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A generalized collapsing sandpile model

Noureddine Igbida

Abstract. In this paper, we introduce a new model for the collapsing
sandpile and we prove existence and uniqueness of a solution for the cor-
responding initial value problem. Moreover, we prove the convergence of
the time-stepping approximation of the solution. We use subgradient flows
for variational problems with time dependent gradient constraints. These
gradient constraints are interpreted as the critical angles of the sandpile.
In particular, our model produces an evolution in time of avalanches in a
drying of a sandpile, rather than instantaneous collapse.

Mathematics Subject Classification (2000). 35A15, 35K65, 35K85.

Keywords. Sandpile, Collapsing, Avalanche, Time-stepping approxima-
tion, Subgradient flows, Time dependent gradient constraints, Nonlinear
semigroup.

1. Introduction. It is well known that granular materials like sand, gravel or
broken stones have an angle limit, the so-called angle of repose. It corresponds
to the steepest angle which the surface of a mass of particles in bulk make
with the ground. It is determined by the friction, the cohesion and the shapes
of the particles, and it is affected by the moisture of particles. In a wet state,
granular materials have generally a larger angle of repose than in their dry
state. Indeed, the surface tension of water ties the seeds together, and the
angle of repose is increased to more vertical. So, in drying the angle of repose
becomes less vertical, avalanches occur and carry sand from the top to the bot-
tom of the pile. We say that the sandpile collapses. This is a typical example
of self-organized critical phenomena exhibited by driven systems which reach
a critical state by their intrinsic dynamics. In [8], to describe the instanteneous
collapse of the sandpile, the authors used a model based on the limit p → ∞ of
the p-Laplacian evolutions with “unstable” initial data. Roughly speaking, in
their model the initial data corresponds to the initial profile of the sandpile and
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the limit as p → ∞ of the solution corresponds to the profile of the sandpile
when it collapses. Our approach here is different, we introduce and study a
general model for the description of the collapse of a sandpile. Notice that
rescaling the problem considered in [8] produces a particular situation of the
model we are giving here (cf. Remark 1 and [7]).

Using mainly the angle of repose, several models were built for the study
of the evolution of a pile of granular materials [1,4,9,13]. In [13] (see also
[1]), the author used subgradient flow for variational problems with gradient
constraint to model the sandpile growth. The gradient constraint is interpreted
as a critical angle. The flow is modeled as a thin boundary layer moving down
the slope of the growing pile. The dynamic is described by using the continuity
equation in fluid dynamics and a phenomenological equation combining the
stability angle and the fact that the sand flow is directed towards the steepest
descent. For the collapse of the sandpile, we suggest to use a time-dependent
stability angle. Indeed, assuming that the moisture of the material is changing
in time, we can assume that the angle of repose is a given time dependent
function. Since we are dealing with problems without external source and the
avalanches occur only when the sand is more vertical than the angle of stabil-
ity, then the case of nondecreasing (in time) repose angle is more interesting.
We assume that the tangent of the repose angle is a given nondecreasing func-
tion c : t ∈ [0, T ) → c(t) ∈ R+ (additional comments are given in Remark 1 at
the end of the paper). So, if u(t) represents the height function of the profile
at time t, then the critical slope (stability condition) is given by

|∇u(t)| ≤ c(t). (1)

If there exists a time τ > t such that u(t) satisfies the instability condition

‖∇u(τ)‖∞ > c(τ),

then (1) forces u(t) to rearrange itself to achieve the profile in a stable config-
uration. To describe this process, we use the continuity equation

∂tu + ∇ · Φ = 0, (2)

where Φ = Φ(∇u) is the horizontal projection of the flux of the material. Since
the surface flow is directed towards the steepest descent, then

Φ = −m∇u,

where m ≥ 0 is an unknown scalar function. Now, taking into account the
critical slope and assuming that no dynamic occurs for pile surfaces which are
inclined less, we get






|∇u(t, x)| ≤ c(t)
and

|∇u(x, t)| < c(t) =⇒ m = 0.

