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Abstract
Our aim in this note is to give a simplified proof of the convergence of Evans-Rezakhanlou

Stochastic Model to the evolution surfaces model of sandpile.

1 Introduction

The stochastic model for sandpile was introduced by Evans and Rezakhanlou in [6] as a variant
of physical models for sandpile. It corresponds to a Markov process

(
X(t)

)
t≥0

defined by an

infinitesimal generator describing the evolution of stack of unit cubes resting on the plane when
new cubes are being added to the pile, by being placed either upon a heretofore unoccupied
square in the plane or else upon the top of a current column.
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At each time t > 0, the configuration X(t) needs to be stable which means that the heights of
any two adjacent columns of cubes can differ by at most one. So adding new cubes on existing
pile, we ordain two possibilities to each cube :
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• if the configuration is stable, then the cube remains in place

• otherwise, the cube has several downhill ”staircases” along which it can move, and the
cube will randomly select among the allowable downhill paths.

If we consider the case where the cubes can be also taken away, then a third possibility may be
ordain

• the cube has several ”upward staircases” along which it can move, and the cube will
randomly select among the allowable upward paths.

Assuming that we continuously add cubes at random locations on a starting empty stack, Evans
and Rezakhanlou studies the limit when one rascals in both space and time, so as to consider
growing piles of more and more smaller and smaller cubes ? They prove that the macroscopic
limit is rather simple and very connected Prigozhin model for sandpile (cf. [8] and [2]).

Since the work of Prigohzin (cf. [8] see also [2]), this has been well known (see also [3], [6]
and the references therein) that the evolution of the surface of the sandpile when the angle of
stability is equal to π/4 can be described by the following evolution problem

∂tu+ ∂IIK(u) 3 f

û(0) = 0,
(1)

where K =
{
z ∈ W 1,∞(IR2) ∩ L2(IR2) ; |∇z| ≤ 1

}
, ∂IIK denotes the sub-differential operator

of the indicator function (cf. [4]) of K and f describes a source term . Solution u is the height
of the surface that grows up (resp. grows down) under sand addition (resp. sand removal) by a
source called f . This is a critical slope model obtained by using the continuity equation and the
gradient constraint |∇u| ≤ 1 a.e. in IR2 (see [8] and [2] for more details). Existence, uniqueness
and numerical approximation the solution are well known by now for this model (cf. [8], [2], [5]
and [7]). More precisely, for any f ∈ BVloc(0, T ;L2(IR2)), we know that that (1) has a unique
solution u in the sense that u ∈ W 1,∞

loc (0,∞;L2(IR2)), u(0) = 0 and, for any t ≥ 0, u(., t) ∈ K
and ∫

IR2

(
f(t, x)− ∂tu(t, x)

) (
u(t, x)− ξ(x)

)
≥ 0 for any ξ ∈ K.(2)

To give the connection between the two models, let N be a large integer. Assume the cubes
are of side length O(N−1) and cubes newly and randomly added at rate O(N−1) are continuously
falling downhill. For the description of the evolving of cubes, the authors of [6] introduce a
probabilistic lattice model. They thus consider a Markov process for the height X(t, i), defined

for times t ≥ 0 and sites i ∈ ZZ2. Resacaled source terms f+
( t
N
,
i

N
) and f−

( t
N
,
i

N
) control

the rate new cubes are added to the pile or removed from it. Then, they proved that

IE
[ ∫

IR2

∣∣∣ 1
N
X
(
N t, [Nx]

)
− u(t, x)

∣∣∣2]→ 0 as N →∞,(3)
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where u is the unique solution of (1). As shown in [6], the key estimates for the proof (3) are
some kind of microscopic version of (2) (see (10)). To prove these estimates the authors of [6]
prove some elementary intermediate estimates evolving various types of sets. Our aim in this
note, is to improve these key estimates directly by using some simple arguments.

In the next section, we recall the stochastic model of Evans and Rezakhanlou. In Section 3,
we prove the key estimates (10). Then, as in [6], we introduce the discrete evolution problem
associated with (1). Then, we give the proof of (3) by using some results of [1].

2 The stochastic model for sandpile problem (cf. [6])

To describe the stochastic process for sandpile, we consider the lattice ZZn. We equipped ZZn

with an Euclidean norm and we say that i, j ∈ ZZn are adjacent, written i ∼ j, provided

|i− j| ≤ 1.

