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Abstract

In this paper we prove existence and uniqueness of weak solutions for a general

degenerate elliptic-parabolic problem with nonlinear dynamical boundary condi-

tions. Particular instances of this problem appear in various phenomena with

changes of phase like multiphase Stefan problem and in the weak formulation of

the mathematical model of the so called Hele Shaw problem. Also, the problem

with non-homogeneous Neumann boundary condition is included.

Mathematics Subject Classification (2000): 35J60, 35D02

1 Introduction

Let Ω be a bounded domain in R
N with smooth boundary ∂Ω and p > 1, and let

a : Ω × R
N → R

N be a Carathéodory function satisfying

(H1) there exists λ > 0 such that a(x, ξ) ·ξ ≥ λ|ξ|p for a.e. x ∈ Ω and for all ξ ∈ R
N ,

(H2) there exists c > 0 and % ∈ Lp
′

(Ω) such that |a(x, ξ)| ≤ σ(%(x) + |ξ|p−1) for
a.e. x ∈ Ω and for all ξ ∈ R

N , where p′ = p
p−1 ,

(H3) (a(x, ξ1)−a(x, ξ2)) ·(ξ1−ξ2) > 0 for a.e. x ∈ Ω and for all ξ1, ξ2 ∈ R
N , ξ1 6= ξ2.
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The hypotheses (H1 − H3) are classical in the study of nonlinear operators in di-
vergent form (see [43] or [10]). The model example of function a satisfying these hy-
potheses is a(x, ξ) = |ξ|p−2ξ. The corresponding operator is the p-Laplacian operator
∆p(u) = div(|Du|p−2Du).

We are interested in the following degenerate elliptic-parabolic problem with non-
linear dynamical boundary condition

Pγ,β(f, g, z0, w0)























zt − diva(x,Du) = f, z ∈ γ(u), in QT :=]0, T [×Ω

wt + a(x,Du) · η = g, w ∈ β(u), on ST :=]0, T [×∂Ω

z(0) = z0 in Ω, w(0) = w0 in ∂Ω,

where T > 0, the nonlinearities γ and β are maximal monotone graphs in R
2 (see, e.g.

[20]) such that 0 ∈ γ(0), {0} 6= Dom(γ), and 0 ∈ β(0), v0 ∈ L1(Ω), w0 ∈ L1(∂Ω),
f ∈ L1(0, T ;L1(Ω)), g ∈ L1(0, T ;L1(∂Ω)) and η is the unit outward normal on ∂Ω.
In particular, γ and β may be multivalued and this allows to include the Dirichlet
boundary condition (taking β to be the monotone graph D = {0} × R), in such a case
we are considering, in fact, the following problem with static boundary condition

DPγ(f, z0)























zt − div a(x,Du) = f, z ∈ γ(u), in QT

u = 0, on ST

z(0) = z0 in Ω,

and the non-homogeneous Neumann boundary condition (taking β to be the monotone
graph N defined by N(r) = 0 for all r ∈ R), in such a case we are considering the following
problem

NPγ(f, g, z0)























zt − div a(x,Du) = f, z ∈ γ(u), in QT

a(x,Du) · η = g, on ST

z(0) = z0 in Ω,

as well as many other nonlinear fluxes on the boundary that occur in some problems
in Mechanics and Physics (see, e.g., [27] or [19]). Note also that, since γ may be mul-
tivalued, problems of type Pγ,β(f, g, z0, w0) appear in various phenomena with changes
of phase like multiphase Stefan problem (cf [25]) and in the weak formulation of the
mathematical model of the so called Hele Shaw problem (see [26] and [28]). Moreover,
if γ = N, we consider the following elliptic problem with nonlinear dynamical boundary
condition

BPβ(f, g, w0)























−diva(x,Du) = f, in QT

wt + a(x,Du) · η = g, w ∈ β(u), on ST

w(0) = w0 in ∂Ω.
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The dynamical boundary conditions, although not too widely considered in the
mathematical literature, are very natural in many mathematical models as heat transfer
in a solid in contact with moving fluid, thermoelasticity, diffusion phenomena, the heat
transfer in two phase medium (Stefan problem), problems in fluid dynamics, etc. (see
[8], [23], [29], [45] and the reference therein).

They appears in the studie of the Stefan problem when the boundary material has a
large thermal conductivity and sufficiently small thickness. Hence, the boundary mate-
rial is regarded as the boundary of the domain. For instance, one considers an iron ball
in which water and ice coexists. For more details about above physical considerations
one can see for instance [1]. They appears also in the studie of the Hele-Shaw problem.
Recall that, in [26] the authors gives the weak formulation of the problem in the form
of a non linear degenerate parabolic problem, governed by the Laplace operator and
the multivalued heaviside function, with static boundary condition. From the physi-
cal point of view they assume that the prescribed value of the flux on the boundary
is known. But, in some practical situations it may be not possible to prescribe or to
control the exact value of the flux on the boundary. In [44], the authors consider the
case of nonlocal dynamical boundary conditions and use variationnal method to solve
the problem. In this paper, we are convering the case of general nonlinear diffusion and
local dynamical boundary conditions. Another interesting application we have in mind
concerns the filtration equation with dynamical boundary conditions (see for instance
[46]), which appears for example in the study of rainfall infiltration through the soil,
when the accumulation of the water on the ground surfaces caused by the saturation
of the surface layer is taken into account. Notice that β may be such that Im(ρ) 6= R,
so that we can cover the case where the boundary conditions are either dynamical or
static whith respect to the values of w. For instance, one can think about the situation
where the saturation happens only for values of w in a subinterval of R.

In contrast to the case of Dirichlet boundary condition (problem DPγ(f, z0)), which
is well known (see [2], [4], [15], [17], [21], [38] and the references therein), at our knowl-
edge there is few literature concerning problems Pγ,β(f, g, z0, w0), being the results
mostly for particular non linearities and for the Laplace operator. For instance, the
problem NPγ(f, g, z0) is treated by Hulshof in [32] in the particular case where γ is a
uniformly Lipschitz continuous function, γ(r) = 1 for r ∈ R

+, γ ∈ C1(R−), γ′ > 0 on
R

− and limr↓−∞ γ(r) = 0 and some particular functions g. Kenmochi in [39] considers
the same problem in the case γ ∈ C(R) with Ran(γ) a closed bounded interval. The
second author of this paper, in [33] and [35], studies the cases where γ is the Heaviside
maximal monotone graph and the case where γ(r) = exp(r), respectively. In one space
dimension, much more literature exists (see [16] and [47] and the references therein).

For elliptic-parabolic problems with dynamical boundary conditions, the cases in
which γ and β are both linear are well known (see for instance [31], [29], [30], [41], [3]
and the references therein). For the general nonlinear case, that is, γ and β maximal
monotone graphs, most of the papers in the literature are for the Laplace operator and
for γ and β with range equal to R (see [46], [1] and the references therein). The problem
becomes more complicated if one of the ranges of γ and β may not be equal to R and
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there are few results in the literature. In [34] the case where β is a continuous nonde-
creasing function (possibly depending on x) and γ is the Heaviside maximal monotone
graph, which corresponds to the Hele-Shaw problem is studied. In [37], the authors
consider the homogeneous case, i.e., f = 0 and g = 0, and γ and β maximal monotone
graphs everywhere defined.

Roughly speaking, in contrast to the Dirichlet boundary condition, for the Neumann
boundary condition and/or dynamical boundary conditions, the problem is noncoercive
and moreover, the conservation of the mass exhibits a necessary condition for the exis-
tence of a solution related to the ranges of the nonlinearities γ and β (see (6)). Indeed,
prescribing the value of u at some part of the lateral boudary, one can control the
Sobolev norm of the solution in the interior of Ω by the Lp norm of the gradient in Ω.
This is not possible in the case of purely Neumann boundary condition or dynamical
ones, and one has to find some substitute for this kind of arguments. In the case the
nonlinearities have ranges equal to R and assuming additional assumptions on f and g
one can obtain L∞-estimates for the solutions (see for instance [32] and [37]). If one
of the ranges is not equal to R, the L∞-estimates are lost and the existence proof of
solutions becomes complicated.

Another main difficulty when dealing with doubly nonlinear parabolic problems is
the uniqueness. For the Laplace operator, thanks to the linearity of the operator, the
problem can be solved by using suitable test functions with respect to u (see for instance
[37]). For nonlinear operators this kind of arguments turns out to be non useful. In [15],
for an elliptic-parabolic problem with Dirichlet boundary conditions, it is shown that
the notion of integral solution ([9]) is a very useful tool to prove uniqueness (see also [36]
for nonhomogeneous and time dependent Neumann boundary conditions). For general
non linearities, even for homogeneous Dirichlet boundary condition, the question of
uniqueness is more difficult and most of the arguments used in the literature are based
on doubling variables methods (see for instance [21], [22], [38], [17], [5] and the references
therein). In this paper, we use the notion of integral solution and we show that is a
very good technique to prove uniqueness for this kind of problems.

To study the problem we use as a main tool the Nonlinear Semigroup Theory ( [13],
[48]). So we need to consider the elliptic problem

(Sγ,βφ,ψ)







−div a(x,Du) + γ(u) 3 φ in Ω

a(x,Du) · η + β(u) 3 ψ on ∂Ω.

In [6], under rather general assumptions, existence of solutions and a contraction prin-

ciple for the problem (Sγ,βφ,ψ) are obtained. Using these results we prove the existence
of mild solutions for the associated Cauchy problem and under some additional natural
conditions, we show that mild solution are weak solutions. For the uniqueness, we show
that weak solutions are integral solutions.

Let us briefly summarize the contents of the paper. In Section 2 we fix the notation
and give some preliminaries; we also give the concept of weak solution for the problem
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Pγ,β(f, g, z0, w0) and state the existence and uniqueness result for weak solutions of
problem Pγ,β(f, g, z0, w0) and a contraction principle satisfied by weak solutions. In
Section 3 we study the problem from the point of view of Nonlinear Semigroup Theory,
which is a tool used to prove our results. In Section 4 we prove the existence of weak
solutions and in Section 5 we prove the contraction principle. Finally, in the appendix
we give the proof of the characterization of the closure of the domain of the accretive
operator associated to our problem.

2 Preliminaries and main result

Throughout the paper, Ω ⊂ R is a bounded domain with smooth boundary ∂Ω, γ and
β are maximal monotone graphs in R

2 such that Dom(γ) 6= {0} and 0 ∈ γ(0) ∩ β(0)
and the Carathéodory function a : Ω × R

N → R
N satisfies (H1) − (H3).

We denote by |A| the Lebesgue measure of a set A ⊂ R
N or its (N − 1)-Hausdorff

measure. For 1 ≤ q < +∞, Lq(Ω) and W 1,q(Ω) denotes respectively the standard
Lebesgue and Sobolev spaces, and W 1,q

0 (Ω) is the closure of D(Ω) in W 1,q(Ω). For
u ∈ W 1,q(Ω), we denote by u or tr(u) the trace of u on ∂Ω in the usual sense. Recall

that tr(W 1,q(Ω)) = W
1

q′
,q

(∂Ω) and Ker(tr) = W 1,q
0 (Ω).

We need to introduce the following sets,

V 1,q(Ω) :=
{

φ ∈ L1(Ω) : ∃M > 0 such that

∫

Ω

|φv| ≤M‖v‖W 1,q(Ω) ∀v ∈ W 1,q(Ω)
}

and

V 1,q(∂Ω) :=
{

ψ ∈ L1(∂Ω) : ∃M > 0 such that

∫

∂Ω

|ψv| ≤M‖v‖W 1,q(Ω) ∀v ∈ W 1,q(Ω)
}

.