So, if the initial free surface is given by

u(x, 0) = u0
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then, the height u of the pile satisfies the following nonlinear PDE

(P )






ut − ∇ · (m ∇u) = 0, m ≥ 0

|∇u| ≤ c(t), m (|∇u| − c(t)) = 0



 in Q := (0, T ) × Ω

u = 0 on Σ := (0, T ) × Γ

u(0) = u0,

where m : Q → R+ is also unknown.
In the case where c ≡ 1, (P) corresponds to the well known Prigozhin

model for the sandpile. Indeed, taking a nonnegative function (instead of 0)
in the second member of the first equation, the model describes the growth of
a sandpile with respect to an external source of sand (cf. [1,13]). Existence,
uniqueness and numerical analysis are well known for the problem in that case
(cf. [1,2,6]).

The collapsing sandpile problem was studied in [8] and [7] by using the
p-Laplacian equation and letting p → ∞. This approach gives an instanta-
neous study of the collapse of a sandpile. The model (P) is a generalization
of [8] and [7] (see Remark 1) and can describe the succession of avalanches in
any given scaling of time.

Our aim is to prove existence and uniqueness of a solution for (P). More-
over, we prove the convergence of the approximation of the solution of (P) by
Euler implicit time discretization. Recall that the main interest of the approx-
imation by Euler implicit time discretization remains on its application to
numerical analysis (cf. [7]). Indeed, it transforms the problem into projections
on convex sets, so that one can use the numerical algorithms introduced in [6]
for numerical simulation.

In the next section, we set and prove our main result of existence, unique-
ness and convergence of Euler implicit time discretization.

2. Main results and proofs. We assume that

c ∈ W 1,∞(0, T ) and min
t∈(0,T )

c(t) =: δ > 0. (3)

For a given [b, a] compact interval of [0,∞), we say that (di)n
i=0 is an

ε-discretization of [b, a] provided



ε = ε(n), lim

n→∞
ε(n) = 0, |di − di−1| ≤ ε, for any i = 1, . . . n

and d0 = b < d1 < d2 < · · · < dn = a.

For a given ε > 0, we say that (ti)n
i=0 is an ε-discretization of [0, T ), pro-

vided ε = ε(n), limn→∞ ε(n) = 0, t0 = 0 < t1 < t2 < · · · < tn = T and
ti − ti−1 = ε, for any i = 0, ...n. For any d > 0, we denote by K(d) the convex
set given by

K(d) =
{

z ∈ W 1,∞(Ω) ∩ W 1,1
0 (Ω); |∇z| ≤ d

}
a.e. in Ω.
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We say that uε is an ε-approximate solution of (P ) in [0, T ), if there exist
(ti)i=0,...n and an ε-discretization of [0, T ), such that

uε(t) = ui for t ∈ [ti, ti+1[, i = 0, . . . n − 1 (4)

and, for i = 1, . . . , n, the ui solve the Euler implicit time discretization of (P )





ui − ∇ · (mi ∇ui) = ui−1, mi ≥ 0

|∇ui| ≤ c(ti), mi (|∇ui| − c(ti)) = 0

∣∣∣∣∣∣
in Ω

ui = 0 on ∂Ω.

(5)

So, the generic problem for the study of (P ) is





v − ∇ · (m ∇v) = g, Φ = |Φ| ∇v

|∇v| ≤ d, |Φ| (|∇u| − d) = 0

∣∣∣∣∣∣
in Ω

v = 0 on ∂Ω,

(6)

where g (resp. d > 0) is a given function (resp. real parameter).
It is well known by now (see for instance [10]), that for any g ∈ L2(Ω), (6)

has a unique solution v given by

v = I PK(d),

where PK(d) denotes the projection onto the convex K(d), with respect to
the L2(Ω) norm. The connection between v = PK(d) and the formulation in
divergence form (6) is more or less well known by now; for more details in this
direction we refer the reader to [10] and the references therein.

