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Abstract

The paper deals with Monge-Kantorovich equation (MK for short) in an open bounded
domain Ω with Dirichlet boundary condition. We study existence and uniqueness of a so-
lution to the associated evolution problem (EMK for short) and we prove the convergence
to a solution of MK, when time goes to ∞. A solution is a couple (u,Φ), where u is the
potential and Φ is the transportation flux. We study the problem for a given Radon measure
source term and we show how to use the numerical method of [25] to provide numerical
approximation of the solution of MK.

1 Introduction

The original optimal mass transport problem (which goes back to Monge in 1781 in [36]) consists
in minimizing

(1)

∫
Ω
|x− t(x)| dµ+(x)

among admissible transports t, which are measurable functions t : spt(µ+) → spt(µ−) such
that t#µ

+ = µ− ; i.e. µ−(B) = µ+(t−1(B)), for any measurable set B of IRN with N ≥ 1. Here
|.| denotes the Euclidean norm of IRN , µ+ and µ− are respectively the positive and negative
part of a Radon measure µ (satisfying µ(IRN ) = 0 in the original Monge problem). The problem
was reformulated by Kantorovich in 1942 into a relaxed variational formulation (the so called
Monge-Kantorovich problem : see for instance [27] and [2] for a complete survey on the problem)
and got a great variety of applications. It was generalized in many different ways.

Existence of an optimal transport t is a very delicate problem that was solved in the last
decade (see [28], [15], [3], [18], [19] and the references therein). An interesting tool to fashion
an optimal transport map t is the so called Monge-Kantorovich equation (the MK equation as
called by Bouchitté, Buttazzo and Seppecher in [10]) :

(2)


−∇ · Φ = µ in D′(IRN )

|∇u| ≤ 1 and Φ = |Φ| ∇|Φ|u.
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Here |Φ| denotes the total variation measure of the IRN−valued measure Φ and∇|Φ|u denotes the
tangential gradient with respect to |Φ| (cf. [10]). Indeed, this strongly nonlinear pde contains all
the information concerning Monge optimal mass transportation problem. Actually, it is known
(cf. [28], [2], [27] and the references therein) that a function u solving (2) together with Φ
are meaningful in the context of transport problem (1). Indeed, the vector −Φ provides the
direction of the optimal transportation and the quantity |Φ| gives the density of the transport.
Recall that we are using the tangential gradient of u because Φ is a Radon measure and u is
only Lipschitz in general. We refer the reader to the papers [22], [23] and [24] for more details
concerning the regularity of the solutions of (2).

In addition to the interesting formulation of Monge problem in terms of nonlinear PDE, the
equation (2) is closely connected to Beckmann’s minimal flow problem (cf. [7]), that Beckman
himself called in the ’50s ”a continuous model of transportation”. Roughly speaking, in an
urban area where µ+ and µ− represent the distributions of residents and services in the city
respectively, we can model the consumers traffic by a traffic flow field Φ. In this situation, the
equation

(3) −∇ · Φ = µ in D′(IRN )

gives the relationship between the excess demand and the traffic flow. Beckmann’s problem
aims to find Φ with minimal total variation among those satisfying the equation (3). It is well
known by now that such vector field is given by Φ satisfying (2) (see [20] and [31] and the
references therein for the equivalence between both formulations). Recall that, while classical
Monge problem is stated in IRN , classical Beckmann’s problem is stated in a bounded domain
with appropriate boundary condition on Φ. In this paper, we’ll consider the equation (2) in
a bounded domain large enough such that Dirichlet boundary condition would be enough to
describe many concrete situations.

Let Ω ⊂ IRN be a bounded open domain. Our main interest in this paper is to study the
evolution problem associated with (2) in Ω with Dirichlet boundary condition. That is

(Pµ)



∂tu(t)−∇ · (Φ(t)) = µ(t) in Ω, for t ∈ (0, T )

|∇u(t)| ≤ 1 and Φ(t) = |Φ(t)| ∇|Φ(t)|u(t) in Ω, for t ∈ (0, T )

u = 0 on Σ := (0, T )× Γ

u(0) = u0 in Ω,

where ∂tu denotes the partial derivative with respect to t, u0 ∈W 1,∞(Ω)∩H1
0 (Ω), ‖∇u0‖∞ ≤ 1,

and µ is a bounded Radon measure such that t ∈ (0, T ) → µ(t) ∈ Mb(Ω) is an L1 weakly
measurable map into Mb(Ω) (the set of bounded Radon measures concentrated in Ω) ; i.e.
µ ∈ L1(0, T ;w∗−Mb(Ω))). In addition to its interest for the study of the sandpile (cf. [37], [27]
and [29]) and in the study of mass optimization problem (cf. [9] and [11]), a particular interest of
the evolution equation (Pµ) remains in the numerical approximation of the flux Φ of (2). Indeed,
the numerical approximation of the transport flux Φ of the problem (2) is difficult because the
numerical instabilities. A possible approach is to approximate it by the optimal evolutionary
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flux, for which stable numerical method are develop recently (see [5], [6] and [25]). We prove the
existence of a solution (u,Φ) and the uniqueness of the potential u. Moreover, we prove that as
t → ∞ the solution (u(t),Φ(t)) converges to a solution of the stationary problem (2). At last,
we show how to use the numerical method of [25] to provide a numerical approximation of a
solution (u,Φ) of (2).

Like for the stationary problem (2), the main difficulty in the study of (Pµ) is connected with
the regularity of Φ. To to handle this difficulty, we use essentially a weak formulation based on
a characterization of the total variation of the flux Φ. The heuristic is the following. One could
first look for a couple (u,Φ), with Φ in the space of vector valued Radon measures, which solves

(4)


∂tu(t)−∇ · (Φ(t)) = µ(t) in Ω, for t ∈ (0, T )

u = 0 on Σ

u(0) = u0 in Ω.

By the bound on the norm of ∇u and the first equation of (4) we have

|Φ|(Q) ≥
∫ ∫

Q
∇u · Φ =

∫ ∫
Q
udµ− 1

2

d

dt

∫ ∫
Q
u2 dxdt.

And, then proving the opposite inequality

|Φ|(Q) ≤
∫ ∫

Q
udµ− 1

2

d

dt

∫ ∫
Q
u2 dxdt,

would permits to write Φ = ∇u |Φ|. Of course, the gradient of u in the last equation needs to
be handle in a right way.

In the following section, we begin by giving some preliminaries and notations that will be used
throughout the paper. Then, we summarize our main results and we show formally how to use
the numerical method of [25] to provide a numerical approximation of the solution (u(t),Φ(t)) of
(Pµ). Taking t large enough in (Pµ), we give some numerical approximation of the transport flux
Φ solution of (2). Section 3, is devoted to the proofs. For the uniqueness of the potential we use
doubling and dedoubling variables technics. As for the existence, we consider the p−Laplacien
evolution equation and we let p→∞.

