# On the Collapsing Sandpile Problem 

Serge Dumont, Noureddine Igbida*

March 2008


#### Abstract

In this note, we are interested in the numerical analysis of the collapse of an unstable sandpile. By using the collapsing model introduced by Evans, Feldman and Gariepy in [6], we give a description of the phenomena in terms of a composition of projections onto interlocked convex sets around the set of stable sandpiles.


## 1. Introduction and main results

We are interested in the collapse of an unstable sandpile; i.e. taking some sandpile with an unstable initial configuration, what is the final resting state of the sandpile after various avalanches. To describe the problem we need to use some function $u: \mathbb{R}^{D} \rightarrow \mathbb{R}$, the height function of the sandpile, where $D \geq 1$ (in practice $D=2$ ). The stability constraint of the sandpile reads

$$
\begin{equation*}
|\nabla u| \leq 1, \tag{1}
\end{equation*}
$$

and has the physical meaning that the sand cannot remains in equilibrium if the slope anywhere exceeds angle $\pi / 4$. Now, if $g$ represents the height of a starting instable profile (assume for instance $g$ is the profile of a wet sandpile) i.e.

$$
L:=\|\nabla g\|_{\infty}>1,
$$

then constraint (1) forces the height function rearranges itself to achieve the profile in a stable configuration. Our main interest lies into the description of mapping $\mathbb{Q}: g \rightarrow \mathbb{Q}(g)$, where $\mathbb{Q}(g)$ is the final stable profile of the sandpile associated with the initial unstable one $g$.

[^0]By using the Monge Kantorovich mass transfer theory, Evans, Feldman and Gariepy [6] introduced a simplistic model for the collapse of an unstable sandpile. It is given by the limit of the flow governed by the $p$-Laplacian, as $p \rightarrow \infty$ :

$$
\left\{\begin{array}{l}
-u_{t}=\Delta_{p} u \quad \text { in } Q:=(0, \infty) \times \Omega  \tag{2}\\
u(0)=g \quad \text { in } \Omega
\end{array}\right.
$$

Letting $p \rightarrow \infty$, one expects that the limit of solution $u_{p}$ satisfies evolution equation (multivalued)

$$
\begin{equation*}
u_{t} \in \partial \mathbb{\Pi}_{K}(u) \quad \text { in } Q \tag{3}
\end{equation*}
$$

where $\mathbb{I}_{K}$ is defined by

$$
\begin{gathered}
\mathbb{I}_{K}(u)=\left\{\begin{array}{lc}
0 & \text { if } u \in K \\
+\infty & \text { otherwise }
\end{array}\right. \\
K=\left\{u \in W^{1, \infty}(\Omega) ;|\nabla u| \leq 1 \text { a.e. } \Omega\right\} .
\end{gathered}
$$

and the subdifferential operator $\partial \mathbb{I}_{K}$ is defined in $L^{2}(\Omega)$, by

$$
h \in \partial \mathbb{I}_{K}(u) \Leftrightarrow h \in L^{2}(\Omega), u \in K \text { and } \int_{\Omega} h(z-u) \leq 0 \quad \forall z \in L^{2}(\Omega)
$$

It is clear that compatible initial data for (3) leaves in $K$, so that the limit of the solution of (2), when $g \notin K$, is singular: letting $p \rightarrow \infty$, turns out to grew up a boundary layer connecting $g$ to the limit. In [6] (see also [3]), it is proved that that the limitting function is $v(1)$ (independent of $t$ ), where $v$ is the unique solution of

$$
\left\{\begin{array}{l}
v(t) / t-v_{t}(t) \in \partial \mathbb{I}_{\infty}(v(t)) \quad \text { a.e. } t \in(\delta, 1]  \tag{4}\\
v(\delta)=\delta g
\end{array}\right.
$$

and $\delta=1 /\|\nabla g\|_{\infty}$, in the sense that $v \in W^{1,2}\left(\delta, 1 ; L^{2}(\Omega)\right), v(\delta)=\delta g$ and, for any $t \in(\delta, 1], v(t) / t-v_{t}(t) \in \partial \mathbb{I}_{\infty}(v(t))$.

In terms of Monge Kantorovich mass transfer theory the equation (4) means that $v$ is a potential corresponding to optimal moving the mass $\mu^{+}=v(., t) / t d x$ to $\mu^{-}=$ $v_{t}(., t) d x$.