V 1,q(Ω) is a Banach space endowed with the norm

‖φ‖V 1,q(Ω) := inf{M > 0 :

∫

Ω

|φv| ≤M‖v‖W 1,q(Ω) ∀v ∈ W 1,q(Ω)},

and V 1,q(∂Ω) is a Banach space endowed with the norm

‖ψ‖V 1,q(∂Ω) := inf{M > 0 :

∫

∂Ω

|ψv| ≤M‖v‖W 1,q(Ω) ∀v ∈W 1,q(Ω)}.

Observe that, Sobolev embeddings and Trace theorems imply, for 1 ≤ q < N ,

Lq
′

(Ω) ⊂ L(Nq/(N−q))′(Ω) ⊂ V 1,q(Ω)

and
Lq

′

(∂Ω) ⊂ L((N−1)q/(N−q))′(∂Ω) ⊂ V 1,q(∂Ω).
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Also,
V 1,q(Ω) = L1(Ω) and V 1,q(∂Ω) = L1(∂Ω) when q > N,

Lq(Ω) ⊂ V 1,N (Ω) and Lq(∂Ω) ⊂ V 1,N (∂Ω) for any q > 1.

We say that a is smooth (see [7] and [6]) when, for any φ ∈ L∞(Ω) such that there
exists a bounded weak solution u of the homogeneous Dirichlet problem

(D)

{

− div a(x,Du) = φ in Ω
u = 0 on ∂Ω,

there exists ψ ∈ L1(∂Ω) such that u is also a weak solution of the Neumann problem

(N)

{

− div a(x,Du) = φ in Ω
a(x,Du) · η = ψ on ∂Ω.

Functions a corresponding to linear operators with smooth coefficients and p-Laplacian
type operators are smooth (see [19] and [42]). In [6], we prove that a is smooth if and
only if for any φ ∈ V 1,p(Ω) there exists ψ = T (φ) ∈ V 1,p(∂Ω) such that the weak
solution u of (D) is a weak solution of (N). Moreover,

∫

Ω

(T (φ1) − T (φ2))
+ ≤

∫

Ω

(φ1 − φ2)
+,

for all φ1, φ2 ∈ V 1,p(Ω).

For a maximal monotone graph ϑ in R × R the main section ϑ0 of ϑ is defined by

ϑ0(s) :=























the element of minimal absolute value of ϑ(s) if ϑ(s) 6= ∅,

+∞ if [s,+∞) ∩ Dom(ϑ) = ∅,

−∞ if (−∞, s] ∩ Dom(ϑ) = ∅.

We shall denote ϑ− := inf Ran(ϑ) and ϑ+ := supRan(ϑ). If 0 ∈ Dom(ϑ), jϑ(r) =
∫ r

0
ϑ0(s)ds defines a convex l.s.c. function such that ϑ = ∂jϑ. If j∗ϑ is the Legendre

transformation of jϑ then ϑ−1 = ∂j∗ϑ.

In [12] the following relation for u, v ∈ L1(Ω) is defined,

u� v if
∫

Ω

(u− k)+ ≤

∫

Ω

(v − k)+ and

∫

Ω

(u+ k)− ≤

∫

Ω

(v + k)− for any k > 0,

and the following facts are proved.

Proposition 2.1 Let Ω be a bounded domain in R
N .

(i) If u, v ∈ L1(Ω) and u� v, then ‖u‖q ≤ ‖v‖q for any q ∈ [1,+∞].

(ii) If v ∈ L1(Ω), then {u ∈ L1(Ω) : u� v} is a weakly compact subset of L1(Ω).
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As we said in the introduction, our aim is to study the existence and uniqueness of a
weak solution for the problem Pγ,β(f, g, z0, w0). The concept of weak solution we have
in mind is the following.

Definition 2.2 Given f ∈ L1(0, T ;L1(Ω)), g ∈ L1(0, T ;L1(∂Ω)), z0 ∈ L1(Ω) and
w0 ∈ L1(∂Ω), a weak solution of Pγ,β(f, g, z0, w0) in [0, T ] is a couple (z, w) such that
z ∈ C([0, T ] : L1(Ω)), w ∈ C([0, T ] : L1(∂Ω)), z(0) = z0, w(0) = w0 and there exists
u ∈ Lp(0, T ;W 1,p(Ω)) such that z ∈ γ(u) a.e. in QT , w ∈ β(u) a.e. on ST and

d

dt

∫

Ω

z(t)ξ +
d

dt

∫

∂Ω

w(t)ξ +

∫

Ω

a(x,Du(t)) ·Dξ =

∫

Ω

f(t)ξ +

∫

∂Ω

g(t)ξ in D′(]0, T [)

(1)
for any ξ ∈ C1(Ω).

Remark 2.3 Observe that taking ξ = 1 in the above definition, we get

∫

Ω

z(t) +

∫

∂Ω

w(t) =

∫

Ω

z0 +

∫

∂Ω

w0 +

∫ t

0

(∫

Ω

f +

∫

∂Ω

g

)

∀ t ∈ [0, T ]. (2)

Recall that in the case β = 0, for the Laplacian operator and γ the multivalued
Heaviside function (i.e., for the Hele-Shaw problem), existence and uniqueness of weak
solutions for this problem is known to be true only if

∫

Ω

z0 +

∫ t

0

(∫

Ω

f +

∫

∂Ω

g

)

∈ (0, |Ω|) for any t ∈ [0, T )

(see [33] or [39])). For the maximal monotone graphs γ and β, we shall denote

R+
γ,β := γ+|Ω| + β+|∂Ω|, R−

γ,β := γ−|Ω| + β−|∂Ω|.

We will suppose R−
γ,β < R+

γ,β and we will write Rγ,β :=]R−
γ,β,R

+
γ,β[.

The main results of this paper are the following contraction principle and the fol-
lowing existence and uniqueness theorem.

Theorem 2.4 Let T > 0. For i = 1, 2, let fi ∈ L1(0, T ;L1(Ω)), gi ∈ L1(0, T ;L1(∂Ω)),
zi0 ∈ L1(Ω) and wi0 ∈ L1(∂Ω); let (zi, wi) be a weak solution in [0, T ] of Pγ,β(fi, gi, zi0, wi0),
i = 1, 2. Then

∫

Ω

(z1(t) − z2(t))
+ +

∫

∂Ω

(w1(t) − w2(t))
+ ≤

∫

Ω

(z10 − z20)
+ +

∫

∂Ω

(w10 − w20)
+

+

∫ t

0

∫

Ω

(f1(τ) − f2(τ))
+ dτ +

∫ t

0

∫

∂Ω

(g1(τ) − g2(τ))
+ dτ

(3)

for almost every t ∈]0, T [.
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Theorem 2.5 Assume Dom(γ) = R, R−
γ,β < R+

γ,β and Dom(β) = R or a smooth. Let

T > 0. Let f ∈ Lp
′

(0, T ;Lp
′

(Ω)), g ∈ Lp
′

(0, T ;Lp
′

(∂Ω)), z0 ∈ Lp
′

(Ω) and w0 ∈ Lp
′

(∂Ω)
such that

γ− ≤ z0 ≤ γ+, β− ≤ w0 ≤ β+, (4)

∫

Ω

j∗γ(z0) +

∫

Γ

j∗β(w0) < +∞, (5)

and
∫

Ω

z0 +

∫

∂Ω

w0 +

∫ t

0

(∫

Ω

f +

∫

∂Ω

g

)

∈ Rγ,β ∀ t ∈ [0, T ]. (6)

Then, there exists a unique weak solution (z, w) of problem Pγ,β(f, g, z0, w0) in [0, T ].

The uniqueness part of Theorem 2.5 follows from Theorem 2.4. To prove Theorem 2.4
and the existence part of Theorem 2.5 we shall use the Theory of Nonlinear Semigroups
(c.f. [9], [13] or [24]). We will show the existence of a mild-solution and we will prove that
this solution is a weak solution of problem Pγ,β(f, g, z0, w0). To prove the contraction
principle we will show that weak solutions are integral solutions. For all this we need to
rewrite problem Pγ,β(f, g, z0, w0) as an abstract Cauchy problem and to use the results
obtained in [6] for the associated elliptic problem.

3 Mild solutions

First let us recall some basic facts for the elliptic problem (Sγ,βφ,ψ) given in [6], which will
be crucial for the proof of our main results. In [6] the following concept of solution for

problem (Sγ,βφ,ψ) is introduced.

Definition 3.1 Let φ ∈ L1(Ω) and ψ ∈ L1(∂Ω). A triple of functions [u, z, w] ∈

W 1,p(Ω) × L1(Ω) × L1(∂Ω) is a weak solution of problem (Sγ,βφ,ψ) if z(x) ∈ γ(u(x)) a.e.
in Ω, w(x) ∈ β(u(x)) a.e. in ∂Ω, and

∫

Ω

a(x,Du) ·Dv +

∫

Ω

zv +

∫

∂Ω

wv =

∫

∂Ω

ψv +

∫

Ω

φv, (7)

for all v ∈ L∞(Ω) ∩W 1,p(Ω).

Observe that, if (Sγ,βφ,ψ) has a weak solution then, necessarily φ and ψ must satisfy

R−
γ,β ≤

∫

∂Ω

ψ +

∫

Ω

φ ≤ R+
γ,β .

Indeed, by taking v = 1 as test function in (7), we get that

∫

Ω

z +

∫

∂Ω

w =

∫

∂Ω

ψ +

∫

Ω

φ.
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Moreover we have the following existence and uniqueness results on weak solutions
of problem (Sγ,βφ,ψ) (see [6]).

Theorem 3.2 Let φ ∈ L1(Ω) and ψ ∈ L1(∂Ω), and let [u1, z1, w1] and [u2, z2, w2] be

weak solutions of problem (Sγ,βφ,ψ). Then, there exists a constant c ∈ R such that

u1 − u2 = c a.e. in Ω,

z1 − z2 = 0 a.e. in Ω

and
w1 − w2 = 0 a.e. in ∂Ω.

Moreover, if c 6= 0, there exists a constant k ∈ R such that z1 = z2 = k.

(ii) For any [u1, z1, w1] weak solution of problem (Sγ,βφ1,ψ1
), φ1 ∈ L1(Ω) and ψ1 ∈ L1(∂Ω),

and any [u2, z2, w2] weak solution of problem (Sγ,βφ2,ψ2
), φ2 ∈ L1(Ω) and ψ2 ∈ L1(∂Ω),

we have that
∫

Ω

(z1 − z2)
+ +

∫

∂Ω

(w1 − w2)
+ ≤

∫

∂Ω

(ψ1 − ψ2)
+ +

∫

Ω

(φ1 − φ2)
+.

Theorem 3.2 (ii) is given in [6] in a different way. We want to point out that with
the technique used in Section 5 we can get exactly the above result.

Theorem 3.3 Assume Dom(γ) = R. Let Dom(β) = R or a smooth. For any φ ∈
V 1,p(Ω) and ψ ∈ V 1,p(∂Ω) with

∫

Ω

φ+

∫

∂Ω

ψ ∈ Rγ,β, (8)

there exists a weak solution [u, z, w] of problem (Sγ,βφ,ψ). Moreover z ∈ V 1,p(Ω), w ∈

V 1,p(∂Ω) and
∫

Ω

a(x,Du) ·Dv +

∫

Ω

zv +

∫

∂Ω

wv =

∫

∂Ω

ψv +

∫

Ω

φv,

for any v ∈W 1,p(Ω).