2 Preliminaries and main results

2.1 Preliminaries and notations

Let us begin with some preliminaries concerning IRN -valued Radon measure and notations that
we use in this paper (for more details one can see for instance [40]). Throughout the paper
Ω ⊂ IRN is a bounded domain with Lipschitz boundary. We denote by LN the N−dimensional
Lebesgue measure of IRN . For 1 ≤ p < +∞, Lp(Ω), W 1,p(Ω) and W 1,p

0 (Ω) denote respectively,
with respect to LN , the standard Lebesgue space, Sobolev space and the closure of D(Ω) in
W 1,p(Ω). We denote by M(Ω) (resp. Mb(Ω)) the space of all Radon measures in Ω (resp. with
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bounded total variation |µ|(Ω)). For any Φ ∈ Mb(Ω)N the total variation measure associated
with Φ, denoted again by |Φ|, is defined by

|Φ|(B) = sup

{ ∞∑
i=1

|Φ(Bi)| ; B = ∪∞i=1Bi, Bi a Borelean set

}

and belongs to M+(Ω) (the set of nonnegative Radon measure). For any Φ ∈ Mb(Ω)N , we

use polar factorization
Φ

|Φ|
of Φ, to denote the density of Φ with respect to |Φ|. So, every

Φ ∈Mb(Ω)N can be identified with linear application η ∈ Cc(Ω)N →
∫

Ω

Φ

|Φ|
· η d|Φ|. To simplify

the presentation we’ll use the notation∫
Ω
η dΦ :=

∫
Ω

Φ

|Φ|
· η d|Φ|, for any η ∈ Cc(Ω)N .

For any Φ ∈Mb(Ω)N and ν ∈Mb(Ω), we say that −∇ · Φ = ν in D′(Ω) provided∫
Ω
∇ξ dΦ =

∫
Ω
ξ dν for any ξ ∈ D(Ω) .

SinceMb(Ω) = (Cc(Ω))∗ and Cc(Ω) is separable, then, for a given T > 0, any weak∗-measurable
function ψ : (0, T ) → Mb(Ω) is such that t ∈ (0, T ) → |ψ(t)|(Ω) is measurable (see [21]). So,
for any 1 ≤ q ≤ ∞, we define

Lq(0, T ;w∗ −Mb(Ω)) =
{
ψ : (0, T )→Mb(Ω) weak∗-measurable ;

∫ T

0
|ψ(t)|q(Ω) dt <∞

}
.

Recall that the space Lq(0, T ;w∗ −Mb(Ω)) equipped with the norm

‖ψ‖
Lq(0,T ;w∗−Mb(Ω)) =


(∫ T

0
(|ψ(t)|(Ω))q dt

) 1
q

if q <∞

ess-supt∈(0,T )|ψ(t)|(Ω) if q =∞

is a Banach space. If q > 1, then (cf. [17]) Lq(0, T ;w∗ − Mb(Ω)) can be identified with(
Lq
′
(0, T ; C0(Ω))

)∗
the dual space of Lq

′
(0, T ; C0(Ω)), where q′ =

q

q − 1
. The identification is

given by the application

I : Lq(0, T ;w∗ −Mb(Ω))→
(
Lq
′
(0, T ; C0(Ω))

)∗
with I(µ)(ξ) =

∫ T

0

∫
Ω
ξ(t) dµ(t).

The setBV (0, T ;w∗−Mb(Ω)) is the subspace of L1(0, T ;w∗−Mb(Ω)) defined by µ ∈ BV (0, T ;w∗−
Mb(Ω)) if and only if µ ∈ L1(0, T ;w∗ −Mb(Ω)) and

V (µ, T ) := lim sup
h→0

1

h

∫ T−h

0
|µ(τ + h)− µ(τ)|(Ω) dτ < ∞

}
.
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If µ ∈ BV (0, T ;w∗ −Mb(Ω)), then it is essentially bounded and has an essential limit from the
right, denoted by µ(t+), for every t ∈ [0, T ). We also use the notation

V (µ, t+) = lim sup
h→0

1

h

∫ t

0
|µ(τ + h)− µ(τ)|(Ω) dτ for 0 ≤ t < T.

To end up these preliminaries, we recall the following result that follows from [10] (a detailled
proof can be found in [31]).

Lemma 2.1 Let v ∈ K and Φ ∈Mb(Ω)N such that −∇ · Φ =: ν ∈Mb(Ω). Then,

Φ = |Φ| ∇|Φ|v if and only if |Φ|(Ω) ≤
∫

Ω
v dν.

To simplify the notation, our integrals are with respect to dt, dx or dtdx over (0, T ), Ω
or Q := (0, T ) × Ω respectively, when omitted, unless otherwise indicated. Moreover, for any
µ ∈ Lq(0, T ;w∗ −Mb(Ω)), we denote by∫ ∫

Q
ξ dµ :=

∫ T

0

∫
Ω
ξ(t) dµ(t), for any ξ ∈ Lq′(0, T ; C0(Ω)).

Throughout this section, Ω ⊂ IRN is a bounded domain with C1 boundary Γ, 0 < T < ∞,
Q = (0, T )× Ω, Σ = (0, T )× Γ. We denote by K the convex set given by

K =
{
z ∈W 1,∞(Ω) ∩H1

0 (Ω) ; |∇z| ≤ 1 LN − a.e. in Ω
}

and
KT =

{
z ∈ C([0, T );L2(Ω)) ∩ L2(0, T ;H1

0 (Ω)) ; z(t) ∈ K for any t ∈ [0, T )
}
.

It is not difficult to see that

KT ⊂ ∩q≥1L
∞(0, T ;W 1,q

0 (Ω)) and KT ⊂ L∞(0, T ; C0(Ω)).

So, for any u ∈ KT and µ ∈ L1(0, T ;w∗ −Mb(Ω)) the quantity

∫ ∫
Q
u dµ is well defined.

Recall that (see for instance [31] and the references therein) a solution u of (2) maybe given
by

µ ∈ ∂IIK(u),

where K is the set of 1−Lipchitz continuous function u null on the boundary of Ω. Here, ∂IIK
is the usual sub-differential operator of the indicator function of K, defined in L2(Ω), by

IIK(u) =


0 if u ∈ K

+∞ otherwise.