As a consequence of [6] (see also [3]), we have the following characterization of mapping $\mathbb{Q}$ in terms of evolution equation (4):

Theorem 1 ([6] and [3]) For any $g \in L^{2}(\Omega), \mathscr{Q}(g)=v(1)$, where $v$ is the unique solution of (4).

In [6], it is also proved that operator $\mathbb{Q}$ is not the projection onto $K$, the set of stable sandpiles. In order to give the numerical analysis and simulation of the collapsing of a sandpile, we give, in this paper, a more precise description of $\mathbb{Q}$, in terms of a composition of projections onto interlocked convex sets of $L^{2}(\Omega)$, around convex $K$.

To set our main results, let us give some notations. For a given convex $C \subseteq L^{2}(\Omega)$, we denote by $\mathbb{P}_{C}$, the projection with respect to the $L^{2}$ norm on $C$, defined by:

$$
z=\mathbb{P}_{C}(u) \Leftrightarrow z \in C, \int_{\Omega}(u-z)(v-z) \leq 0 \quad \text { for any } v \in C
$$

For a given $[a, b]$ compact interval of $\mathbb{R}$, we say that $\left(d_{i}\right)_{i=0}^{n}$ is an $\varepsilon$-discretization of $(a, b)$, provided $\varepsilon>0, d_{0}=a<d_{1}<d_{2}<\ldots .<d_{n}=b$ and $d_{i}-d_{i-1} \leq \varepsilon$, for any $i=1, \ldots n$. Notice that, letting $\varepsilon \rightarrow 0$ in an $\varepsilon$-discretization of a fixed interval $(a, b)$, is equivalent to let $n \rightarrow \infty$. For any $d>0$, we denote by $K(d)$, the convex set given by

$$
K(d)=\left\{z \in W^{1, \infty}(\Omega) ;|\nabla z| \leq d\right\}
$$

Theorem 2 Let $g \in W^{1, \infty}(\Omega), a:=\|\nabla g\|_{\infty}$ and $\left(d_{i}\right)_{i=0}^{n}$ an $\varepsilon$-discretization of $(1, a)$. Then

$$
\begin{equation*}
\mathscr{Q}(g)=\lim _{n \rightarrow \infty} \mathbb{P}_{K(1)} \mathbb{P}_{K\left(d_{1}\right)} \ldots \mathbb{P}_{K\left(d_{n-2}\right)} \mathbb{P}_{K\left(d_{n-1}\right)} g \tag{5}
\end{equation*}
$$

Proof : For $i=1, \ldots n$, let us denote by

$$
u_{i}=\mathbb{P}_{K\left(d_{n-i}\right)} u_{i-1} \quad \text { and } u_{0}=g
$$

i.e.

$$
u_{i}+\partial \mathbb{I}_{K\left(d_{n-i}\right)}\left(u_{i}\right) \ni u_{i-1} \quad \text { for } i=1, \ldots . n
$$

and

$$
\mathbb{P}_{K(1)} \mathbb{P}_{K\left(d_{1}\right)} \ldots \mathbb{P}_{K\left(d_{n-2}\right)} \mathbb{P}_{K\left(d_{n-1}\right)} g=u_{n}
$$

Setting, for $i=1, \ldots . n$,

$$
z_{i}=u_{i} / d_{n-i}
$$

it is not difficult to see that

$$
\begin{equation*}
z_{i}+\partial \mathbb{\Pi}_{K(1)}\left(z_{i}\right) \ni \frac{d_{n-i+1}}{d_{n-i}} z_{i-1} \tag{6}
\end{equation*}
$$