This results imply that the natural space to study problem Pγ,β(f, g, z0, w0) from
the point of view of Nonlinear Semigroup Theory is X = L1(Ω)×L1(∂Ω) provided with
the natural norm

‖(f, g)‖ := ‖f‖L1(Ω) + ‖g‖L1(∂Ω).

In this space we define the following operator,

Bγ,β :=
{

((z, w), (ẑ, ŵ)) ∈ X ×X : ∃u ∈ W 1,p(Ω) such that

[u, z, w] is a weak solution of (Sγ,βz+ẑ,w+ŵ)
}

,

9



in other words, (ẑ, ŵ) ∈ Bγ,β(z, w) if and only if there exists u ∈ W 1,p(Ω) such that
z(x) ∈ γ(u(x)) a.e. in Ω, w(x) ∈ β(u(x)) a.e. in ∂Ω, and

∫

Ω

a(x,Du) ·Dv =

∫

Ω

ẑv +

∫

∂Ω

ŵv (9)

for all v ∈ L∞(Ω) ∩W 1,p(Ω), which allows us to rewrite problem Pγ,β(f, g, z0, w0) as
the following abstract Cauchy problem in X ,







V ′(t) + Bγ,β(V (t)) 3 (f, g) t ∈ (0, T )

V (0) = (z0, w0).
(10)

A direct consequence of Theorems 3.2 and 3.3 is the following result.

Corollary 3.4 The operator Bγ,β is a T-accretive operator in X and, assuming Dom(γ) =
R, and Dom(β) = R or a smooth, it satisfies the following range condition,

{

(φ, ψ) ∈ V 1,p(Ω) × V 1,p(∂Ω) :

∫

Ω

φ+

∫

∂Ω

ψ ∈ Rγ,β

}

⊂ Ran(I + Bγ,β).

Moreover, we can characterize D(Bγ,β)
L1(Ω)×L1(∂Ω)

as follows.

Theorem 3.5 Under the hypothesis Dom(γ) = R, and Dom(β) = R or a smooth, we
have

D(Bγ,β)
L1(Ω)×L1(∂Ω)

=
{

(z, w) ∈ L1(Ω) × L1(∂Ω) : γ− ≤ z ≤ γ+, β− ≤ w ≤ β+

}

.

The proof of this theorem is quite technical and we prove it in the Appendix.

The above results allow us to prove our main result concerning mild solutions.

Theorem 3.6 Let T > 0. Under the hypothesis Dom(γ) = R, and Dom(β) = R

or a smooth, for every z0 ∈ L1(Ω), w0 ∈ L1(∂Ω) and every f ∈ L1(0, T ;L1(Ω)),
g ∈ L1(0, T ;L1(∂Ω)), satisfying (4) and (6), there exists a unique mild solution of (10).

Proof. For n ∈ N, let ε = T/n, and consider a subdivision t0 = 0 < t1 < · · · < tn−1 <

T = tn with ti − ti−1 = ε, f ε1 , . . . , f
ε
n ∈ Lp

′

(Ω), gε1, . . . , g
ε
n ∈ Lp

′

(∂Ω), wε0 ∈ Lp
′

(Ω)

zε0 ∈ Lp
′

(∂Ω) with

n
∑

i=1

∫ ti

ti−1

(

‖f(t) − f εi ‖L1(Ω) + ‖g(t) − gεi‖L1(∂Ω)

)

dt ≤ ε

and
‖zε0 − z0‖L1(Ω) + ‖wε0 − w0‖L1(∂Ω) ≤ ε.

10



If we set

fε(t) = f εi , gε(t) = gεi for t ∈]ti−1, ti], i = 1, . . . , n,

it follows that
∫ T

0

(

‖f(t) − fε(t)‖L1(Ω) + ‖g(t) − gε(t)‖L1(∂Ω)

)

dt ≤ ε. (11)

By Theorem 3.3, for n large enough, there exists a weak solution [uεi , z
ε
i , w

ε
i ] of







γ(uεi) − εdiv a(x,Duεi ) 3 εf εi + zεi−1

εa(x,Duεi) · η + β(uεi) 3 εgεi + wεi−1,
(12)

for i = 1, . . . , n. That is, there exists a unique solution (zεi , w
ε
i ) ∈ X of the time

discretized scheme associated with (10),

(zεi , w
ε
i ) + εBγ,β(zεi , w

ε
i ) 3 ε(f εi , g

ε
i ) + (zεi−1, w

ε
i−1), for i = 1, . . . , n. (13)

Observe in fact that, by Theorem 3.3 applied recursively for each i = 1, . . . , n, [uεi , z
ε
i , w

ε
i ] ∈

W 1,p(Ω) × V 1,p(Ω) × V 1,p(∂Ω) and
∫

Ω

a(x,Duεi ) ·Dv +

∫

Ω

zεi − zεi−1

ε
v +

∫

∂Ω

wεi − wεi−1

ε
v =

∫

Ω

f εi v +

∫

∂Ω

gεi v (14)

for all v ∈ W 1,p(Ω). Therefore, taking v = 1 in (14), we have
∫

Ω

zεi +

∫

∂Ω

wεi = ε

(
∫

Ω

f εi +

∫

∂Ω

gεi

)

+

∫

Ω

zεi−1 +

∫

∂Ω

wεi−1. (15)

From here, it follows that

∫

Ω

zεi +

∫

∂Ω

wεi = ε

i
∑

j=1

(∫

Ω

f εj +

∫

∂Ω

gεj

)

+

∫

Ω

zε0 +

∫

∂Ω

wε0,

and taking n large enough, condition (8) is always satisfied.

Therefore, if we define Vε(t) = (zε(t), wε(t)) by






zε(0) = zε0, wε(0) = wε0,

zε(t) = zεi , wε(t) = wεi for t ∈]ti−1, ti], i = 1, . . . , n,
(16)

it is an ε-approximate solution of problem (10).

By using now the Nonlinear Semigroup Theory (see [9], [13], [24]), on account
of Corollary 3.4 and Theorem 3.5, problem (10) has a unique mild-solution V (t) =
(z(t), w(t)) ∈ C([0, T ] : X), z(t) = L1(Ω)−limε→0 zε(t) and w(t) = L1(∂Ω)−limε→0 wε(t)
uniformly for t ∈ [0, T ]. �

In principle, it is not clear how these mild solutions have to be interpreted re-
spect to the problem Pγ,β(f, g, z0, w0). We will see they are weak solutions of problem
Pγ,β(f, g, z0, w0) under the hypothesis of Theorem 2.5, which proves the existence part
of Theorem 2.5.

11



4 Existence of weak solutions

As said in the previous section, the existence part of Theorem 2.5 is shown by proving
that the mild solution of problem (10) is a weak solution of problem Pγ,β(f, g, z0, w0)
whenever the assumptions of Theorem 2.5 are fulfilled. Before giving the proof we need
to prove some technical lemmas.

4.1 Preparatory lemmas

We shall use the following integration by parts lemma in the proof of the existence part
and in the proof of the contraction principle. We denote by (., .) the pairing between
(W 1,p(Ω))′ and W 1,p(Ω).

Lemma 4.1 Let (z, w) ∈ C([0, T ] : L1(Ω)) × L1(∂Ω)) and F ∈ Lp
′

(0, T ; (W 1,p(Ω))′),
such that

∫ T

0

∫

Ω

z(t)ψt +

∫ T

0

∫

∂Ω

w(t)ψt =

∫ T

0

(F (t), ψ(t))dt, (17)

for any ψ ∈W 1,1(0, T ;W 1,1(Ω)∩L∞(Ω))∩Lp(0, T ;W 1,p(Ω)), ψ(0) = ψ(T ) = 0. Then,

∫ T

0

∫

Ω

(

∫ z(t)

0

H(., (γ−1)0(s))ds

)

ψt +

∫ T

0

∫

∂Ω

(

∫ w(t)

0

H(., (β−1)0(s))ds

)

ψt

=

∫ T

0

(F (t), H(., u(t))ψ(t))dt,

for any u ∈ Lp(0, T ;W 1,p(Ω)), z ∈ γ(u) a.e. in QT , w ∈ β(u) a.e. in ST , for any
ψ ∈ D(]0, T [×R

N), and for any H : Ω×R → R Caratheodory function such that H(x, r)
is nondecreasing in r, H(., u) ∈ Lp(0, T ;W 1,p(Ω)),

∫ z

0
H(x, (γ−1)0(s))ds ∈ L1(QT ) and

∫ w

0
H(x, (β−1)0(s))ds ∈ L1(ST ).

Proof. The proof is similar to the one given in [22] for Dirichlet boundary condition.
We give it here for the sake of completeness.

Let ψ ∈ D(]0, T [×R
N), ψ ≥ 0. And let, for Hτ = T 1

τ
H , τ > 0,

ητ (t) =
1

τ

∫ t+τ

t

Hτ (., u(s))ψ(s)ds.

12



Then ητ can be used as test function in (17) and therefore

∫ T

0

(F (t), ητ (t))dt =

∫ T

0

∫

Ω

z(t)(ητ )t +

∫ T

0

∫

∂Ω

w(t)(ητ )t

=

∫ T

0

∫

Ω

z(t)
Hτ (., u(t+ τ))ψ(t + τ) −Hτ (., u(t))ψ(t)

τ

+

∫ T

0

∫

∂Ω

w(t)
Hτ (., u(t+ τ))ψ(t + τ) −Hτ (., u(t))ψ(t)

τ

=

∫ T

0

∫

Ω

z(t− τ) − z(t)

τ
Hτ (., u(t))ψ(t) +

∫ T

0

∫

∂Ω

w(t− τ) − w(t)

τ
Hτ (., u(t))ψ(t).

Now, since

Hτ (., γ
−1(r)) ⊂ ∂

(∫ r

0

Hτ (., (γ
−1)0(s))ds

)

,

Hτ (., β
−1(r)) ⊂ ∂

(∫ r

0

Hτ (., (β
−1)0(s))ds

)

,

Hτ (., u(t)) ∈ Hτ (., γ
−1(z(t))) a.e. in Ω

and
Hτ (., u(t)) ∈ Hτ (., β

−1(w(t))) a.e. on ∂Ω,

we have that

(z(t− τ) − z(t))Hτ (., u(t)) ≤

∫ z(t−τ)

z(t)

Hτ (., (γ
−1)0(s))ds a.e. in Ω

and

(w(t− τ) − w(t))Hτ (., u(t)) ≤

∫ w(t−τ)

w(t)

Hτ (., (β
−1)0(s))ds a.e. on ∂Ω.

Therefore

∫ T

0

(F (t), ητ (t))dt ≤

∫ T

0

∫

Ω

1

τ

∫ z(t−τ)

z(t)

Hτ (., (γ
−1)0(s))dsψ(t)

+

∫ T

0

∫

∂Ω

1

τ

∫ w(t−τ)

w(t)

Hτ (., (β
−1)0(s))dsψ(t)

=

∫ T

0

∫

Ω

∫ z(t)

0

Hτ (., (γ
−1)0(s))ds

ψ(t + τ) − ψ(t)

τ

+

∫ T

0

∫

∂Ω

∫ w(t)

0

Hτ (., (β
−1)0(s))ds

ψ(t + τ) − ψ(t)

τ
.
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Taking limits as τ → 0+ we get

∫ T

0

(F (t), H(., u(t))ψ(t))dt ≤

∫ T

0

∫

Ω

(

∫ z(t)

0

H(x, (γ−1)0(s))ds

)

ψt +

∫ T

0

∫

∂Ω

(

∫ w(t)

0

H(x, (β−1)0(s))ds

)

ψt.