So, one expect the equivalence between a solution u of (Pµ) and the solution of

(5)


∂tu+ ∂IIK(u) 3 µ in (0, T )

u(0) = u0.
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2.2 Existence, uniqueness and large time behavior

This formal transformation of (Pµ) into (5) gives rise rather the notion of variational solution for
(Pµ). Existence and uniqueness of u solving (5) (variational solution) is more or less well known
by now for regular data. Indeed, (5) is an evolution problem governed by a sub-differential op-
erator. So, by using classical results from nonlinear semigroup theory, existence and uniqueness
of a solution u of (5) for any Lp source term µ, with 1 ≤ p ≤ ∞, holds to be true (see [14] for
p = 2 and [13] for p 6= 2). For general Radon measure source µ we have the following result

Theorem 2.2 For any u0 ∈ K and µ ∈ L1(0, T ;w∗ −Mb(Ω)), (5) has a unique variational
solution u ; i.e. u ∈ KT , u(0) = u0 and for any ξ ∈ K

(6)
1

2

d

dt

∫
Ω
|u(t)− ξ|2 ≤

∫
Ω

(u(t)− ξ) dµ(t) in D′(0, T ).

Moreover, if ui is a variational solution of (Pµi), for i ∈ {1, 2}, then

(7)
d

dt

∫
Ω
|u1(t)− u2(t)| ≤ |µ1(t)− µ2(t)|(Ω) in D′(0, T )

and

(8)
1

2

d

dt

∫
Ω
|u1(t)− u2(t)|2 ≤

∫
Ω

(u1(t)− u2(t)) d(µ1(t)− µ2(t)) in D′(0, T ).

Recall that, particular situation µ =

m∑
k=1

fk(t)δdk , where δdk denotes the Dirac mass at the point

dk and the source function fk is nonnegative (k = 1, ..,m), was studied in [4] (see also [38]).
The authors show existence and uniqueness of a variational solution by letting p → ∞ in the
p-Laplacian equation :

(9)


∂tu−∆pup = µ in (0,∞)× IRN

u(0) = u0.

Now, having in mind the roles of the flux Φ for concrete situations like Monge problem,
mass optimization and sandpile, we focus our attention on the formulation of the solution u of
(Pµ) with a flux Φ for any given source term µ ∈ L1(0, T, w∗ −Mb(Ω)). The following theorem
provide the right weak formulations in divergence form of the solution of (Pµ).

Theorem 2.3 Let u0 ∈ K and µ ∈ BV (0, T ;w∗ −Mb(Ω)). Then, u is the variational solution
of (5) if and only if u ∈ C([0, T );L2(Ω))∩KT , u(0) = u0, ∂tu ∈ L∞(0, T ;w∗−Mb(Ω)) and there
exists Φ ∈ L∞(0, T ;w∗ −Mb(Ω)), such that ∂tu−∇ · Φ = µ in D′(Q) and Φ satisfies one of
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the following equivalent formulations :

Φ(t) = |Φ(t)| ∇|Φ(t)|u(t) L1 − a.e. t ∈ (0, T )(10)

|Φ(t)|(Ω) ≤
∫

Ω
u(t) dµ(t)− 1

2

d

dt

∫
Ω
u2(t) L1 − a.e. t ∈ (0, T )(11)

|Φ|(Q) ≤
∫ ∫

Q
u dµ− 1

2

∫
Ω
u(T )2 +

1

2

∫
Ω
u2

0.(12)

Using the fact that a solution u of (Pµ) is such that |∇u(t)| ≤ 1 LN -a.e. in Ω for L1-a.e.
t ∈ (0, T ), one can prove that (11) (resp. (12)) is equivalent to

|Φ(t)|(Ω) =

∫
Ω
u(t) dµ(t)− 1

2

d

dt

∫
Ω
u2(t) L1 − a.e. t ∈ (0, T )

(
resp. |Φ|(Q) =

∫ ∫
Q
u dµ− 1

2

∫
Ω
u(T )2 +

1

2

∫
Ω
u2

0

)
.

Notice that, the regularity of Φ as well as its uniqueness hold not to be true in general. For
more details on these questions, we refer the readers to the papers [16], [2], [22], [23], [24] and
[28].

Theorem 2.3 treats the case with µ is regular with respect to t. For general µ ; i.e. µ ∈
L1(0, T ;w∗ −Mb(Ω)), we can prove that if u is a variational solution then, there exists Φ ∈
Mb(Q)N such that ∂tu−∇ ·Φ = µ in D′(Q) and (12) is fulfilled. But, in connection with the
decomposition of Φ with respect to t and x, the converse implication as well as uniqueness are
not clear in general. So, in order to give a complete description of u with flux Φ ∈Mb(Q)N , we
replace (11) and (12) with the weak formulation bellow

(13) sup
η∈C0(Ω)N , ‖η‖∞≤1

∫ ∫
Q
σ η dΦ ≤ 1

2

∫ T

0

∫
Ω
u2 σt +

∫ ∫
Q
σ u dµ,

for any σ ∈ D(0, T ) such that σ ≥ 0.

To simplify the presentation we introduce the following definition.

Definition 2.4 Let µ ∈ L1(0, T ;w∗ −Mb(Ω)) and u0 ∈ K. A function (u,Φ) is said to be a
weak solution of (Pµ) provided u ∈ C([0, T );L2(Ω))∩KT , u(0) = u0, Φ ∈Mb(Q)N , ∂tu−∇·Φ =
µ in D′(Q) and (13) is fulfilled.

It is clear that both (10), (11) and (12) imply (13), but the converse part is not true in
general. The connection between the variational solution and solution with a flux satisfying
(13) is summarized in the following theorem.

Theorem 2.5 Let u0 ∈ K and µ ∈ L1(0, T ;w∗ −Mb(Ω)). Then, u is the variational solution
of (5) if and only if u ∈ C([0, T );L2(Ω)) ∩KT , u(0) = u0 and there exists Φ ∈ Mb(Q)N such
that ∂tu−∇ · Φ = µ in D′(Q) and (13) is fulfilled. Moreover, (13) is equivalent to

(14) sup
η∈C0(Ω)N , ‖η‖∞≤1

∫ ∫
Q
σ η dΦ =

1

2

∫ T

0

∫
Ω
u2 ∂tσ +

∫ ∫
Q
σ u dµ
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for any σ ∈ D(0, T ) such that σ ≥ 0.

As we said in the introduction, a main feature of the weak solution of (Pµ) is the description
of the equilibrium solutions which are the solutions of MK. The connection between the weak
solution of (Pµ) and the weak solution (2) is given in the following theorem.

Theorem 2.6 Let u0 ∈ K, µ ∈Mb(Ω) and (u,Φ) be a weak solution of (Pµ). As t→∞,

u(t)→ u∗ uniformly in Ω,

and the there exists a subsequence that we denote again by t, such that

Φ(t)→ Φ∗ in Mb(Ω)− weak∗.

Moreover, (u∗,Φ∗) is a weak solution of (2) ; that is u∗ is a Kantorovich potential and Φ∗ is the
flux transport.