Now, setting

$$
t_{i}=1 / d_{n-i} \quad \text { for } i=0, \ldots n
$$

it is clear that $\left(t_{i}\right)_{i=0}^{n}$ is an $\epsilon$-discretization of $(\delta, 1)$. So that, the $\epsilon$-approximate solution of

$$
\left\{\begin{array}{l}
v_{t}(t)+\partial \mathbb{\Pi}_{\infty}(v(t)) \ni f(t) \quad \text { a.e. } t \in(\delta, 1] \\
v(\delta)=\delta g
\end{array}\right.
$$

with $f(t)=v(t) / t$, associated with $\left(t_{i}\right)_{i=0}^{n}$ converges to $v$ in $\mathcal{C}\left([\delta, 1] ; L^{2}(\Omega)\right)$. More precisely, taking the Euler implicit discretization in time

$$
\begin{equation*}
v_{i}+\partial \mathbb{\Pi}_{K(1)}\left(v_{i}\right) \ni v_{i-1}+\frac{t_{i}-t_{i-1}}{t_{i-1}} v\left(t_{i-1}\right), \quad i=1,2, \ldots n \tag{7}
\end{equation*}
$$

where, we used the discretization of $f$ given by $f_{i}=\frac{v\left(t_{i-1}\right)}{t_{i-1}}$, for $i=1, \ldots n$, and defining $\epsilon$-approximate solution $v_{\varepsilon}$ by $v_{\varepsilon}(t)=v_{i}$ for $t \in\left[t_{i}, t_{i+1}\right]$ for $i=0,1, \ldots n-1$, we have

$$
\begin{equation*}
v_{\varepsilon} \rightarrow v \quad \text { in } \quad \mathcal{C}\left([\delta, 1] ; L^{2}(\Omega)\right), \text { as } \varepsilon \rightarrow 0 \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{n} \rightarrow v(1) \quad \text { in } L^{2}(\Omega), \text { as } n \rightarrow \infty \tag{9}
\end{equation*}
$$

Moreover, it is not difficult to see that (7) is equivalent to

$$
v_{i}+\partial \mathbb{I}_{K(1)}\left(v_{i}\right) \ni \frac{d_{n-i+1}}{d_{n-i}} v_{i-1}+\frac{t_{i}-t_{i-1}}{t_{i-1}}\left(v\left(t_{i-1}\right)-v_{i-1}\right)
$$

so that, by using (6) and the $L^{2}$-contraction property of $\left(I+\partial \mathbb{I}_{K(1)}\right)^{-1}$, for $i=$ $1, \ldots n$, we get

$$
\begin{align*}
\left\|v_{i}-z_{i}\right\|_{2} & \leq \frac{d_{n-i+1}}{d_{n-i}}\left\|v_{i-1}-z_{i-1}\right\|_{2}+\frac{t_{i}-t_{i-1}}{t_{i-1}}\left\|v\left(t_{i-1}\right)-v_{i-1}\right\|_{2} \\
& \leq \frac{t_{i}}{t_{i-1}}\left\|v_{i-1}-z_{i-1}\right\|_{2}+\frac{t_{i}-t_{i-1}}{t_{i-1}}\left\|v\left(t_{i-1}\right)-v_{i-1}\right\|_{2} \tag{10}
\end{align*}
$$

Since, $v_{0}=z_{0}=g$, then iterating (10) for $i=n, . .1$, we obtain

$$
\begin{aligned}
\left\|v_{n}-z_{n}\right\|_{2} & \leq \sum_{i=2}^{n} \frac{t_{n}}{t_{n-i+1}} \frac{t_{n-i+1}-t_{n-i}}{t_{n-i}}\left\|v\left(t_{n-i}\right)-v_{n-i}\right\|_{2}+\frac{t_{n}-t_{n-1}}{t_{n-1}}\left\|v\left(t_{n-1}\right)-v_{n-1}\right\|_{2} \\
& \leq \frac{1}{\delta^{2}} \sum_{i=2}^{n-1}\left(t_{n-i+1}-t_{n-i}\right)\left\|v\left(t_{n-i}\right)-v_{n-i}\right\|_{2}+\frac{1}{\delta}\left(t_{n}-t_{n-1}\right)\left\|v\left(t_{n-1}\right)-v_{n-1}\right\|_{2} \\
& \leq \frac{1}{\delta^{2}} \sum_{i=0}^{n-1}\left(t_{n-i+1}-t_{n-i}\right)\left\|v\left(t_{n-i}\right)-v_{n-i}\right\|_{2} \\
& \leq \frac{1}{\delta^{2}} \sum_{i=1}^{n-1}\left(t_{i+1}-t_{i}\right)\left\|v\left(t_{i}\right)-v_{i}\right\|_{2}
\end{aligned}
$$