Taking now η̃τ (t) = 1
τ

∫ t+τ

t Hτ (., u(s− τ))ψ(s)ds, and arguing as above we get the
another inequality. �

To prove the existence of weak solutions we shall also use the following result.

Lemma 4.2 Let {un}n∈N ⊂ W 1,p(Ω), {zn}n∈N ⊂ L1(Ω), {wn}n∈N ⊂ L1(∂Ω) such
that, for every n ∈ N, zn ∈ γ(un) a.e. in Ω and wn ∈ β(un) a.e. in ∂Ω. Let us suppose
that

(i) if R+
γ,β = +∞, there exists M > 0 such that

∫

Ω

z+
n +

∫

∂Ω

w+
n < M ∀n ∈ N,

(ii) if R+
γ,β < +∞, there exists M ∈ R and h > 0 such that

∫

Ω

zn +

∫

∂Ω

wn < M < R+
γ,β ∀n ∈ N

and

max

{

∫

{x∈Ω:zn(x)<−h}

|zn|,

∫

{x∈∂Ω:wn(x)<−h}

|wn|

}

<
R+
γ,β −M

8
∀n ∈ N.

Then, there exists a constant C = C(M) in case (i), C = C(M,h) in case (ii), such
that

‖u+
n ‖Lp(Ω) ≤ C

(

‖Du+
n ‖Lp(Ω) + 1

)

∀n ∈ N.

In order to prove Lemma 4.2, we use the following well known result (see [49]).

Lemma 4.3 1. There exists a constant C(Ω, N, p) such that, for any K ⊂ Ω with
|K| > 0,

‖u‖Lp(Ω) ≤
C(Ω, N, p)

|K|1/p
(

‖Du‖Lp(Ω) + ‖u‖Lp(K)

)

, ∀u ∈ W 1,p(Ω). (18)

2. There exists a constant Ĉ(Ω, N, p) such that, for any Γ ⊂ ∂Ω with |Γ| > 0,

‖u‖Lp(Ω) ≤
Ĉ(Ω, N, p)

|Γ|1/p
(

‖Du‖Lp(Ω) + ‖u‖Lp(Γ)

)

, ∀u ∈W 1,p(Ω). (19)
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Proof of Lemma 4.2. Consider first that R+
γ,β = +∞. Then γ+ = +∞ or β+ = +∞.

Let us suppose first that γ+ = +∞. Then, by assumption, there exists M > 0 such
that

∫

Ω

z+
n < M ∀n ∈ N.

Let Kn =
{

x ∈ Ω : z+
n (x) < 2M

|Ω|

}

for every n ∈ N. Then

0 ≤

∫

Kn

z+
n =

∫

Ω

z+
n −

∫

Ω\Kn

z+
n ≤M − (|Ω| − |Kn|)

2M

|Ω|
= |Kn|

2M

|Ω|
−M.

Therefore,

|Kn| ≥
|Ω|

2
,

and

‖u+
n ‖Lp(Kn) ≤ |Kn|

1/p sup γ−1

(

2M

|Ω|

)

.

Then, by Lemma 4.3, for all n ∈ N,

‖u+
n ‖Lp(Ω) ≤ C(Ω, N, p)

(

(

2

|Ω|

)1/p

‖Du+
n ‖Lp(Ω) + sup γ−1

(

2M

|Ω|

)

)

.

If β+ = +∞, we similarly get that, for all n ∈ N,

‖u+
n ‖Lp(Ω) ≤ Ĉ(Ω, N, p)

(

(

2

|∂Ω|

)1/p

‖Du+
n ‖Lp(Ω) + supβ−1

(

2M

|∂Ω|

)

)

,

where Ĉ(Ω, N, p) is given in Lemma 4.3.

Let us consider now that R+
γ,β < +∞. And let δ = R+

γ,β−M . Then, by assumption,

∫

Ω

zn +

∫

∂Ω

wn < R+
γ,β − δ.

Consequently, for every n ∈ N,

∫

Ω

zn < γ+|Ω| −
δ

2
(20)

or
∫

∂Ω

wn < β+|∂Ω| −
δ

2
. (21)

For n ∈ N such that (20) holds, let Kn =
{

x ∈ Ω : zn(x) < γ+ − δ
4|Ω|

}

. Then, on the

one hand,
∫

Kn

zn =

∫

Ω

zn −

∫

Ω\Kn

zn < −
δ

4
+ |Kn|

(

γ+ −
δ

4|Ω|

)

,
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and, on the other hand,

∫

Kn

zn = −

∫

Kn∩{x∈Ω:zn<−h}

|zn| +

∫

Kn∩{x∈Ω:zn≥−h}

zn ≥ −
δ

8
− h|Kn|.

Therefore,

|Kn|

(

h−
δ

4|Ω|
+ γ+

)

≥
δ

8
.

Hence |Kn| > 0, h− δ
4|Ω| + γ+ > 0 and

|Kn| ≥
δ
8

h− δ
4|Ω| + γ+

.

Consequently,

‖u+
n ‖Lp(Kn) ≤ |Kn|

1/p sup γ−1

(

γ+ −
δ

4|Ω|

)

.

Then, by Lemma 4.3,

‖u+
n ‖Lp(Ω) ≤ C(Ω, N, p)





(

h− δ
4|Ω| + γ+

δ
8

)1/p

‖Du+
n ‖Lp(Ω) + sup γ−1

(

γ+ −
δ

4|Ω|

)



 .

Similarly, for n ∈ N such that (21) holds, we get
∣

∣

∣

{

x ∈ ∂Ω : wn(x) < β+ − δ
4|∂Ω|

}∣

∣

∣ > 0,

h− δ
4|∂Ω| + β+ > 0 and

‖u+
n ‖Lp(Ω) ≤ Ĉ(Ω, N, p)





(

h− δ
4|∂Ω| + β+

δ
8

)1/p

‖Du+
n ‖Lp(Ω) + supβ−1

(

β+ −
δ

4|∂Ω|

)



 ,

where Ĉ(Ω, N, p) is given in Lemma 4.3. �

4.2 Proof of the existence part of Theorem 2.5

Let T > 0. Let f ∈ Lp
′

(0, T ;Lp
′

(Ω)), g ∈ Lp
′

(0, T ;Lp
′

(∂Ω)), z0 ∈ Lp
′

(Ω) and w0 ∈
Lp

′

(∂Ω) satisfying (4), (5) and (6). Let V (t) = (z(t), w(t)) the mild solution of problem
(10) given by Theorem 3.6. Our aim is to prove that (z, w) is a weak solution of problem
Pγ,β(f, g, z0, w0).

Following the proof of the existence of the mild solution (Theorem 3.6) for n ∈ N,
let ε = T/n, and consider a subdivision t0 = 0 < t1 < · · · < tn−1 < T = tn with
ti − ti−1 = ε, f1, . . . , fn ∈ Lp

′

(Ω), g1, . . . , gn ∈ Lp
′

(∂Ω) with

n
∑

i=1

∫ ti

ti−1

(

‖f(t) − fi‖
p′

Lp′ (Ω)
+ ‖g(t) − gi‖

p′

Lp′(∂Ω)

)

dt ≤ ε.
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Then, it follows that

z(t) = L1(Ω) − limε→0 zε(t) uniformly for t ∈ [0, T ],

w(t) = L1(∂Ω) − limε→0 wε(t) uniformly for t ∈ [0, T ],
(22)

where zε(t) and wε(t) are given, for ε small enough, by







zε(t) = z0, wε(t) = w0 for t ∈] −∞, 0],

zε(t) = zi, wε(t) = wi for t ∈]ti−1, ti], i = 1, . . . , n,
(23)

where [ui, zi, wi] ∈ W 1,p(Ω) × V 1,p(Ω) × V 1,p(∂Ω) sastisfies

∫

Ω

a(x,Dui) ·Dv +

∫

Ω

zi − zi−1

ε
v +

∫

∂Ω

wi − wi−1

ε
v =

∫

Ω

fiv +

∫

∂Ω

giv (24)

for all v ∈ W 1,p(Ω).

Taking v = ui as test function in (24), we get

∫

Ω

a(x,Dui)·Dui+

∫

Ω

(

zi − zi−1

ε

)

ui+

∫

∂Ω

(

wi − wi−1

ε

)

ui =

∫

Ω

fiui+

∫

∂Ω

giui. (25)

Since zi(x) ∈ γ(ui(x)) a.e. in Ω and wi(x) ∈ β(ui(x)) a.e. in ∂Ω, we have

ui(x) ∈ γ−1(zi(x)) = ∂j∗γ(zi(x)) a.e. in Ω

and
ui(x) ∈ β−1(wi(x)) = ∂j∗β(wi(x)) a.e. in ∂Ω.

Hence,
j∗γ(zi−1(x)) − j∗γ(zi(x)) ≥ (zi−1(x) − zi(x))ui(x) a.e. in Ω

and
j∗β(wi−1(x)) − j∗β(wi(x)) ≥ (wi−1(x) − wi(x))ui(x) a.e. in ∂Ω.

Therefore,
1

ε

∫

Ω

(

j∗γ(zi) − j∗γ(zi−1)
)

+
1

ε

∫

∂Ω

(

j∗β(wi) − j∗β(wi−1)
)

≤

∫

Ω

(

zi − zi−1

ε

)

ui +

∫

∂Ω

(

wi − wi−1

ε

)

ui

and by (25), we get

∫

Ω

a(x,Dui) ·Dui +
1

ε

∫

Ω

(

j∗γ(zi) − j∗γ(zi−1)
)

+
1

ε

∫

∂Ω

(

j∗β(wi) − j∗β(wi−1)
)

≤

∫

Ω

fiui +

∫

∂Ω

giui.
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Then, integrating in time and adding in the last inequality, we obtain that

n
∑

i=1

∫ ti

ti−1

∫

Ω

a(x,Dui) ·Dui +

∫

Ω

(

j∗γ(zn) − j∗γ(z0)
)

+

∫

∂Ω

(

j∗β(wn) − j∗β(w0)
)

≤
n
∑

i=1

∫ ti

ti−1

(∫

Ω

fiui +

∫

∂Ω

giui

)

.

Consequently, if we set fε(t) = fi, gε(t) = gi and uε(t) = ui for t ∈]ti−1, ti], i = 1, . . . , n,
it follows that

∫ T

0

∫

Ω

a(x,Duε(t)) ·Duε(t) dt+

∫

Ω

(

j∗γ(zn) − j∗γ(z0)
)

+

∫

∂Ω

(

j∗β(wn) − j∗β(w0)
)

≤

∫ T

0

∫

Ω

fε(t)uε(t) +

∫ T

0

∫

∂Ω

gε(t)uε(t).

(26)
Then, having in mind (H1) and (5), we get that there exists a positive constant C1 such
that

λ

∫ T

0

∫

Ω

|Duε(t)|
p dt ≤

∫ T

0

∫

Ω

a(x,Duε(t)) ·Duε(t) dt

≤

∫

Ω

j∗γ(z0) +

∫

∂Ω

j∗β(w0) +

∫ T

0

∫

Ω

fε(t)uε(t) +

∫ T

0

∫

∂Ω

gε(t)uε(t)

≤ C1 +

∫ T

0

‖fε(t)‖Lp′ (Ω)‖uε(t)‖Lp(Ω) dt+

∫ T

0

‖g‖Lp′(∂Ω)‖uε(t)‖Lp(∂Ω) dt.