Remark 2.7 Here, let us see that a solution of MK in IRN may be describe by a solution in
a bounded domain with Dirichlet boundary condition whenever the source term µ is compactly
supported. Indeed, it is enough to prove that if f ∈ L2(IR2) ∩ L∞(IR2) is compactly supported,
then u := IPK̃f is compactly supported, where

K̃ =
{
z : IRN → IR ; |u(x)− v(y) ≤ |x− y| L2N − a.e. (x, y) ∈ IRN × IRN

}
.

To see that, we assume without loose of generality that support(f) ⊆ B(0, R), for a given R > 0
and we prove that there exists R′ > 0, such that

(15) support(u) ⊆ B(0, R′).

It is not difficult to see that

(16) |f(x)| ≤ dR(x) := (‖f‖
L∞(IR2

)
+ (R− |x|))+, a.e. x ∈ IR2.

Moreover, we see that dR ∈ K̃, so that

IPK̃f ≤ IPK̃dR = dR, L2 − a.e. in IR2

In the same way, we can prove that

IPK̃f ≥ −dR, L2 − a.e. in IR2.

This implies that
Support(u) ⊆ B(0, R′) where R′ = R+ ‖f‖

L∞(IR2
)
,

and the proof is complete.
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2.3 Numerical computation

2.3.1 A numerical algorithm (Pµ) (cf. [25])

In [25] (a joint paper with S. Dumont), we study the numerical analysis of the problem (5) to
provide numerical approximation of the solution u of (5). However, by using duality arguments,
the numerical method of [25] provide moreover a numerical approximation of the flux Φ. Thus,
combining the numerical method of [25] and Theorem 2.6, we can obtain a numerical approx-
imation of the solution (u, φ) of (Pµ). For completeness let us give formally the main ideas of
the method.

For ε > 0, we consider
(
ti, µi

)
i=1,...n

an ε− discretization, i.e. t0 = 0 < t1 < ... < tn−1 < T =

tn with ti − ti−1 = ε, µ1, ...µn ∈ L2(Ω), such that

µε :=
n∑
i=1

µiχ[ti−1,ti) → µ in L∞(0, T ;w∗ −Mb(Ω)).

The Euler implicit time discretization of (Pµ) is given by

(17)


ui −∇ · (Φi) = ε µi + ui−1 in Ω

|∇ui| ≤ 1 and Φi = |Φi| ∇|Φi|ui in Ω

ui = 0 on ∂Ω,

for i = 1, ..n. Then, a numerical approximation of the solution (u,Φ) of (Pµ) is given by a
numerical computation of the ε−approximate solution (uε,Φε) given by

(18) uε(t) =


u0 for any t ∈]0, t1],

ui for any t ∈]ti−1, ti], i = 1, ...n

and

(19) Φε(t) = Φi for any t ∈]ti−1, ti], i = 1, ...n.

Thanks to [25], we know that setting

gi := ε µi − ui−1 i = 1, ...n,

a numerical approximation of ui can be given by the following optimization problem

(20) sup
σ∈Hdiv(Ω)

−G(σ)

where

G(σ) =
1

2

∫
Ω
|divσ|2 +

∫
Ω
gi divσ + |σ|(Ω)
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and

Hdiv(Ω) =
{
w ∈

(
L2(Ω)

)N
; div(w) ∈ L2(Ω)

}
.

Indeed, ui is characterized by

(21) J(ui) = inf{J(z), z ∈W 1,∞(Ω)},

where

J(z) =

∫
Ω
|z − gi|2 + IIK ,

and (20) is the dual problem of (21). The maximization problem (20) has a solution Φ which
is not in Hdiv(Ω) in general but is a vector valued Radon measure Φ such that div(Φ) ∈ L2(Ω)
and, we have

(22) ui = gi + div(Φ).

Moreover, thanks to [31], taking Φi := Φ, the couple (ui,Φi) is also a weak solution of (17).
In other words, the maximization problem (20) and (22) provides a couple (ui,Φi) which is a
solution of (17).

So, to give a numerical approximation of the solution (ui,Φi) of (17), for i = 1, ...n, we can
follow the same algorithm of [25]. That is

• Solve the maximization problem (20) by using Raviart Thomas finite element of the lowest
order [39]. Denoting h the average length of the elements and Vh the space of finite
elements, we compute σh the solution of the problem

(23) G(σh) = inf
qh∈Vh

G(qh),

• Compute
uh = gi + div(σh).

• The couple (uh, wh) is the numerical approximation of (ui,Φi).

2.3.2 Numerical results

Here we use the numerical codes of [25] to give some numerical examples in IR2 where the flux
of the Monge-Kantorovich problem is computed by using the evolution problem (Pµ) with large
t. Recall that the standard Monge optimal transportation is posed in all IR2 and the measure
µ = µ+ − µ− is such that µ+ and µ− are nonnegative, has disjoint support and satisfies the
balance mass condition

µ+(IR2) = µ−(IR2).

Our results here as well as the result of [25] are set in a bounded domain with Dirichlet boundary
condition on the potential u. However, thanks to Remark 2.7, by taking a large domain with
respect to the support of µ, the numerical method introduced in [25] still works here, since in this
case the support of Φ will be included in the interior of Ω. This means that all the transportation
takes place between µ+ and µ−, there no exchanges with the boundary.

In the following examples, we take Ω = [0, 10]× [0, 10], and as in [25] the minimization of G
on Vh is implemented using a relaxation procedure.
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Example 1 In this example we take

µ+ = δ{4}×[4,5] and µ− = δ[5,6]×{6}

Figure 1: Representation of the flux of MK equation (N=2)
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Example 2 In this example we take

µ+ = δ(5,3) + δ(3,5) + δ(6,7) + δ(7,4) and µ− = 2δ(5,5) + 2δ(5,6)

Figure 2: Representation of the flux of MK equation (N=2)
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Example 3 In this example we take

µ+ = δ(5,3) + δ(3,5) + δ(6,7) + δ(7,4) and µ− = 3δ(5,5) + δ(5,6)

Figure 3: Representation of the flux of MK equation (N=2)



Evolution Monge-Kantorovich Equation N. Igbida 14

Example 3 In this example we take

µ+ = δ(5,3) + δ(3,5) + δ(6,7) + δ(7,4) and µ− = δ(5,5) + 3δ(5,6)

Figure 4: Representation of the flux of MK equation (N=2)

3 Proofs

3.1 Uniqueness of variational solution

Proposition 3.1 For any µ ∈ L1(0, T, w∗ −Mb(Ω)) and u0 ∈ K, the problem (5) has at most
one variational solution.

Proof : We use doubling and dedoubling variables techniques. So, let σ = σ(t1, t2) ∈ D((0, T )2),
and set u1 = u1(t1) and u2 = u2(t2). Then, by definition

(24) −1

2

∫ T

0

∫
Ω
σt1(t1, t2) |u1(t1)− u2(t2)|2 dt1 dx ≤

∫ T

0

∫
Ω

(u1(t1)− u2(t2)) σ(t1, t2) dµ(t1) dt1,
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and

(25) −1

2

∫ T

0

∫
Ω
σt2(t1, t2) |u1(t1)− u2(t2)|2 dt2dx ≤ −

∫ T

0

∫
Ω

(u1(t1)−u2(t2))σ(t1, t2)dµ(t2)dt2.