where we used the fact that, for any $k=0, \ldots n, \delta \leq t_{k} \leq 1$ and $1 / t_{k} \leq 1 / \delta \leq 1 / \delta^{2}$. Considering $\bar{v}_{\varepsilon}$ given by $\bar{v}_{\varepsilon}(t)=v\left(t_{i}\right)$ for $t \in\left[t_{i}, t_{+1} i[\right.$ and $i=0,2, \ldots n-1$, we obtain

$$
\begin{aligned}
\left\|v_{n}-z_{n}\right\|_{2} & \leq \frac{1}{\delta^{2}} \sum_{i=0}^{n-1} \int_{t_{i}}^{t_{i+1}}\left\|\bar{v}_{\varepsilon}(t)-v_{\varepsilon}(t)\right\|_{2} d t \\
& \leq \frac{1}{\delta^{2}} \int_{\delta}^{1}\left\|\bar{v}_{\varepsilon}(t)-v_{\varepsilon}(t)\right\|_{2} d t
\end{aligned}
$$

Since, as $\varepsilon \rightarrow 0, \bar{v}_{\varepsilon} \rightarrow v$ and $v_{\varepsilon} \rightarrow v$ in $\mathcal{C}\left([\delta, 1] ; L^{2}(\Omega)\right)$, then

$$
\lim _{n \rightarrow \infty}\left\|v_{n}-z_{n}\right\|_{2}=0
$$

At last, since $z_{n}=u_{n} / d_{0}=u_{n}$, then by using (9), we deduce that, as $n \rightarrow \infty$,

$$
u_{n} \rightarrow v(1) \quad \text { in } \quad L^{2}(\Omega)
$$

and (5) follows.

## 2. Numerical approximations

## 2..1 The numerical problem

Let $g \in W^{1, \infty}(\Omega)$ be given. Our aim in this section is to give a numerical approximation of $\mathbb{Q}(g)$. By using Theorem 2, it is clear that it is enough to find an numerical method to compute the projection of a given function, that we call $g$ again, on a convex $K_{(d)}$ with arbitrary $d \geq 1$.

In [5], we gave a numerical method based on duality arguments for numerical approximation of the projection on the convex $K_{(1)}$. Even if the context here is different, we are going to use the same method for our situation. Remember that

$$
\begin{equation*}
u=\mathbb{P}_{K(d)}(g) \tag{11}
\end{equation*}
$$

is equivalent to

$$
J(u)=\inf \left\{J(v), v \in W^{1, \infty}(\Omega)\right\}
$$

where $J(v)=\frac{1}{2}\|v-g\|_{L^{2}}^{2}+\mathbb{I}_{K(d)}(v)$. In, [5], we have proved that:

$$
\begin{equation*}
\min _{v \in W^{1, \infty}(\Omega)} J(v)=\sup _{q \in H_{d i v}(\Omega)}-G(q) \tag{12}
\end{equation*}
$$

where

$$
G(q)=\frac{1}{2} \int_{\Omega}|d i v q|^{2}+\int_{\Omega} g d i v q+\int_{\Omega}|q|
$$

and

$$
H_{d i v}(\Omega)=\left\{q \in\left(L^{2}(\Omega)\right)^{2}, \operatorname{div}(q) \in L^{2}(\Omega)\right\}
$$

Remember also, that in general $\sup _{(\Omega)}-G(q)$ is not reached in $H_{d i v}(\Omega)$. Indeed, $q \in H_{\text {div }}(\Omega)$
there exists $\sigma$ a $\mathbb{R}^{N}$-vector valued Radon measure such that $\operatorname{div}(\sigma) \in L^{2}(\Omega), u=$ $\mathbb{P}_{K(d)} g=g-\operatorname{div} \sigma$ in $\mathcal{D}^{\prime}(\Omega)$ and $\sigma$ is related to the tangential derivative of $u$ with respect to $|\sigma|$, the total variation measure associated to $\sigma$ (cf. [4]). For the exact description of $\sigma$ one can see the paper [11] for equivalent formulations in divergence form of equation $v \in \partial \Pi_{K(d)} f$.