Therefore, using Young’s inequality, for any µ > 0 there exists C2(µ) > 0 such that

≤ C2(µ) + µ

∫ T

0

(

‖uε(t)‖
p
Lp(Ω) + ‖uε(t)‖

p
Lp(∂Ω)

)

dt.

From here, by the Trace Theorem, we obtain that for any µ > 0 there exists C3(µ) > 0
such that

∫ T

0

∫

Ω

|Duε(t)|
p dt ≤ C3 + µ

∫ T

0

(

‖uε(t)‖
p
Lp(Ω) + ‖Duε(t)‖

p
Lp(Ω)

)

dt. (27)

By (22), if R+
γ,β = +∞, there exists M > 0 and n0 ∈ N, such that

sup
t∈[0,T ]

∫

Ω

z+
ε (t) +

∫

∂Ω

w+
ε (t) < M ∀n ≥ n0,

and if R+
γ,β < +∞, there exists M ∈ R, h > 0 and n0 ∈ N such that, for all n ≥ n0,

sup
t∈[0,T ]

∫

Ω

zε(t) +

∫

∂Ω

wε(t) < M < R+
γ,β
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and

sup
t∈[0,T ]

max

{

∫

{x∈Ω:zε(t)(x)<−h}

|zε(t)|,

∫

{x∈∂Ω:wε(t)(x)<−h}

|wε(t)|

}

<
R+
γ,β −M

8
.

Consequently, from Lemma 4.2, we get that, there exists a constant C4 > 0 such that

‖u+
ε (t)‖Lp(Ω) ≤ C4

(

‖Du+
ε (t)‖Lp(Ω) + 1

)

for all t ∈ [0, T ]. (28)

Similarly, we get that there exists C5 > 0 such that

‖u−ε (t)‖Lp(Ω) ≤ C5

(

‖Du−ε (t)‖Lp(Ω) + 1
)

for all t ∈ [0, T ]. (29)

Consequently, from (27), (28) and (29), choosing µ small enough, we obtain that
there exist C6 > 0 such that

∫ T

0

∫

Ω

|Duε(t)|
p dt ≤ C6. (30)

By (30), (28) and (29), we get that {uε} is bounded in Lp(0, T ;W 1,p(Ω)). So, there
exists a subsequence, denoted equal, such that

uε ⇀ u weakly in Lp(0, T ;W 1,p(Ω)) as ε→ 0+ (31)

and
uε ⇀ u weakly in Lp(ST ) as ε→ 0+. (32)

Since zε ∈ γ(uε) a.e. in QT , wε ∈ β(uε) a.e. on ST , zε → z in L1(QT ) and wε → w
in L1(ST ), having in mind (31), (32) and using monotonicity argument we obtain that
z ∈ γ(u) a.e. in QT , w ∈ β(u) a.e. on ST .

Since {Duε} is bounded in Lp(QT ), by (H2) we have {|a(x,Duε)|} is bounded in
Lp

′

(QT ), then we can assume that

a(x,Duε) ⇀ Φ weakly in Lp
′

(QT ) as ε→ 0+. (33)

From (24), we have
∫

Ω

a(x,Duε(t)) ·Dv +

∫

Ω

zε(t) − zε(t− ε)

ε
v +

∫

∂Ω

wε(t) − wε(t− ε)

ε
v

=

∫

Ω

fε(t)v +

∫

∂Ω

gε(t)v

(34)

for all v ∈W 1,p(Ω). Then, given ψ ∈ W 1,1(0, T ;W 1,1(Ω)∩L∞(Ω))∩Lp(0, T ;W 1,p(Ω)),
ψ(0) = ψ(T ) = 0, from (34), we get

∫ T

0

∫

Ω

a(x,Duε(t)) ·Dψ +

∫

Ω

∫ T

0

zε(t) − zε(t− ε)

ε
ψ(t)

+

∫

∂Ω

∫ T

0

wε(t) − wε(t− ε)

ε
ψ(t) =

∫ T

0

∫

Ω

fε(t)ψ +

∫ T

0

∫

∂Ω

gε(t)ψ.

(35)
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Now,

lim
ε→0

∫

Ω

∫ T

0

zε(t) − zε(t− ε)

ε
ψ(t)

= lim
ε→0

(

−

∫

Ω

∫ T−ε

0

zε(t)
ψ(t + ε) − ψ(t)

ε
+

∫

Ω

∫ T

T−ε

zε(t)ψ(t)

ε
−

∫

Ω

∫ ε

0

z0ψ(t)

ε

)

= −

∫ T

0

∫

Ω

z(t)ψt.

Similarly,

lim
ε→0

∫

∂Ω

∫ T

0

wε(t) − wε(t− ε)

ε
ψ(t) = −

∫ T

0

∫

∂Ω

w(t)ψt.

Therefore, taking limit in (35) as ε→ 0+, we obtain that

∫ T

0

∫

Ω

Φ ·Dψ −

∫ T

0

∫

Ω

z(t)ψt −

∫ T

0

∫

∂Ω

w(t)ψt

=

∫ T

0

∫

Ω

f(t)ψ +

∫ T

0

∫

∂Ω

g(t)ψ.

(36)

Thus, to finish the proof of the existence, we only need to show that Φ = a(x,Du). To
do that we apply the Minty-Browder’s method.

It is enough to prove that

lim sup
ε→0

∫

QT

a(x,Duε) ·Duε ≤

∫

QT

Φ ·Du. (37)

Indeed, for any ρ ∈ Lp(0, T ;W 1,p(Ω)).

∫

QT

a(x,Dρ) ·D(uε − ρ) ≤

∫

QT

a(x,Duε) ·D(uε − ρ),

so that, passing to the limit and using (37), we get

∫

QT

a(x,Dρ) ·D(u− ρ) ≤

∫

QT

Φ ·D(u− ρ).

Then taking ρ = u± λξ, for λ > 0 and ξ ∈ Lp(0, T ;W 1,p(Ω)), we get

∫

QT

a(x,D(u + λρ)) ·Dξ =

∫

QT

Φ ·Dξ,

and by letting λ → 0, we obtain

∫

QT

a(x,D(u)) ·Dξ =

∫

QT

Φ ·Dξ, for any ξ ∈ Lp(0, T ;W 1,p(Ω)),
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which implies that
a(x,D(u)) = Φ a.e. in Q.

Now, let us prove (37). Thanks to (26) and Fatou’s Lemma, we have

lim sup
ε→0

∫ T

0

∫

Ω

a(x,Duε(t)) ·Duε(t) dt ≤ −

∫

Ω

(

j∗γ(z(T )) − j∗γ(z0)
)

−

∫

∂Ω

(

j∗β(w(T )) − j∗β(w0)
)

+

∫ T

0

∫

Ω

fu+

∫ T

0

∫

∂Ω

gu.

(38)

On the other hand, (36) can be rewritten as follows

∫ T

0

∫

Ω

z(t)ψt +

∫ T

0

∫

∂Ω

w(t)ψt =

∫ T

0

(F (t), ψ(t))dt,

where F is given by

(F (t), ψ(t)) =

∫

Ω

Φ(t) ·Dψ(t) −

∫

Ω

f(t)ψ(t) −

∫

∂Ω

g(t)ψ(t).

Then, by Lemma 4.1 applied to this F , H(x, r) = r and ψ(t, x) = ξ(x)φ(t), ξ ∈ D(RN ),
ξ = 1 in Ω, φ ∈ D(]0, T [), we get

d

dt

∫

Ω

j∗γ(z) +
d

dt

∫

∂Ω

j∗β(w) = (F, u) in D′(]0, T [), (39)

Therefore,
∫

Ω

j∗γ(z) +

∫

∂Ω

j∗β(w) ∈W 1,1(]0, T [).

So, integrating on ]0, T [ in (39) we obtain

∫ T

0

∫

Ω

Φ ·Du = −

∫

Ω

(

j∗γ(z(T )) − j∗γ(z0)
)

−

∫

∂Ω

(

j∗β(w(T )) − j∗β(w0)
)

+

∫ T

0

∫

Ω

fu+

∫ T

0

∫

∂Ω

gu.

From here and (38) we obtain (37). �

5 Contraction principle

Our main tool to prove the contraction principle is the concept of integral solution due
to Ph. Bénilan (see [9], [13]).
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Definition 5.1 A function V = (z, w) ∈ C([0, T ] : X) is an integral solution of (10) in

[0, T ] if for every (f̂ , ĝ) ∈ Bγ,β(ẑ, ŵ), we have

d

dt

∫

Ω

|z(t) − ẑ| +
d

dt

∫

∂Ω

|w(t) − ŵ|

≤

∫

Ω

(f(t) − f̂)sign0(z(t) − ẑ) +

∫

{x∈Ω:z(t)=ẑ}

|f(t) − f̂ |

+

∫

∂Ω

(g(t) − ĝ)sign0(w(t) − ŵ) +

∫

{x∈∂Ω:w(t)=ŵ}

|g(t) − ĝ|

in D′(]0, T [), and V (0) = (z0, w0).

Since Bγ,β is accretive in X , it is well known (see, [9], [13]) that mild solutions and
integral solutions of problem (10) coincide, and a contraction principle holds. We shall
prove in Theorem 5.3 that a weak solution of Pγ,β(f, g, z0, w0) in [0, T ] is an integral
solution of (10). Consequently, since, in fact, Bγ,β is T -accretive in X , the contraction
principle (3) given in Theorem 2.4 follows.

To prove Theorem 5.3, the main difficulties are due to the nonlinear and non-
homogeneous boundary conditions and to the jumps of γ and β. In [17], to obtain
the L1-contraction principle for a similar problem in the case β = {0} × R, and for γ
having a set of jumps without density points, the authors give an improvement of the
“hole filling” argument of [21] and use the doubling variable in time technique. This
technique can be adapted to our problem. Now, by the Nonlinear Semigroup Theory,
we are able to simplify the proof without using the doubling variable in time technique
and without imposing any condition on the jumps of γ and β.

Lemma 5.2 Let (z, w) be a weak solution of problem Pγ,β(f, g, z0, w0) in [0, T ]. Let
u ∈ Lp(0, T ;W 1,p(Ω)) such that z ∈ γ(u) a.e. in QT , w ∈ β(u) a.e. on ST as in

Definition 2.2. Let ẑ, f̂ ∈ L1(Ω) and û ∈W 1,p(Ω), ẑ ∈ γ(û) a.e. in Ω, such that
∫

Ω

a(x,Dû) ·Dψ =

∫

Ω

f̂ψ, ∀ψ ∈W 1,p
0 (Ω) ∩ L∞(Ω). (40)

Then, for any ψ ∈ D(Ω), ψ ≥ 0,

d

dt

∫

Ω

|z(t) − ẑ|ψ +

∫

Ω

sign0(u(t) − û)(a(x,Du(t)) − a(x,Dû)) ·Dψ

≤

∫

Ω

(f(t) − f̂)sign0(z(t) − ẑ)ψ +

∫

{x∈Ω:z(t)=ẑ}

|f(t) − f̂ |ψ

in D′(]0, T [).