Recall also that, PK(d) = (I+∂IK(d))−1, where ∂IK(d) is the sub-differential
of the indicator function of K(d) given in L2(Ω) by

v ∈ ∂IK(g) if and only if
∫

Ω

v(z − g) ≤ 0 for any z ∈ K.

In particular, this gives rise to the concept of solutions for problem (P ).

Definition 1. For a given u0 ∈ K(c(0)), we say that u is a solution of (P)
provided u ∈ W 1,1(0, T ;L2(Ω)), u(0) = u0 and

−ut(t) ∈ ∂IK(c(t))(u(t)) for any t ∈ (0, T ).

Our main result is

Theorem 1. Let u0 ∈ K(c(0)) and 0 < T < ∞. Then (P) has a unique solution
u and for any sequence ε → 0, if uε is an ε-approximate solution, then

uε → u in C([0, T );L2(Ω)), as ε → 0.

Moreover, if for i = 1, 2 ui is the solution corresponding to u0i, then
∫

Ω

(u1 − u2)+ ≤
∫

Ω

(u01 − u02)+ in D′(0, T )

In particular, if u0 ≥ 0, then u ≥ 0 a.e. in Ω.
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Proof. It is not difficult to see that u is a solution of (P) if and only if v(t) =
u(t)/c(t) is a solution of






vt(t) + ∂IK(1) (v(t)) - f(t) a.e. t ∈ (0, T )

v(0) = u0/c(0),
(7)

with f(t) = −c′(t)
c(t)

v(t). Thanks to [5, Proposition 3.13], and (3), for any

v0 ∈ K(1), (7) has a unique solution v ∈ W 1,∞(0, T ;L2(Ω)), u(0) = u0 and

f(t) − vt(t) ∈ ∂IK(1)(v(t)) for any t ∈ (0, T ).

This ends up the proof of the existence of a solution of (P). To prove the
convergence of the ε-approximate solution, let us consider, for i = 1, . . . n,

ui = PK(c(ti))ui−1,

i.e.,

ui + ∂IK(c(ti)(ui) - ui−1 for i = 1, . . . , n.

Setting, for i = 0, ....n,

zi = ui/c(ti),

it is not difficult to see that

zi = PK(1)

(
c(ti−1)
c(ti)

zi−1

)
for i = 1, . . . , n. (8)

Now, let us consider the Euler implicit discretization in time associated with
(7)

vi + ∂IK(1)(vi) - vi−1 − c(ti) − c(ti−1)
c(ti)

v(ti−1), i = 1, 2, . . . , n, (9)

where, we take as an approximation of f its discretization in [0, t),

fi =
c(ti) − c(ti−1)

ti − ti−1

v(ti−1)
c(ti)

, for i = 1, . . . , n.

Defining vε by vε(t) = vi for t ∈ [ti, ti+1[ and for i = 0, 1, . . . n−1, we know by
standard theory of nonlinear semigroups (see for instance [3, Theorem 4.6],)
that

vε → v in C([0, T );L2(Ω)), as ε → 0, (10)

where v is the solution of (7). It is not difficult to see that (9) is equivalent to

vi = PK(1)

(
c(ti−1)
c(ti)

vi−1 − c(ti) − c(ti−1)
c(ti)

(v(ti−1) − vi−1)
)

,

so that, by using (8) and the L2-contraction property of PK(1), for i = 1, . . . n,
we get

‖vi − zi‖2 ≤ c(ti−1)
c(ti)

‖vi−1 − zi−1‖2 +
∣∣∣∣
c(ti) − c(ti−1)

c(ti)

∣∣∣∣ ‖v(ti−1) − vi−1‖2.