Integrating (24) (resp. (25)) with respect to t2 (resp. t1) and adding the resulting equations,
we get

−1

2

∫ T

0

∫ T

0

∫
Ω
|u1(t1)− u2(t2)|2 (σt1(t1, t2) + σt2(t1, t2)) dt1 dt2 dx

≤
∫ T

0

∫ T

0

∫
Ω

(u1(t1)− u2(t2)) σ(t1, t2) d(µ(t1)− µ(t2)) dt1 dt2

≤ 2C

∫ T

0

∫ T

0
σ(t1, t2) |µ(t1)− µ(t2)|(Ω) dt1 dt2,

where we used the fact that, for i = 1, 2, ui ∈ K and C is a constant depending only on N and
Ω such that ‖z‖∞ ≤ C for any z ∈ K. Now, to dedouble variables, let ξ ∈ D(0, T ), ξ ≥ 0 and ρε
be the usual mollifiers in IR. Set

σ(t1, t2) = ρε

( t1 − t2
2

)
ξ
( t1 + t2

2

)
,

we have

σt1(t1, t2) + σt2(t1, t2) = ρε(
t1 − t2

2
) ξ′(

t1 + t2
2

).

Then

−1

2

∫ T

0

∫ T

0

∫
Ω
ρε(

t1 − t2
2

) ξ′(
t1 + t2

2
) |u1(t1)− u2(t2)|2 dt1 dt2 dx

≤ 2C

∫ ∫
ρε

( t1 − t2
2

)
ξ
( t1 + t2

2

)
|µ(t1)− µ(t2)|(Ω)dt1 dt2.

Setting,

(τ1, τ2) = τ(t1, t2) =
( t1 + t2

2
,
t1 − t2

2

)
,

we get

−1

2

∫ T

0

∫ T

0

∫
Ω
ρε(τ2) ξ′(τ1) |u1(

τ1 + τ2

2
)− u2(

τ1 − τ2

2
)| dτ1 dτ2 dx

≤ C
∫ T

0

∫ T

0
ρε(τ2) ξ(τ1) |µ(

τ1 + τ2

2
)− µ(

τ1 − τ2

2
)|(Ω) dτ1dτ2.

Since, t ∈ (0, T )→ |µ(t)|(Ω) is in L1(0, T ), then by letting ε→ 0, we get

−1

2

∫ T

0

∫
Ω
|u1(t)− u2(t)|2 ξt ≤ 0,
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for any ξ ∈ D(0, T ), which implies that

d

dt

∫
Ω
|u1(t)− u2(t)| ≤ 0 in D′(0, T ).

At last, since, u ∈ C([0, T );L2(Ω)) and u1(0) = u2(0), then u1 = u2, LN+1-a.e. in Q.

3.2 A weak solution is a variational solution

To prove that weak solutions are variational solution, we begin first by to prove the following
Lemma.

Lemma 3.2 For any z ∈ KT , there exists (zε)ε>0 a sequence in L∞(0, T ; C1
0(Ω)) ∩ KT such

that, as ε→ 0, for any q ≥ 1,

zε → z in Lq(0, T ;W 1,q
0 (Ω))− weak

and
zε → z uniformly in Q.

Proof : For a given ε >, we consider the application Iε : IR→ IR, defined by

Iε(r) =

{
0 if |r| ≤ ε
r − sign(r) ε if |r| > ε.

Then, we choose
z̃ε(t, x) = Iε(z(t)), for any t ∈ [0, T ).

One sees that z̃ε(t) is compactly supported in ω ⊂⊂ Ω and z̃ε ∈ KT . So that, there exists
0 < α < 1, such that

zε(t) = z̃ε(t) ∗ ραε ∈ K ∩ D(Ω), for any ε > 0.

Moreover, for any q ≥ 1, zε is bounded in Lq(0, T ;W 1,q
0 (Ω)), and the results of the lemma follows.

Proposition 3.3 Let µ ∈ L1(0, T ;w∗ −Mb(Ω)) and u0 ∈ K. If (u,Φ) is a weak solution of
(Pµ), then

(26) sup
η∈C0(Ω)N , ‖η‖∞≤1

∫ ∫
Q
σ η dΦ ≥ 1

2

∫ T

0

∫
Ω
u2 ∂tσ +

∫ ∫
Q
σ u dµ ,

for any σ ∈ D(0, T ) such that σ ≥ 0. In addition, u is a variational solution of (5).
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Proof : For any h > 0 and ε > 0, let us consider

uhε (t, x) =
1

2h

∫ t+h

t−h
uε(s, x)ds for any (t, x) ∈ Q,

where (uε)ε>0 a sequence of L∞(0, T ; C1
0(Ω)) given by Lemma 3.2 extended by 0 outside (0, T )

; i.e. ‖∇uε‖∞ ≤ 1 and, as ε→ 0,

uε → u in Lq(0, T ;W 1,q
0 (Ω)) and in Lq(Ω),

for any q ≥ 1. It is clear that uhε ∈W 1,q(0, T ;W 1,q
0 (Ω)) and, for any t ∈ (0, T ),

uhε (t) −→ 1

2h

∫ t+h

t−h
u(τ) dτ =: uh(t), in Lq(Ω), as ε→ 0,

for any q ≥ 1. Taking σ uhε as a test function in ∂tu−∇ · Φ = µ, we get∫ ∫
Q
σ ∇uhε dΦ =

∫ T

0

∫
Ω
σt u u

h
ε +

∫ T

0

∫
Ω
σ(t) u(t)

uε(t+ h)− uε(t− h)

2 h

+

∫ ∫
Q
σ u dµ.

Letting ε→ 0, then h→ 0, and using Lebesgue dominated convergence Theorem, we obtain

lim
h→0

lim
ε→0

∫ ∫
Q
σ ∇uhε dΦ =

∫ T

0

∫
Ω
σt u

2 + lim
h→0

∫ T

0

∫
Ω
σ(t) u(t)

u(t+ h)− u(t− h)

2h

(27)

+

∫ ∫
Q
σ u dµ.

Since, u ∈ C([0, T );L2(Ω)), then

lim
h→0

∫ T

0

∫
Ω
σ(t) u(t)

u(t+ h)− u(t− h)

2h
= − lim

h→0

∫ T

0

∫
Ω
u(t− h) u(t)

σ(t+ h)− σ(t− h)

2h

= −1

2

∫ T

0

∫
Ω
u2 σt.