Proof. Let us take in Lemma 4.1 the function F given by

(F (t), ψ(t)) =

∫

Ω

a(x,Du(t)) ·Dψ(t) −

∫

Ω

f(t)ψ(t) −

∫

∂Ω

g(t)ψ(t)
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for all ψ ∈ W 1,1(0, T ;W 1,1(Ω) ∩ L∞(Ω)) ∩ Lp(0, T ;W 1,p(Ω)), ψ(0) = ψ(T ) = 0, and

H(x, r) =
1

k
Tk(r − û(x) + kρ(x)),

where ρ ∈ W 1,p(Ω), −1 ≤ ρ ≤ 1. Then, for any ψ ∈ D(Ω), ψ ≥ 0, having in mind (40),
we have

d

dt

∫

Ω

(

∫ z(t)

ẑ

1

k
Tk((γ

−1)0(τ) − û+ kρ))dτ

)

ψ

+

∫

Ω

(a(x,Du(t)) − a(x,Dû)) ·D

(

1

k
Tk(u(t) − û+ kρ)ψ

)

=

∫

Ω

(f(t) − f̂)
1

k
Tk(u(t) − û+ kρ)ψ,

(41)

in D′(]0, T [).

Now, it is easy to see that

lim
k→0

∫ z(t)

ẑ

1

k
Tk((γ

−1)0(τ) − û+ kρ))dτ

=

∫ z(t)

ẑ

[

sign0((γ
−1)0(τ) − û) + ρχ{τ :(γ−1)0(τ)=û}

]

dτ

=

∫ z(t)

ẑ

[

sign0(τ − ẑ) + (ρ− sign0(τ − ẑ))χ{τ :(γ−1)0(τ)=û} + sign0((γ
−1)0(τ) − û)χ{τ=ẑ}

]

dτ

=

∫ z(t)

ẑ

[

sign0(τ − ẑ) + (ρ− sign0(τ − ẑ))χ{τ :(γ−1)0(τ)=û}

]

dτ

= |z(t) − ẑ| +

∫ z(t)

ẑ

(ρ− sign0(τ − ẑ))χ{τ :(γ−1)0(τ)=û}

Hence, taking limits in (41) as k goes to 0, we get

d

dt

∫

Ω

(

|z(t) − ẑ| +

∫ z(t)

ẑ

(ρ− sign0(τ − ẑ))χ{τ :(γ−1)0(τ)=û}

)

ψ

+

∫

Ω

sign0(u(t) − û)(a(x,Du(t)) − a(x,Dû)) ·Dψ

≤

∫

Ω

(f(t) − f̂)
(

sign0(z(t) − ẑ) + sign0(u(t) − û)χ{x∈Ω:z(t)=ẑ}

)

ψ

+

∫

Ω

(f(t) − f̂) (ρ− sign0(z(t) − ẑ))χ{x∈Ω:u(t)=û})ψ,
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and integrating between t̂, t ∈]0, T [, we get

∫

Ω

|z(t) − ẑ|ψ −

∫

Ω

|z(t̂) − ẑ|ψ

+

∫

Ω

∫ z(t)

z(t̂)

(ρ− sign0(τ − ẑ))χ{τ :(γ−1)0(τ)=û}ψ

+

∫ t

t̂

∫

Ω

sign0(u(τ) − û)(a(x,Du(τ)) − a(x,Dû)) ·Dψ

≤

∫ t

t̂

∫

Ω

(f(τ) − f̂)
(

sign0(z(τ) − ẑ) + sign0(u(τ) − û)χ{x∈Ω:z(τ)=ẑ}

)

ψ

+

∫ t

t̂

∫

Ω

(f(τ) − f̂) (ρ− sign0(z(τ) − ẑ))χ{x∈Ω:u(τ)=û})ψ.

Since in the last expression there are no space derivatives of ρ, we can take, for each t
fixed, ρ = sign0(z(t)− ẑ). Then the second term in the above expression is positive and
we have, for any t̂, t ∈]0, T [,

∫

Ω

|z(t) − ẑ|ψ −

∫

Ω

|z(t̂) − ẑ|ψ

+

∫ t

t̂

∫

Ω

sign0(u(τ) − û)(a(x,Du(τ)) − a(x,Dû)) ·Dψ

≤

∫ t

t̂

∫

Ω

(f(τ) − f̂)
(

sign0(z(τ) − ẑ) + sign0(u(τ) − û)χ{x∈Ω:z(τ)=ẑ}

)

ψ

+

∫ t

t̂

∫

Ω

(f(τ) − f̂) (sign0(z(t) − ẑ) − sign0(z(τ) − ẑ))χ{x∈Ω:u(τ)=û})ψ.

(42)

Let

ϕ1(t) :=

∫

Ω

|z(t) − ẑ|ψ,

ϕ2(τ) := −

∫

Ω

sign0(u(τ) − û)(a(x,Du(τ)) − a(x,Dû))Dψ

+

∫

Ω

(f(τ) − f̂)(sign0(z(τ) − ẑ) + sign0(u(τ) − û))χ{x∈Ω:z(τ)(x)=ẑ(x)}ψ

and

ϕ3(t, τ) :=

∫

Ω

(f(τ) − f̂)(sign0(z(t) − ẑ) − sign0(z(τ) − ẑ))χ{x∈Ω:u(τ)(x)=û(x)}ψ.
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Then, taking in (42) t̂ = t − h, h > 0, dividing by h and letting h go to 0, we get for
any η ∈ D(]0, T [), η ≥ 0,

−

∫ T

0

ϕ1(t)ηt(t)dt = − lim
h→0+

∫ T

0

ϕ1(t)
η(t+ h) − η(t)

h
dt

= lim
h→0+

∫ T

0

ϕ1(t) − ϕ1(t− h)

h
η(t)dt

≤ lim
h→0+

(

∫ T

0

1

h

(∫ t

t−h

ϕ2(τ)dτ

)

η(t)dt+

∫ T

0

1

h

(∫ t

t−h

ϕ3(t, τ)dτ

)

η(t)dt

)

.

(43)

Now, by the Dominate Convergence Theorem,

lim
h→0+

∫ T

0

1

h

(∫ t

t−h

ϕ2(τ)dτ

)

η(t)dt = − lim
h→0+

∫ T

0

(∫ t

0

ϕ2(τ)dτ

)

η(t+ h) − η(t)

h
dt

= −

∫ T

0

(∫ t

0

ϕ2(τ)dτ

)

ηt(t)dt =

∫ T

0

ϕ2(t)η(t)dt.

On the other hand, for h small enough,

∫ T

0

1

h

(∫ t

t−h

ϕ3(t, τ)dτ

)

η(t)dt =

∫ T

0

1

h

(

∫ τ+h

τ

ϕ3(t, τ)η(t)dt

)

dτ.

Now,
∣

∣

∣

∣

∣

∫ T

0

1

h

(

∫ τ+h

τ

ϕ3(t, τ)η(t)dt

)

dτ

∣

∣

∣

∣

∣

≤

∫ T

0

1

h

(

∫ τ+h

τ

∫

Ω

|f(τ) − f̂ ||sign0(z(t) − ẑ) − sign0(z(τ) − ẑ)|η(t)ψ(x)dxdt

)

dτ

≤ ‖ψ‖L∞(Ω)‖η‖L∞(0,T )

∫ T

0

[

∫

Ω

|f(τ) − f̂ |dx

×
1

h

∫ τ+h

τ

‖sign0(z(t) − ẑ) − sign0(z(τ) − ẑ)‖L∞(Ω)dt

]

dτ.

Moreover, for all Lebesgue’s point of the L1(0, T ;L∞(Ω))-function sign0(z(.) − ẑ), and
so, for a.e. τ ∈]0, T [, we have

lim
h→0+

1

h

∫ τ+h

τ

‖sign0(z(t) − ẑ) − sign0(z(τ) − ẑ)‖L∞(Ω)dt = 0.

Consequently, since

(∫

Ω

|f(τ) − f̂ |dx

)

1

h

∫ τ+h

τ

‖sign0(z(t)−ẑ)−sign0(z(τ)−ẑ)‖L∞(Ω)dt ≤ 2

∫

Ω

|f(τ)−f̂ |dx,
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which is a function of L1(0, T ), by the Dominate Convergence Theorem, we get

lim
h→0+

∫ T

0

1

h

(∫ t

t−h

ϕ3(t, τ)dτ

)

η(t)dt = lim
h→0+

∫ T

0

1

h

(

∫ τ+h

τ

ϕ3(t, τ)η(t)dt

)

dτ = 0.

Therefore, from (43) we obtain that

d

dt

∫

Ω

|z(t) − ẑ|ψ +

∫

Ω

sign0(u(t) − û)(a(x,Du(t) − a(x,Dû)) ·Dψ

≤

∫

Ω

(f(t) − f̂)
(

sign0(z(t) − ẑ) + sign0(u(t) − û)χ{x∈Ω:z(t)=ẑ}

)

ψ

in D′(]0, T [). �

Theorem 5.3 Let (z, w) be a weak solution of Pγ,β(f, g, z0, w0) in [0, T ]. Let (f̂ , ĝ) ∈
Bγ,β(ẑ, ŵ). Then,

d

dt

∫

Ω

|z(t) − ẑ| +
d

dt

∫

∂Ω

|w(t) − ŵ|

≤

∫

Ω

(f(t) − f̂)sign0(z(t) − ẑ) +

∫

{x∈Ω:z(t)=ẑ}

|f(t) − f̂ |

+

∫

∂Ω

(g(t) − ĝ)sign0(w(t) − ŵ) +

∫

{x∈∂Ω:w(t)=ŵ}

|g(t) − ĝ|

in D′(]0, T [), that is, since (z(0), w(0)) = (z0, w0), (z, w) is an integral solution of (10)
in [0, T ].

Proof. Let u ∈ Lp(0, T ;W 1,p(Ω)) such that z ∈ γ(u) a.e. in QT , w ∈ β(u) a.e. on ST
as in Definition 2.2, and let û ∈W 1,p(Ω) such that ẑ ∈ γ(û) a.e. in Ω and ŵ ∈ γ(û) a.e.
in ∂Ω as in the definition of Bγ,β.

Thanks to Lemma 5.2, we have that, for any ψ ∈ D(Ω), 0 ≤ ψ ≤ 1,

d

dt

∫

Ω

|z(t) − ẑ|ψ +

∫

Ω

sign0(u(t) − û)(a(x,Du(t) − a(x,Dû)) ·Dψ

≤

∫

Ω

(f(t) − f̂)sign0(z(t) − ẑ)ψ +

∫

{x∈Ω:z(t)=ẑ}

|f(t) − f̂ |ψ

(44)

in D′(]0, T [). Now, for the second term in the above expression we have that
∫

Ω

sign0(u(t) − û)(a(x,Du(t) − a(x,Dû)) ·Dψ

=

∫

Ω

sign0(u(t) − û)(a(x,Du(t) − a(x,Dû)) ·D(ψ − 1)

≥ lim
k→0

∫

Ω

(a(x,Du(t)) − a(x,Dû)) ·D

(

1

k
Tk(u(t) − û+ kρ)(ψ − 1)

)

,

(45)
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where ρ ∈W 1,p(Ω), −1 ≤ ρ ≤ 1 . Using again Lemma 4.1 we get

∫

Ω

(a(x,Du(t) − a(x,Dû)) ·D

(

1

k
Tk(u(t) − û+ kρ)(ψ − 1)

)

= −
d

dt

∫

Ω

(

∫ z(t)

ẑ

1

k
Tk((γ

−1)0(s) − û+ kρ))ds

)

(ψ − 1)

+
d

dt

∫

∂Ω

(

∫ w(t)

ŵ

1

k
Tk((β

−1)0(s) − û+ kρ))ds

)

+

∫

Ω

(f(t) − f̂)
1

k
Tk(u(t) − û+ kρ)(ψ − 1)

−

∫

∂Ω

(g(t) − ĝ)
1

k
Tk(u(t) − û+ kρ),

(46)

which converges as k goes to 0 to

−
d

dt

∫

Ω

(

|z(t) − ẑ| −

∫ z(t)

ẑ

(ρ− sign0(s− ẑ))χ{s:(γ−1)0(s)=û}

)

(ψ − 1)

+
d

dt

∫

∂Ω

(

|w(t) − ŵ| +

∫ w(t)

ŵ

(ρ− sign0(s− ŵ))χ{s:(β−1)0(s)=û}

)

+

∫

Ω

(f(t) − f̂)
(

sign0(z(t) − ẑ) + sign0(u(t) − û)χ{x∈Ω:z(t)=ẑ}

)

(ψ − 1)

+

∫

Ω

(f(t) − f̂) (ρ− sign0(z(t) − ẑ))χ{x∈Ω:u(t)=û})(ψ − 1)

−

∫

∂Ω

(g(t) − ĝ)
(

sign0(w(t) − ŵ) + sign0(u(t) − û)χ{x∈∂Ω:w(t)=ŵ}

)

−

∫

∂Ω

(g(t) − ĝ) (ρ− sign0(w(t) − ŵ))χ{x∈∂Ω:u(t)=û}).