(11)
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Since v0 = z0 = u0/c(0), iterating (11) for i = k, . . . 1, we obtain

‖vk − zk‖2 ≤
k∑

i=1

∣∣∣∣
c(tk−i+1) − c(tk−i)

c(tk)

∣∣∣∣ ‖v(tk−i) − vk−i‖2

≤ 1
δ

k∑

i=1

|c(tk−i+1) − c(tk−i)| ‖v(tk−i) − vk−i‖2

≤ ‖c′‖∞
δ

k−1∑

i=0

(tk−i+1 − tk−i) ‖v(tk−i) − vk−i‖2.

Considering vε given by vε(t) = v(ti) for t ∈ [ti, ti+1[ and i = 0, 1, . . . , n − 1,
we obtain

‖vk − zk‖2 ≤ ‖c′‖∞
δ

k−1∑

i=0

ti+1∫

ti

‖vε(t) − vε(t)‖2 dt

≤ ‖c′‖∞
δ

T∫

0

‖vε(t) − vε(t)‖2 dt

and

‖vε(t) − zε(t)‖2 ≤ ‖c′‖∞
δ

T∫

0

‖vε(t) − vε(t)‖2 dt, for any t ∈ [0, T ).

Since, as ε → 0, vε → v in C([0, T );L2(Ω)), then

lim
ε→0

sup
t∈[0,T )

‖vε(t) − zε(t)‖2 = 0. (12)

Now, let us consider cε defined by cε(t) = c(ti) for t ∈ [ti, ti+1[ and i =
0, 1, . . . n − 1. It is clear that

‖u(t) − uε(t)‖2 = cε(t)
∥∥∥∥

u(t)
cε(t)

− zε(t)
∥∥∥∥

2

≤‖c‖∞

(∥∥∥∥
u(t)
cε(t)

− v(t)
∥∥∥∥

2

+‖v(t) − vε(t)‖2 + ‖vε(t) − zε(t)‖2

)
.

So, combining (12) with the fact that vε → v in C([0, T );L2(Ω)) and cε → c
in C([0, T )), we deduce that

lim
ε→0

sup
t∈[0,T )

‖u(t) − uε(t)‖2 = 0

and the second part the theorem follows. At last, the contraction property is
a consequence of nonlinear semigroup theory and the fact that the operator
∂IK is a preserving order maximal monotone graph in L2(Ω). !
Remarks 1. 1. In this paper, we study the collapsing problem with an arbi-

trary time dependent angle of repose. The exact value of c(t) is closely
connected to the time stepping realization of the avalanches in the con-
cret stituation. In [7], the authors rescale the model proposed by [8] and
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produce a particular situation of our model here. In this case c is given
by (cf. [7])

c(t) =
1

t + ‖∇u0‖−1
L∞(Ω)

and T = 1 − ‖∇u0‖−1
L∞(Ω). Another more realistic value for c(t) is given

in [11] by using a stochastic description of the collapse of piles of cubes.
In [11], the value of c is obtained by assuming that the times of realiza-
tion of the avalanches are random variables independent and identically
exponentially distributed with a given constant mean.

2. Let u0 be the profile of an initial unstable sandpile. Assume for instance
that the gradient constraint of stable sandpile is equal to 1. Then, the col-
lapse of u0 may be described by the initial value problem (P ) with a given
nonnegative c ∈ W 1,∞(0, T ), such that ‖∇u0‖L∞(Ω) ≤c(0) and c(T )=1.
It would be interesting to know if the final profile u(1) (the stable profile
associated with u0) depends on the value of c in (0, T ) or not.

3. For numerical simulations, we see that the time-stepping approximations
of the solution of (P ) transform the problems into a sequence of projec-
tions on convex sets. More precisely, denoting by u the solution of (P )
and using Theorem 1, it is not difficult to see that the characterization
of the final profile u(T ) is given by

u(T ) = lim
n→∞

PK(c(T ))PK(c(tn−1)) . . . PK(c(1))PK(c(0)) u0, (13)

where
(
ti

)n

i=0
is an ε-discretization of [0, T ). For more details in this

direction we refer the readers to [7].
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