So, (27) implies that

1

2

∫ T

0

∫
Ω
σt u

2 +

∫ ∫
Q
σ u dµ = lim

h→0
lim
ε→0

∫ ∫
Q
σ ∇uhε dΦ

≤ sup
η∈C0(Ω)N , ‖η‖∞≤1

∫ ∫
Q
σ η dΦ.
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and the proof of (26) is complete. Now, let ξ ∈ K and σ ∈ D(0, T ) be such that σ ≥ 0. We
consider ξε ∈ K ∩ D(Ω) as given by Lemma 3.2. Notice that in this case, we can assume that
zε ∈ K ∩ C1

0(Ω) and zε → z in C0(Ω). Then taking σ ξε as a test function in ∂tu−∇ ·Φ = µ and
using (13), we get∫ T

0

∫
Ω
σt u ξ +

∫ T

0

∫
Ω
σ ξ dµ = lim

ε→0

∫ ∫
Q
σ ∇ξε dΦ

≤ sup
η∈C0(Ω)N , ‖η‖∞≤1

∫ ∫
Q
σ η dΦ

≤ 1

2

∫ T

0

∫
Ω
σt u

2 +

∫ ∫
Q
σ u dµ.

This implies that ∫ T

0

∫
Ω
σt (

1

2
u2 − u ξ) +

∫ ∫
Q
σ (u− ξ) dµ ≥ 0,

which is equivalent to (6), for any ξ ∈ K. At last, one sees easily that a solution in the sense
of Theorem 2.5 is a weak solution. Thus, both weak solution and a solution in the sense of
Theorem 2.5 are variational solution, and their uniqueness follows by Proposition 3.1.

3.3 Existence of a weak solution

Now, in order to prove the existence parts of Theorem 2.2, Theorem 2.3 and Theorem 2.5, we
consider the p-Laplacian evolution equation

(P pµ)


∂tu−∇ · (|∇u|p−2∇u) = µ in Q

u = 0 on Σ

u(0) = u0p,

with p ≥ N + 1, µ ∈ L∞(0, T ;w∗ −Mb(Ω)) and u0p ∈W 1,p
0 (Ω). Since

Mb(Ω) ⊂W−1,(N+1)′(Ω) ⊂W−1,p′(Ω),

with continuous injection, then

L∞(0, T ;w∗ −Mb(Ω)) ⊂ Lp′(0, T ;W−1,p′(Ω)).

So, thanks to [35] (see also [1]), there exists a unique solution up of the problem (P pµ), in the

sense that u ∈ Lp(0, T ;W 1,p
0 (Ω)), ∂tu ∈ Lp

′
(0, T ;W−1,p′(Ω)), u(0) = u0 and ∂tu −∆pu = µ in

D′(Q). Moreover, for any p ≥ q ≥ N + 1, we have∫
Ω
|∇up(t)|p =

∫
Ω
up(t) dµ(t)−

〈
∂tup(t), up(t)

〉
W−1,q′ (Ω),W 1,q

0 (Ω)
L1 − a.e. t ∈ (0, T )

(28)

=

∫
Ω
up(t) dµ(t)− 1

2

d

dt

∫
Ω
u2
p(t) L1 − a.e. t ∈ (0, T ).
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Integrating (28) with respect to t and using Young inequality, we get∫ ∫
Q
|∇up|p ≤ Cq |Q|

p−q
(p−1)q ‖µ‖

p
p−1

L∞(0,T ;w∗−Mb(Ω))
+

1

2

∫
Ω
u2

0p

and

(29)

(∫ ∫
Q
|∇up|q

) 1
q

≤ |Q|
1
p

(
Cq |Q|

p−q
(p−1)q ‖µ‖

p
p−1

L∞(0,T ;w∗−Mb(Ω))
+

1

2

∫
Ω
u2

0p

) 1
p

where Cq = C(q,Ω, N) denotes a constant independent of p. Recall also, that if ui is the solution
of (P pµi), for i = 1, 2, then

(30)
1

2

d

dt

∫
Ω
|u1 − u2|2 ≤

∫
Ω

(u1 − u2) d(µ1 − µ2) in D′(0, T )

and

(31)
d

dt

∫
Ω
|u1 − u2| ≤ |µ1 − µ2|(Ω) in D′(0, T ).

Lemma 3.4 If, moreover µ ∈ BV (0, T ;w∗ −Mb(Ω)) and ∆pu0p ∈ L1(Ω), then

1. ∂tup ∈ L∞(0, T ;w∗ −Mb(Ω)) and

(32) ‖∂tup‖L∞(0,T ;w∗−Mb(Ω)) ≤ |µ(0+)|(Ω) + ‖∆pu0p‖L1(Ω) + V (µ, T ).

2. For any p ≥ q ≥ N + 1, up ∈ L∞(0, T ;W 1,q
0 (Ω)) and

(33) ‖up‖L∞(0,T ;W 1,q
0 (Ω))

≤ C
1

p−1
q |Ω|

p−q
(p−1) q ‖µ+ ∂tup‖

1
p−1

L∞(0,T ;w∗−Mb(Ω)).

Proof :

1. We see that wp(t) = up(t+ h) is a solution of

∂tw −∆pw = µ(.+ h) in Qh := (0, T − h)× Ω

w = 0 on Σ

w(0) = up(h),

so that by (31), we have

(34)

∫
Ω
|up(t)− up(t+ h)| ≤

∫
Ω
|u0p − up(h)|+

∫ t

0
|µ(s)− µ(s+ h)|(Ω) ds.
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Since, u0p ∈ W 1,p
0 (Ω) and ∆pu0p ∈ L1(Ω), then u0p is a solution of (P p(∆pu0p)), and by

applying again (31) we have∫
Ω
|u0p − up(h)| ≤

∫ h

0
|µ(t)−∆pu0p LN |(Ω)

≤
∫ h

0
|µ(τ)|(Ω) dτ + h

∫
Ω
|∆pu0p|.

So,

(35)

∫
Ω
|up(t+ h)− up(t)| ≤

∫ h

0
|µ(τ)|(Ω) + h

∫
Ω
|∆pu0p|

+

∫ T

0
|µ(τ + h)− µ(τ)|(Ω) dτ.

Dividing by h and letting h→ 0, we obtain that ∂tup ∈ L∞(0, T ;w∗−Mb(Ω)) and satisfies
(32).

2. Thanks to (28), we have∫
Ω
|∇up|p ≤ ‖up‖W 1,q(Ω) ‖µ+ ∂tup‖W−1,q′ (Ω)

≤ Cq

(∫
Ω
|∇up|q

) 1
q

‖µ+ ∂tup‖L∞(0,T ;w∗−Mb(Ω)).

By using Holder inequality, we deduce that

(∫
Ω
|∇up|q

) 1
q

≤ |Ω|
p−q
pq

(
Cq

(∫
Ω
|∇up|q

) 1
q

‖µ+ ∂tup‖L∞(0,T ;w∗−Mb(Ω))

) 1
p

,

and (33) follows.