Therefore, taking into account (45) and (46) in (44), replacing ψ by ψn such that
L1(Ω)- limn ψn = 1, and taking limits as n goes to +∞ we obtain

d

dt

∫

Ω

|z(t) − ẑ| +
d

dt

∫

∂Ω

(

|w(t) − ŵ| +

∫ w(t)

ŵ

(ρ− sign0(s− ŵ))χ{s:(β−1)0(s)=û}

)

≤

∫

Ω

(f(t) − f̂)sign0(z(t) − ẑ) +

∫

{x∈Ω:z(t)=ẑ}

|f(t) − f̂ |

+

∫

∂Ω

(g(t) − ĝ)
(

sign0(w(t) − ŵ) + sign0(u(t) − û)χ{x∈∂Ω:w(t)=ŵ}

)
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+

∫

∂Ω

(g(t) − ĝ) (ρ− sign0(w(t) − ŵ))χ{x∈∂Ω:u(t)=û}).

Finally, by a similar argument to the one used in Lemma 5.2, we finish the proof. �

Remark 5.4 It is easy to see that Theorem 2.5 also holds for data (z0, w0) ∈ V 1,p(Ω)×
V 1,p(∂Ω) and (f, g) ∈ Lp

′

(0, T ;V 1,p(Ω))×Lp
′

(0, T ;V 1,p(∂Ω)) satisfying conditions (4),
(5) and (6). In particular, if p > N , for data (z0, w0) ∈ L1(Ω) × L1(∂Ω) and (f, g) ∈
L1(0, T ;L1(Ω)) × L1(0, T ;L1(∂Ω)) satisfying conditions (4), (5) and (6).

6 Appendix

Let us give here the proof of Theorem 3.5. For this we need to prove some previous
lemmas.

Lemma 6.1 Assume γ, β : R → R are strictly increasing functions with Ran(γ) =
Ran(β) = R. Let φ ∈ L∞(Ω) and ψ ∈ L∞(∂Ω). Then, if [u, z, w] is a weak solution of

problem (Sγ,βφ,ψ), we have

inf
{

γ−1(inf φ), β−1(inf ψ)
}

≤ u ≤ max
{

γ−1(supφ), β−1(supψ)
}

.

Proof. By (ii) of Theorem 3.3, if

a := inf
{

γ−1(inf φ), β−1(inf ψ)
}

and b := max
{

γ−1(supφ), β−1(supψ)
}

,

we have
∫

Ω

(γ(a) − z)+ +

∫

∂Ω

(β(a) − w)+ ≤

∫

Ω

(γ(a) − φ)+ +

∫

∂Ω

(β(a) − ψ)+

and
∫

Ω

(z − γ(b))+ +

∫

∂Ω

(w − β(b))+ ≤

∫

Ω

(φ− γ(b))+ +

∫

∂Ω

(ψ − β(b))+,

and from here the result follows. �

Let now, for m,n, r, l ∈ N, γm,nl (s) = γl(s) + 1
l |s|

p−2s+ 1
ms

+ − 1
ns

− and βm,nr (s) =
βr(s)+

1
ms

+− 1
ns

−, where γl and βr are the Yosida approximation of γ and β respectively.

Then, by the above lemma, if [um,nr,l , z
m,n
r,l , w

m,n
r,l ] is the weak solution of (S

γm,n

l
,βm,n

r

φ,ψ ),
for φ ∈ L∞(Ω) and ψ ∈ L∞(∂Ω), then

inf
{

(γm,nr,l )−1(inf φ), (βm,nr,l )−1(inf ψ)
}

≤ um,nr,l

≤ sup
{

(γm,nl )−1(supφ), (βm,nr )−1(supψ)
}

.

Since

γm,n(s) := (lim inf
l→+∞

γm,nl )(s) = γ(s) +
1

m
s+ −

1

n
s−
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and

βm,n(s) := (lim inf
r→+∞

βm,nr )(s) = β(s) +
1

m
s+ −

1

n
s−,

it follows the next lemma.

Lemma 6.2 Assume liml limr u
m,n
r,l = um,n a.e. in Ω or limr u

m,n
r,r = um,n a.e. in Ω.

Let φ ∈ L∞(Ω) and ψ ∈ L∞(∂Ω). Then

inf
{

inf(γm,n)−1(inf φ), inf(βm,n)−1(inf ψ)
}

≤ um,n

≤ sup
{

sup(γm,n)−1(sup φ), sup(βm,n)−1(supψ)
}

.

Let n(m) be a subsequence in N. Since

lim inf
m→∞

γm,n(m) = γ and lim inf
m→∞

βm,n(m) = β,

the following result holds.

Lemma 6.3 Assume limm→∞ um,n(m) = u a.e. in Ω. If a0 ≤ φ ≤ a1 and b0 ≤ ψ ≤ b1,
where

• γ− < a0 < 0 if γ− < 0 and 0 ≤ a0 if γ− = 0,

• 0 < a1 < γ+ if γ+ > 0 and a1 ≤ 0 if γ+ = 0,

• β− < b0 < 0 if β− < 0 and 0 ≤ b0 if β− = 0,

and

• 0 < b1 < β+ if β+ > 0 and b1 ≤ 0 if β+ = 0,

then
inf {A0, B0} ≤ u ≤ sup {A1, B1} ,

where A0 = inf γ−1(a0) if γ− < 0, A0 = 0 if γ− = 0, B0 = inf β−1(b0) if β− < 0,
B0 = 0 if β− = 0, A1 = sup γ−1(a1) if γ+ > 0, A1 = 0 if γ+ = 0, B1 = supβ−1(b1) if
β+ > 0 and B1 = 0 if β+ = 0.

Proof of Theorem 3.5. It is obvious that

D(Bγ,β)
L1(Ω)×L1(∂Ω)

⊂
{

(z, w) ∈ L1(Ω) × L1(∂Ω) : γ− ≤ z ≤ γ+, β− ≤ w ≤ β+

}

.

To obtain the another inclusion, it is enough to take (z, w) ∈ L∞(Ω) × L∞(∂Ω), with
a0 ≤ z ≤ a1 and b0 ≤ w ≤ b1, where the constants ai, bi, i = 0, 1, satisfy

• γ− < a0 < 0 if γ− < 0 and a0 = 0 if γ− = 0,

• 0 < a1 < γ+ if γ+ > 0 and a1 = 0 if γ+ = 0,
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• β− < b0 < 0 if β− < 0 and b0 = 0 if β− = 0,

and

• 0 < b1 < β+ if β+ > 0 and b1 = 0 if β+ = 0,

and to prove that (z, w) ∈ D(Bγ,β)
X

.

Given (z, w) ∈ L∞(Ω) × L∞(∂Ω) with a0 ≤ z ≤ a1 and b0 ≤ w ≤ b1, we set

(zn, wn) =

(

I +
1

n
Bγ,β

)−1

(z, w), n ∈ N.

Let us see that there exists a subsequence, denoted equal, such that

(zn, wn) → (z, w) in L1(Ω) × L1(∂Ω),

which implies that (z, w) ∈ D(Bγ,β)
X

.

Since ((zn, wn), n(z − zn, w − wn)) ∈ Bγ,β, there exist un ∈ W 1,p(Ω), such that

[un, zn, wn] is a weak solution of problem (Sγ,βzn+n(z−zn),wn+n(w−wn)). Hence, zn(x) ∈

γ(un(x)) a.e. in Ω, wn(x) ∈ β(un(x)) a.e. in ∂Ω and

1

n

∫

Ω

a(x,Dun) ·Dφ+

∫

Ω

znφ+

∫

∂Ω

wnφ =

∫

Ω

zφ+

∫

∂Ω

wφ, (47)

for all φ ∈W 1,p(Ω).

Note that if an(x, ξ) := 1
na(x, ξ), then [un, zn, wn] is a weak solution of the problem

(an
Sγ,βz,w)







−div an(x,Du) + γ(u) 3 z in Ω

an(x,Du) · η + β(u) 3 w on ∂Ω,

and by uniqueness, we can consider that [un, zn, wn] is the weak solution of problem
(an

Sγ,βz,w) given in Theorem 3.3. This construction is done as follows (see [6]). Firstly, we

find a weak solution [(un)
m,k
r , (zn)

m,k
r , (wn)m,kr ] of (an

S
γm,k

r ,βm,k
r

z,w ) in the case Dom(β) =

R, and [(un)m,kr,l , (zn)
m,k
r,l , (wn)m,kr,l ] of (an

S
γm,k

l
,βm,k

r
z,w ) in the case a smooth. In the case

Dom(β) = R, taking limits as r goes to +∞, we have

lim
r

(un)
m,k
r = (un)

m,k in L1(Ω),

lim
r

(zn)
m,k
r = (zn)

m,k weakly in L1(Ω),

lim
r

(wn)m,kr = (wn)m,k weakly in L1(∂Ω),

[(un)
m,k, (zn)

m,k, (wn)m,k] being a weak solution of (Sγ
m,k,βm,k

z,w ); in the case a smooth,
taking limits as l goes to +∞ we get

lim
l

(un)
m,k
r,l = (un)

m,k
r in L1(Ω),
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lim
l

(zn)
m,k
r,l = (zn)

m,k
r weakly in L1(Ω),

lim
l

(wn)m,kr,l = (wn)m,kr weakly in L1(∂Ω),

[(un)
m,k
r , (zn)

m,k
r , (wn)m,kr ] being a weak solution of (S

γm,k,βm,k
r

z,w ), and taking limits as r
goes to +∞, we obtain

lim
r

(un)
m,k
r = (un)

m,k in L1(Ω),

lim
r

(zn)
m,k
r = (zn)

m,k weakly in L1(Ω),

lim
r

(wn)m,kr = (wn)m,k weakly in L1(∂Ω),

[(un)
m,k, (zn)

m,k, (wn)m,k] being a weak solution of (Sγ
m,k,βm,k

z,w ). Moreover, in the case
a smooth,

(wn)m,k << w − an(x,D(ûn)m,k) · η,

being [(ûn)m,k, (ẑn)
m,k] the weak solution of











−div an(x,D(ûn)m,k) + γ((ûn)
m,k) +

1

m
((ûn)

m,k)+ −
1

k
((ûn)

m,k)− 3 z in Ω

(ûn)
m,k = 0 on ∂Ω.

