) for all x ∈ Ω ∩ Bx0 ,

χn(y) =
∫
Ω

ρn

(
x − y

2

)
dx is an increasing sequence for all y ∈ Bx0 ,

χn(y) = 1 for all y ∈ Bx0 such that dist
(
y,Ωc) > c/n.

Set

Rn = dist

(
∂Ω,

{
y ± 1

n
vx0 : y ∈ ∂Ω ∩ Bx0

})
,

we have Rn > 0. The three properties above are satisfied for any sequence of mollifiers ρn

with support in the ball of radius Rn/2 centered at the point − 1
n
vx0 .

Now, note that Lemmas 1, 2 apply for an arbitrary domain, since the test functions ξn

can be chosen of compact support in Ω . Since the technique of Lemma 3 does not rely
upon any regularity of ∂Ω , we conclude that our uniqueness result is valid for an arbitrary
bounded domain Ω of R

N satisfying (H3).
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5. The elliptic problem

At the end of this paper, let us give some consequences of the previous results for the
stationary problem{

u − �w − ∇ · F(u,w) = f, w ∈ β(u) in Ω,

w = 0 on Γ,
(S(f ))

by assuming that (H1)–(H3) are fulfilled.

Definition 4. Given f ∈ L1(Ω), a weak solution of S(f ) is a couple of functions (u,w)

such that u ∈ L1(Ω), w ∈ H 1
0 (Ω), w ∈ β(u), a.e. in Ω , F(u,w) ∈ (L2(Ω))N , and

∫
Ω

(∇w + F(u,w)
) · ∇ξ =

∫
Ω

f ξ

for any test function ξ ∈ D(Ω).

Proposition 2. If, for i = 1,2, fi ∈ L1(Ω) and ui is a weak solution of S(fi), then∥∥(u1 − u2)
+∥∥

1 �
∥∥(f1 − f2)

+∥∥
1. (5.2)

Proof. This is a simple consequence of the fact that, if (u,w) is a weak solution of S(f ),
then by setting ũ(t) ≡ u and w̃(t) ≡ w, (ũ, w̃) is a weak solution of E(ũ0, g̃) with ũ0 = u

and g̃ = f − u. So that the result follows by using Theorem 1. �
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