Proposition 3.5 Let µ ∈ BV (0, T ;w∗ −Mb(Ω)) and u0p ∈ W 1,p
0 (Ω). If ∆pu0p is bounded in

L1(Ω) and, as p → ∞, u0p → u0 in L2(Ω), then there exists (u,Φ) ∈ L∞(0, T ;W 1,q
0 (Ω)) ×

L∞(0, T ;w∗ −Mb(Ω)N ), for any N + 1 ≤ q <∞, such that

1. As p→∞,
up → u in Lq(0, T ;W 1,q

0 (Ω))− weak, and in Lq(Q)

for any q ≥ N + 1.

2. There exists pk →∞, such that

|∇upk |
pk−2∇upk → Φ in L∞(0, T ;w∗ −Mb(Ω)N )− weak∗

and Φ satisfies (12).
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Proof : Thanks to Lemma 3.4, for fixed q ≥ N+1, (up)p≥q and (∂tup)p≥q are bounded, respec-

tively, in L∞(0, T ;W 1,q(Ω) and L∞(0, T ;w∗ −Mb(Ω)). So, there exists u ∈ L∞(0, T ;W 1,q
0 (Ω))

and a subsequence that we denote again by p, such that

(36) up → u in Lq(0, T ;W 1,q
0 (Ω))− weak,

and

(37) ∂tup → ∂tu in Lq
′
(0, T ;w∗ −Mb(Ω))− weak∗.

Since Lq
′
(0, T ;w∗ −Mb(Ω)) ⊂ Lq′(0, T ;W−1,q′(Ω)), then up → u in C([0, T ], L2(Ω)) and u(0) =

u0. Moreover, since W 1,q
0 (Ω) ⊂ C0(Ω), with compact injection, then we can set that

(38) up → u in Lq(0, T ; C0(Ω))− weak ;

in the sense that, for any ν ∈ Lq
′
(0, T ;w∗ −Mb(Ω)),

∫ ∫
Q
up dν →

∫ ∫
Q
u dν. Thanks again

to Lemma 3.4 and Holder inequality, we see that |∇up|p−2∇up is bounded in L∞(0, T ;L1(Ω)).
Thus, there exists Φ ∈ L∞(0, T ;w∗ −Mb(Ω)N ), such that

(39) |∇up|p−2∇up → Φ in L∞(0, T ;w∗ −Mb(Ω)N )− weak∗.

Passing to the limit in ∂tup−∇· (|∇up|p−2∇up) = µ, we obtain ∂tu−∇·Φ = µ in D′(Q). Using
(28) and Holder inequality, we get∫

Ω
|∇up(t)|p−1 ≤ |Ω|

1
p

(∫
Ω
up(t) dµ(t)− 1

2

d

dt

∫
Ω
u2
p(t)

) p−1
p

L1 − a.e. t ∈ (0, T ),

so that

(40)

∫ T

0

∫
Ω
|∇up|p−1 ≤ |Ω|

1
p |T |

1
p

(∫ T

0

∫
Ω
up dµ−

1

2

∫
Ω
up(T )2 +

1

2

∫
Ω
u2

0

) p−1
p

.

Thanks to (38) and (39), we deduce (12), by letting p → ∞ in (40). By uniqueness of u, the
convergence of up holds to be true for the sequence (up)p≥N , and for any N+1 ≤ q <∞.

3.4 Proofs of the main theorems

First, let us prove the equivalence between (10), (11) and (12).

Lemma 3.6 Let µ ∈ L1(0, T ;w∗ −Mb(Ω)), u0 ∈ K, u ∈ C([0, T );L2(Ω)) ∩KT , u(0) = u0 and
Φ ∈ L1(0, T ;w∗ −Mb(Ω)) is such that ∂tu−∇ ·Φ = µ in D′(Q). Then (10), (11) and (12) are
equivalent, and implies (13).
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Proof : The equivalence between (10) and (11) is a simple consequence of Lemma 3.2. In
addition, it is not difficult to see that (11) implies (12). To complete the proof, let us show that
(12) implies (11). Since ν := ∇ · Φ ∈ L1(0, T ;w∗ −Mb(Ω)), then by using the approximation

uh(t, x) =
1

2h

∫ t+h

t−h
u(s, x)ds for any (t, x) ∈ Q,

one proves exactly in the same way as for Proposition 3.3, that

(41)

∫ T

0
σ

∫
Ω
u(t) dν(t) =

1

2

∫ T

0

∫
Ω
u2 σt(t) +

∫ ∫
Q
σ u dµ,

for any σ ∈ D(0, T ). In addition, since Φ ∈ L1(0, T ;w∗ −Mb(Ω)N ), then by using Proposition
3.3, we deduce that

(42)

∫ T

0
σ(t) |Φ(t)|(Ω) dt ≥ 1

2

∫ T

0

∫
Ω
u2 σt +

∫ ∫
Q
σ u dµ =

∫ T

0
σ(t)

(∫
Ω
u(t) dν(t)

)
dt.

This implies that ∫
Ω
u(t) dν(t) ≤ |Φ(t)|(Ω) L1 − a.e. t ∈ (0, T ).

Thanks to (12), we have ∫
[0,T ]
|Φ(t)|(Ω) dt ≤

∫ T

0

∫
Ω
u(t) dν(t) dt

we deduce that ∫
Ω
u(t) dν(t) = |Φ(t)|(Ω) L1 − a.e. t ∈ (0, T )

and (11) follows. At last, since

sup
η∈C0(Ω)N , ‖η‖∞≤1

∫ ∫
Q
σ η dΦ ≤

∫ T

0
σ(t) |Φ(t)|(Ω) dt,

for any σ ∈ D(0, T ) with σ ≥ 0, then (11) implies (13). And the proof is finished.

Proof of Theorem 2.3 : Thanks to Proposition 3.3 and Lemma 3.6, it is enough to prove
existence of (u,Φ) such that uKT , u(0) = u0, ∂tu ∈ L∞(0, T ;w∗ −Mb(Ω)), Φ ∈ L∞(0, T ;w∗ −
Mb(Ω)), ∂tu−∇ · Φ = µ in D′(Q) and Φ satisfies (12). To this aim, we consider the elliptic
problem 

z −∆pz = u0 in Ω

z ∈W 1,p
0 (Ω).

It is well know by now that this problem has a unique solution. Let us denote this solution by
u0p. Since, u0 ∈ K, then it is not difficult to see that, letting p→∞, ∆pu0p is bounded in L1(Ω)
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and u0p → u0 in C0(Ω). So, by considering up the solution of (P pµ), and letting p→∞, the result
follows by using Proposition 3.5.