So, an numerical approximation of $\mathbb{P}_{K(d)} g$ will follow by approximating sup $-G(q)$ and computing $g-\operatorname{div}(q)$. Coming back to the numerical approxi$q \in H_{\text {div }}(\Omega)$
mation of $\mathbb{Q}(g)$, we take $\left(d_{i}\right)_{i=0}^{n}$ an $\varepsilon$-discretization of interval $\left(1,\|g\|_{\infty}\right)$, with a given small $\varepsilon>0$; i.e. a large $n$, and we use the algorithm of approximation of $\mathbb{P}_{K(d)} g$, to approximate composition

$$
\mathbb{P}_{K(1)} \mathbb{P}_{K\left(d_{1}\right)} \ldots \mathbb{P}_{K\left(d_{n-2}\right)} \mathbb{P}_{K\left(d_{n-1}\right)} g
$$

## 2..2 Space discretization

The solution of dual problem (12) is computed using Raviart Thomas finite element of the lowest order [12]. Denoting by $h$ the average length of the elements, $V_{h}$ the space of finite elements and $\sigma_{h}$ the solution of problem

$$
\begin{equation*}
G\left(\sigma_{h}\right)=\inf _{q_{h} \in V_{h}} G\left(q_{h}\right), \tag{13}
\end{equation*}
$$

the convergence of $\sigma_{h}$ to $\sigma$ is guaranteed remarking that we have

$$
\left\|\sigma_{h}-\sigma\right\|_{L^{2}} \leq\left\|r_{h}\left(\sigma_{p}\right)-\sigma\right\|_{L^{2}}
$$

where $r_{h}$ is the projection onto $V_{h}$.
Finally, the minimization of $G$ on $V_{h}$ is implemented using a relaxation procedure.

## 3. Numerical results

In this section we present some numerical results on collapsing sandpiles.

## 3..1 The one dimensional case

First, we study example given in [6], where the stable sandpile is not the projection of the initial data. More precisely, the unstable initial data is composed in the following manner: two sandpiles with sides of slope equal to 2 , with a width equal to 0.2 , and centered around $x_{0}= \pm 0.22$; and one sandpile with sides of slope equal to 250 , with a width equal to 0.008 and centered around $x=0$. The spacial discretization of the problem is carried out using $N=2500$ points.

The maximal slope of this sandpile is $|\nabla g|_{\infty}=\bar{\theta}=250$.
Figure 1 presents solutions obtained using different uniform discretizations of interval $[1, \bar{\theta}]$. In others words, decreasing maximal slope $\theta_{i}$ for sequence of projections is chosen such that $\theta_{i}=1+i \frac{\bar{\theta}-1}{M}$ for $i=1, \ldots, M$. In the numerical experiments, the number $M$ of projections is ranging from 1 to 5000 .

One can observe that if we do a direct projection on $K(1)(M=1)$, then the numerical final stable sandpile is composed of three adjacent sandpiles. When number $M$ of subdivisions increases, the central small triangle disappears.

These numerical results corroborate the theoretical results given in [6], where it is shown that in this case, the stable sandpile consists of two adjacent triangles.

## 3..2 The two dimensional case

This paragraph is devoted to the two dimensional computations.
First, figure 3 shows the convergence rate of the approximation of one projection, when the average step of discretization tends to zero. In this computation, domain $\Omega$ is unit square $(-1,1)^{2}$, discretized with squares $[-1+i h,-1(i+1) h] \times[-1+j h,-1+$ $(j+1) h]$, with $h=\frac{2}{N}$ and $0 \leq i, j \leq N$ for a given integer $N$.

Initial data $g$ is a cone centered on the origin with radius of the basis equal to $R=\frac{1}{4}$, height $H=1$ (see figure 2, up), and exact solution $u$ is a cone centered on the


Figure 1: The counterexample where the final stable sandpile is not the direct projection of the initial unstable sandpile (details on the right)
origin with radius of the basis $\tilde{R}$ and height $\tilde{H}$ equal to $\tilde{R}=\tilde{H}=2^{-\frac{4}{3}} \simeq 0.397$ (see figure 2, down).

Results plotted in figure 3 shows the $L^{2}$-norm of the error $\left\|u_{N}-u\right\|_{L^{2}(\Omega)}$ where $u_{N}$ is the computed solution, versus number $N=\frac{2}{h}$ of squares used for the discretization in each direction. This figure shows that the convergence rate of the error verifies $\left\|u_{N}-u\right\|_{L^{2}(\Omega)}=O\left(N^{-\alpha}\right)$ with $\alpha \simeq 1.92$, when $N$ is ranging from 50 to 150 .