Finally, passing to the limit in m for an adequate subsequence {k(m)} in N, we have

lim
m→∞

(un)
m,k(m) = un in L1(Ω),

lim
m→∞

(zn)
m,k(m) = zn in L1(Ω),

lim
m→∞

(wn)m,k(m) = wn in L1(∂Ω).

(48)

Under the assumption a smooth,

lim
m→∞

(ûn)
m,k(m) = ûn in L1(Ω),

lim
m→∞

(ẑn)
m,k(m) = ẑn in L1(Ω),

lim
m→∞

an(x,D(ûn)m,k(m)) · η = an(x,Dûn) · η in L1(∂Ω),

[ûn, ẑn] being the weak solution of






−div an(x,Dûn) + γ(ûn) 3 z in Ω

ûn = 0 on ∂Ω.

Moreover (see [6]),
ẑn << z, (49)
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wn << w − an(x,Dûn) · η, (50)

and
∫

∂Ω

|an(x,Dûn) · η| ≤

∫

Ω

|z − ẑn|. (51)

Observe that, by Lemmas 6.1, 6.2 and 6.3, {un} is uniformly bounded in L∞(Ω);
similarly, {ûn} is uniformly bounded in L∞(Ω). Therefore, since Dom(γ) = R, {zn} and
{ẑn} are uniformly bounded in L∞(Ω), so there exists a subsequence, denoted equal,
such that zn and ẑn are weakly convergent in L1(Ω). Also, in the case Dom(β) = R,
there exists a subsequence, denoted equal, such that wn is weakly convergent in L1(∂Ω).

We claim now that

lim
n→∞

∫

Ω

znφ =

∫

Ω

zφ for every φ ∈ D(Ω). (52)

Taking φ = un in (47), since zn(x) ∈ γ(un(x)) a.e. in Ω, wn(x) ∈ β(un(x)) a.e. in
∂Ω, and {un} is bounded in L∞(Ω), we get

∫

Ω

a(x,Dun) ·Dun ≤ n

(∫

Ω

zun +

∫

∂Ω

wun

)

≤ nC

Now, using (H1) and (H2), we have

(∫

Ω

|a(x,Dun)|p
′

)1/p′

≤ σ

(∫

Ω

(

%(x) + |Dun|
p−1
)p′
)1/p′

≤

≤ σ

(

( ∫

Ω

%(x)p
′

)1/p′

+

(∫

Ω

|Dun|
p

)1/p′
)

≤

≤ σ

(

( ∫

Ω

%(x)p
′

)1/p′

+

(

1

λ

∫

Ω

a(x,Dun) ·Dun

)1/p′
)

≤ σ‖%‖Lp′(Ω) + σ

(

C

λ
n

)1/p′

.

Consequently,

(

∫

Ω

∣

∣

∣

∣

1

n
a(x,Dun)

∣

∣

∣

∣

p′
)1/p′

≤
σ‖%‖Lp′(Ω)

n
+ σ

(

C/λ

np′−1

)1/p′

. (53)

On the other hand, taking φ ∈ D(Ω) in (47) we have that

1

n

∫

Ω

a(x,Dun) ·Dφ+

∫

Ω

znφ =

∫

Ω

zφ.
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By (53), we get (52). Consequently

zn ⇀ z weakly in L1(Ω). (54)

Having in mind (54) and (53), it follows, from (47), that

∫

∂Ω

wnφ →

∫

∂Ω

wφ for any φ ∈ W 1,p(Ω) ∩ L∞(Ω). (55)

Therefore, in the case Dom(β) = R, by (55) we get that

wn ⇀ w weakly in L1(∂Ω).

Similarly, we get ẑn ⇀ z weakly in L1(Ω), hence by (49), ẑn → z in L1(Ω). Therefore,
in the case a smooth, from (50), (51) and a similar argument to the above one, we get
that

wn ⇀ w weakly in L1(∂Ω).

Observe that for any b ≥ 0 and c ≥ 0, we also have

(zn − b)+ ⇀ zb ≥ (z − b)+,

(wn − c)+ ⇀ wc ≥ (w − c)+.

Now, if c /∈ Ran(β),
∫

∂Ω

(wn − c)+ ≤ 0,

therefore
∫

∂Ω

(w − c)+ ≤

∫

∂Ω

wc ≤ 0,

and
wc = (w − c)+.

On the other hand, if c ∈ Ran(β), there exists a ≥ 0 such that c ∈ β(a), taking b ∈ γ(a),

since [a, b, c] is an entropy solution of the problem (an
Sγ,βb,c ), we have

∫

Ω

(zn − b)+ +

∫

∂Ω

(wn − c)+ ≤

∫

Ω

(z − b)+ +

∫

∂Ω

(w − c)+. (56)

Taking limits in (56), we get

∫

Ω

(z − b)+ +

∫

∂Ω

(w − c)+ ≤

∫

Ω

zb +

∫

∂Ω

wc ≤

∫

Ω

(z − b)+ +

∫

∂Ω

(w − c)+,

hence
wc = (w − c)+.

Consequently, we obtain, for any c ≥ 0,

(wn − c)+ ⇀ (w − c)+ weakly in L1(∂Ω). (57)
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Working similarly, we also get

(wn + c)− ⇀ (w + c)− weakly in L1(∂Ω). (58)

By (57) and (58), working as in the proof of [12, Proposition 2.11], we obtain that

wn → w in L1(∂Ω).

For b ≥ 0, we have that

(zn − b)+ ⇀ zb ≥ (z − b)+.

Now, if b /∈ Ran(γ),
∫

Ω

(z − b)+ ≤

∫

Ω

zb ≤ 0,

hence
zb = (z − b)+.

On the other hand, if b ∈ Ran(γ), there exists a ≥ 0 such that b ∈ γ(a). In the case
a ∈ Dom(β), taking c ∈ β(a), we obtain that

∫

Ω

(zn − b)+ +

∫

∂Ω

(wn − c)+ ≤

∫

Ω

(z − b)+ +

∫

∂Ω

(w − c)+. (59)

And in the case, a /∈ Dom(β) (therefore we are assuming a smooth), we take bm = b+ 1
ma,

which belongs to γm,k(m)(a) and satisfies

lim
m→∞

bm = b.

Now, since [(un)
m,k
r , (zn)

m,k
r , (wn)m,kr ] is the weak solution of (S

γm,k,βm,k
r

z,w ), we have that

∫

Ω

(

(zn)
m,k
r − bm

)+
+

∫

∂Ω

(

(wn)m,k(m)
r − βm,kr (a)

)+

≤

∫

Ω

(z − bm)
+

+

∫

∂Ω

(

w − βm,kr (a)
)+

.

Then, letting r go to +∞ and having in mind that limr β
m,k
r (a) = +∞, we get

∫

Ω

((zn)m,k − bm)+ ≤

∫

Ω

(z − bm)+. (60)

Let us take the subsequence k(m) used in (48). Then, taking limits when m goes to
+∞ in (60) with k = k(m),

∫

Ω

(zn − b)+ ≤

∫

Ω

(z − b)+. (61)
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Now, letting n go to +∞ in (59) and (61), we have that
∫

Ω

zb ≤

∫

Ω

(z − b)+,

and therefore zb = (z − b)+. Hence, for any b ≥ 0,

(zn − b)+ ⇀ (z − b)+ weakly in L1(Ω).

Similarly, we can get

(zn + b)− ⇀ (z + b)− weakly in L1(Ω).

From these convergences we obtain that

zn → z in L1(Ω),

and the proof concludes. �

Acknowledgements. We would like to thank to B. Andreianov for many interesting
discussions about the uniqueness part of the paper. This work has been performed
during the visits of the first, third and fourth authors to the Université de Picardie Jules
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[20] H. Brezis. Opérateur Maximaux Monotones et Semi-groupes de Contractions dans
les Espaces de Hilbert, Oxford Univ. Press, Oxford, 1984.

[21] J. Carrillo. Entropy Solutions for Nonlinear Degenerate Problems. Arch. Rat.
Mech. Anal., 147 (1999), 269–361.

[22] J. Carrillo and P. Wittbold. Uniqueness of Renormalized Solutions of Degenerate
Elliptic-Parabolic Problems. Journal of Differential Equations., 156 (1999), 93–121.

36



[23] P. Colli and J.F. Rodrigues. Diffusion through thin layers with high specific heat.
Asymptotic Anal., 3 (1990), 249–263.

[24] M. G. Crandall. An introduction to evolution governed by accretive operators.
In Dynamical System, An International Symposium, vol. 1 (L. Cesari et al. eds.),
Academic Press, New York, 1976, pages 131–165. Dekker, New York, 1991.

[25] J. Crank. Free and Moving Boundary Problems, North-Holland, Amsterdam, 1977.

[26] E. DiBenedetto and A. Friedman. The ill-posed Hele-Shaw model and the Stefan
problem for supercooler water. Trans. Amer. Math. Soc., 282 (1984), 183–204.

[27] G. Duvaux and J. L. Lions. Inequalities in Mechanics and Physiscs, Springer-
Verlag, 1976.

[28] C.M. Elliot and V. Janosky. A variational inequality approach to the Hele-Shaw
flow with a moving boundary. Proc. Roy. Soc. Edinburg Sect A., 88 (1981), 93–107.

[29] J. Escher. Quasilinear parabolic systems with dynamical boundary conditions.
Comm. Part. Diff. Equat., 18 (1993), 1309–1364.

[30] M. Grobbelaar and V. Dalsen. On B-evolution theoy and dynamic boundary con-
ditions on a portion of the boundary, Appl. Anal., 40 (1991), 151–172.

[31] T. Hintermann. Evolution problem with dynamical boundary conditions. Proc.
Roy. Soc. Edinburg Sect A., 113 (1989), 43–60.

[32] J. Hulshof. Bounded weak solutions of an elliptic-parabolic Neumann problem.
Trans. Amer. Math. Soc., 303 (1987), 211–227.

[33] N. Igbida. The mesa-limit of the porous medium equation and the Hele-Shaw
problem. Diff. Int. Equat., 15 (2002), 129–146.

[34] N. Igbida. Hele-Shaw Type Problems with Dynamical Boundary Conditions. Sub-
mitted.

[35] N. Igbida. From Fast to Very Fast Diffusion in the Nonlinear Heat Equation. To
appear in Trans. Amer. Math. Soc..

[36] N. Igbida. A Nonlinear Diffusion Problem With Localized Large Diffusion. Comm.
Partial Differential Equations , 29 (2004), no. 5-6, 647–670.

[37] N. Igbida and M. Kirane. A degenerate diffusion problem with dynamical boundary
conditions. Math. Ann., 323 (2002), 377–396.

[38] N. Igbida and J.M. Urbano. Uniqueness for Nonlinear Degenerate Problems.
NoDEA, 10 (2003), 287–307.

[39] N. Kenmochi. Neumann problem for a class of nonlinear degenerate parabolic
equations. Diff. Int. Equat., 2(1990), 253–273.

37



[40] D. Kinderlehrer and G. Stampacchia. An introduction to variational inequalities
and their applications, volume 88 of Pure and Applied Mathematics. Academic Press
Inc. [Harcourt Brace Jovanovich Publishers], New York, 1980.

[41] R.E. Langer. A problem in diffusion or in the flow of heat for a solid in contact
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[43] J. L. Lions. Quelques méthodes de résolution de problémes aux limites non linéaires,
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