Proof of Theorem 2.5 : By using again Proposition 3.3 and Lemma 3.6, it is enough

to prove existence of weak solution. Since Mb(Ω) ⊂ W−1,N+1
N (Ω) with continuous injection,

then L1(0, T ;w∗−Mb(Ω)) ⊂ L1(0, T ;w∗−W−1,N+1
N (Ω)) with continuous injection. So, for any

µ ∈ L1(0, T ;w∗−Mb(Ω)), there exists F ∈ L1(Q)N such that µ = ∇·F. Let us denote by Fn the
regularization by convolution of F and set µn = ∇·Fn. Thanks to Theorem 2.3, the regularized
problem (Pµn) has a weak solution (un,Φn) ∈ C([0, T );L2(Ω)) × L∞(0, T ;w∗ −Mb(Ω)N ). By
letting p→∞ in (30) and using Lemma 3.5, we see that, for any n ≥ q,

1

2

∫
Ω

(un(t)− uq(t))2 ≤
∫ t

0

∫
Ω

(µn − µq) (un − uq)

≤ −
∫ t

0

∫
Ω

(Fn − Fq) · ∇(un − uq)

≤ 2

∫ T

0

∫
Ω
|Fn − Fq|,

so that,

lim
n, q →∞

∫
Ω

(un(t)− uq(t))2 = 0 .

This implies that un is a Cauchy sequence in C([0, T );L2(Ω)), and there exists u ∈ C([0, T );L2(Ω)),
such that

(43) un → u in C([0, T );L2(Ω)).

Moreover, since un ∈ KT for any t ∈ [0, T ), then for any q ≥ 1, (un)n≥1 is bounded in
L∞(0, T ;W 1,q

0 (Ω)) and

(44) un → u in Lq(0, T ;W 1,q
0 (Ω))− weak.

On the other hand, thanks to (12), we have

|Φn|(Q) ≤ 1

2

∫
Ω
un(t)2 − 1

2

∫
Ω
u2

0 +

∫ ∫
Q
un dµn,

which implies that (Φn)n≥1 is bounded in Mb(Q)N . So, there exists Φ ∈ Mb(Q)N , and a
subsequence that we denote again by n, such that

Φn → Φ in Mb(Q)N − weak∗.

Passing to the limit in the equation, we deduce that ∂tu − ∇ · Φ = µ in D′(Q). To prove that
(13) is fulfilled, let us consider σ ∈ D(0, T ) and η ∈ C0(Ω) such that ‖η‖∞ ≤ 1. In addition,
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using (43) and (44), we get∫ ∫
Q
σ η dΦ = lim

n→∞

∫ ∫
Q
σ η dΦn

≤ lim
n→∞

{∫ ∫
Q
un σ dµn +

1

2

∫ ∫
Q
u2
n σt

}

≤ lim
n→∞

{
−
∫ ∫

Q
σ ∇un · Fn +

1

2

∫ ∫
Q
u2
n σt

}
≤ −

∫ ∫
Q
σ ∇u · F +

1

2

∫ ∫
Q
u2 σt

≤
∫ ∫

Q
u σ dµ+

1

2

∫ ∫
Q
u2 σt

which implies that u is a weak solution.

Proof of Theorem 2.2 : The uniqueness of variational solution follows by Proposition 3.1.
As to the existence, this is a consequence of Proposition 3.3 and Theorem 2.5. At last, since
variational solution are unique and are obtained as a limit as p → ∞ of the solution of (P pµ),
then the contraction properties (7) and (8) follows by passing to the limit in (31) and (30),
respectively.

Lemma 3.7 Under the assumptions of Theorem 2.6, as t→∞,

(45)

(
u(t),

d

dt
u(t)

)
→ (u∗, 0) in L2(Ω)× L2(Ω),

and u∗ is a variational solution (2).

Proof : Thanks to [31], we know that (2) has a variational solution v. That is v ∈ K and∫
Ω
≥ 0 for any ξ ∈ K.

Now, let us consider the functional Φ̃ : L2(Ω)→ [0,∞] defined by

Φ̃(z) := IIK(z) +

∫
Ω
z dµ−min

η∈K

∫
Ω
z dµ.

Then, it is clear that the variational solution u of (Pµ) is the unique solution of the evolution
problem 

d

dt
u(t) + ∂Φ̃(u(t)) 3 0 L1 − a.e. t ∈ (0,∞)

u(0) = 0.
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Since, K is compact in L2(Ω), the result of the lemma follows from Theorems 3.10 and 3.11 of
[14].

Proof of Theorem 2.6 : It remains to prove the convergence of the flux Φ(t). Recall that

(46) |Φ(t)|(Ω) ≤
∫

Ω
u(t) dµ− 1

2

d

dt

∫
Ω
u2(t) L1 − a.e. t ∈ (0, T ).

Using Lemma 3.7, we deduce that
(

Φ(t)
)
t>0

is bounded in Mb(Ω)N . So, there exists Φ∗ ∈

Mb(Ω)N and a subsequence that we denote again by t, such that

Φ(t)→ Φ∗ in Mb(Ω)N − weak∗.

Letting t→∞ in (46) and using Lemma 3.7 again, we deduce that

|Φ∗|(Ω) ≤
∫

Ω
u∗ dµ,

where u∗ is a variational solution (2). This ends up the proof of the theorem.

Acknowledgements. The author thanks Serge Dumont for agreeing to provide us with the
code that we use for numerical simulations of the examples of the last section.
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[11] G. Bouchitté , G. Buttazzo and P. Seppecher. Shape Optimization Solutions via Monge-Kantorovich,
C.R.Acad.Sci. Paris, t.324, Serie I,(1997), p. 1185-1191.

[12] G. Buttazzo and E. Stepanov. Transport density in Monge-Kantorovich problems with Dirichlet
conditions, Discrete Contin. Dyn. Syst. 12 (2005), no. 4, 607–628.

[13] Ph. Bénilan and M. G. ; Crandall, Completely accretive operators. Semigroup theory and evolution
equations, 41–75, Lecture Notes in Pure and Appl. Math., 135, Dekker, New York, 1991 Serie I,(1997),
p. 1185-1191.

[14] H. Brézis, Opérateurs maximaux monotones et semigroups de contractions dans les espaces de
Hilbert. (French). North-Holland Mathematics Studies, No. 5. Notas de Matemtica (50). North-
Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York,
1973.

[15] L.A. Caffarelli, R. J. McCann, M. Feldman, Constructing optimal maps in Monges transport problem
as a limit of strictly convex costs, J. Amer. Math. Soc. , 15, 2002.

[16] P. Cannarsa, P. Cardaliaguet, G. Crasta and C. Sinestrari, On a differential model for growing
sandpiles with non-regular sources, Comm. Partial Differential Equations, 34 (2009), no. 7-9, 656675.
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Gauthier-Villars, Paris 1969.
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