We present here a result with a more complex initial unstable sandpile, plotted in figure 4. The maximal slope of this sandpile is equal to $|\nabla g|_{\infty}=4.1$, and the maximal slope of the final stable sandpile is equal to $|\nabla u|_{\infty}=0.4$.

Remarks In the theoretical part of this article, for seek of simplicity, angle $\alpha$ of the maximal slope of stability has been taken equal to $\alpha=\frac{\pi}{4}$ (see formula (1) for example), but the results presented here are true with any angle $\alpha \in\left(0, \frac{\pi}{2}\right)$. Here, we have chosen $\alpha \simeq \frac{\pi}{8}$.

Two different boundary conditions are considered to compute the projection:

- First, we take the Dirichlet boundary condition: $u(x)=0$ on $\partial \Omega$. This simulates the experiment where the sandpile collapses on a table. The result is plotted in figure 5.
- Then, we consider the Neumann boundary condition: $m \partial_{n} u=0$ on $\partial \Omega$. This simulates the case where domain $\Omega$ is the bottom of a box. Here, the mass has to be conserved. The final stable sandpile is plotted in figure 6 . The initial and the final sandpile has a volume equal to 0.62178 , which shows that the volume is numerically conserved.

These results are obtained using a spacial discretization with $N=100$ and a number of emboities projections equal to $M=40$. In this case, the result does not depend on $M$.


Figure 2: Initial unstable (up) and final stable (down) sandpile


Figure 3: Accuracy of the method ( $L^{2}$-norm of the difference between the exact and the computed solution)


Figure 4: Initial unstable sandpile


Figure 5: Collapsing sandpile with Dirichlet boundary condition


Figure 6: Collapsing sandpile with Neumann boundary condition

## References

[1] L. De Pascale, L. C. Evans and A. Pratelli, Integral estimates for transport densities, Bull. London Math. Soc., 36, 3, 383-395, 2004.
[2] J. W. Barrett and L. Prigozhin, Dual formulation in Critical State Problems, Interfaces and Free Boundaries, 8, 349-370, 2006.
[3] Ph. Bénilan, L. C. Evans and R. F. Gariepy, On some singular limits of homogeneous semigroups , J. Evol. Equ., 3 (2003), no. 2, 203-214.
[4] G. Bouchitté, G. Buttazzo and P. Seppecher, Energies with respect to a Measure and Applications to Low Dimensional Structures, Calc. Var. Partial Differential Equations 5 (1997), 37-54.
[5] S. Dumont and N. Igbida, Back on a Dual Formulation for the Growing Sandpile Problem, Preprint, 2007.
[6] L. C. Evans, M. Feldman and R. F. Gariepy, Fast/Slow diffusion and collapsing sandpiles, J. Differential Equations, 137:166-209, 1997.
[7] L. C. Evans and W. Gangbo, Differential equations methods for the MongeKantorovich mass transfer problem, Mem. Am. Math. Soc., 137, no. 653, 1999.
[8] I. Ekeland and R. Témam, Convex analysis and variational problems, Classics in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1999.
[9] L. C. Evans, J.-L. Lions et R. Trémollières, Partial differential equations and Monge-Kantorovich mass transfer, Current Developments in Mathematics, Int. Press, Boston, Ma, (1997) 65-126.
[10] R. Glowinski, J.-L. Lions and R. Trémollières, Analyse numérique des inéquations variationelles, Méthodes Mathématiques de l'Informatique, Dunod, Paris, 1976.
[11] N. Igbida, On Monge-Kantorovich Equation, Preprint, 2008.
[12] J.E. Roberts and J.-M. Thomas, Mixed and hybrid methods, P.G. Ciarlet, J.L. Lions (Eds.), Handbook of Numerical Analysis, vol. II, Finite Element Methods (Part 1), North-Holland, Amsterdam, 1991.


[^0]:    *LAMFA, UPJV CNRS UMR 6140, Université de Picardie Jules Verne, 33 rue Saint Leu, 80038 Amiens, France. Email : [serge.dumont, noureddine.igbida]@u-picardie.fr