Without loose of generality, we restrict ourself to the cases n = 2, and we write i = (i1, i2) to
denote a typical site in ZZ2. Then, we introduce the Hilbert space

H := l2(ZZ2) =
{
X : ZZ2 → IR ; ‖X‖ :=

∑
i

X(i)2 <∞
}
.

A (stable) configuration is a mapping X : ZZ2 → ZZ such that
|X(i)−X(j)| ≤ 1 if i ∼ j

and X has bounded support.

The state space is
S :=

{
X : ZZ2 → ZZ ; X is a configuration

}
,

and the set of stable configuration is

K̂ :=
{
X ∈ H ; |X(i)−X(j)| ≤ 1 if i ∼ j

}
.

Let f̂ : (0,∞) × ZZ2 → ZZ be a function, such that f+ (resp. f−) is controlling the rate
new cubes are added (resp. removed) to the pile. The source of cubes f̂ generates a stochastic
process (X(t), t ≥ 0) in the state space S. It is clear that the probability that X(t) be situated
(at time t) in a given set Γ of E, under the condition that the movement of the system up to
time s (s < t) is completely known, depends only on the state of the system at time s. In other
words (X(t), t ≥ 0) is a Markov process. To study this process, w need to know it’s infinitesimal
generator A, or more precisely AF (X(t)) for any F ∈ B(S), the set of bounded functions. To
this aim, let us consider p+(i, j, ξ) the probability that a cube placed on a given configuration
ξ ∈ S at the position i will end up at j after it has fallen downward over the stack with eight
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ξ. Likewise, let p−(i, j, ξ) be the probability that the removal of a cube from the pile at i will
result in a removal at site j, after the cubes along a staircase each shifts downwards to fill in the
gap created at site i. So, for any i, j ∈ ZZ2 we have

0 ≤ p±(i, j, ξ) ≤ 1 and
∑

i∈ZZ2

p±(i, j, ξ) = 1.

Thanks to [6], we consider c± given by

c±(j,X, t) =
∑

i∈ZZ2

p±(i, j,X(t)) f̂±(t, i), for any (t, j) ∈ ZZ2 × [0,∞).(4)

The parameter c+(j,X, τ) (resp. c−(j,X, τ)) is highly nonlocal factor and records the rate, at
time τ, new cubes come to rest at the site j after falling downhill (resp. the rate at which cubes
are removed from the site j, at time τ). In particular, we have∑

j∈ZZ2

c(j,X, t) =
∑

i∈ZZ2

f(t, i).

Thanks again to [6], the infinitesimal generator A of the Markov process (X(t), t ≥ 0), is given
by

A F (X(t)) =
∑

j∈ZZN

c+(j,X, t)(F (X(t) + δj)− F (X(t)))

−
∑

j∈ZZN

c−(j,X, t)(F (X(t)− δj)− F (X(t))) for any t ≥ 0,

(5)
where, for any j ∈ ZZ2, δj : ZZ2 → IN is given by

δj(i) =


1 if i = j

0 otherwise.

In particular, we have

AF (X(t)) = (LtF )(X(t)) for any (t, F ) ∈ (0,∞)×B(S),(6)

where Lt : F ∈ B(S)→ LtF ∈ L(S, IR), for any t ≥ 0, is the time dependent operator defined
by

(Lt F )(ξ) :=
∑

j∈ZZN

c+(j, ξ, t)(F (ξ + δj)− F (ξ))−
∑

j∈ZZN

c−(j, ξ, t)(F (ξ − δj)− F (ξ)).(7)
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3 Main results

Thanks to [6], we know that the connection between the stochastic model and (1) is given
through the following nonlinear dynamic in l2(ZZ2) :

∂tû+ IIK̂(û) 3 f̂ for t ≥ 0

û(0) = 0,
(8)

where ∂IIK̂ denotes the sub-differential of IIK̂ in l2(ZZ2). Since K̂ is closed and convex with
S ⊆ K̂, then (cf. [4]) for a given f̂ ∈ BV (0, T ; l2(ZZ2)), the evolution (8) has a unique solution
û ∈W 1,∞

loc (0,∞;H) such that û(0) = 0 and, for any t ≥ 0, û(., t) ∈ K̂ and∑
i

(
f̂(t, i)− ∂tû(t, i)

) (
û(t, i)− ξ̂(i)

)
≥ 0 for any ξ̂ ∈ K̂.

We have

Theorem 1 Assume that f̂ ∈ BV (0, T ; l2(ZZ2). Let û be the solution of (8) and (X(t), t ≥ 0)
be the stochastic process generated by f̂ . Then, we have

IE

 ∑
i∈ZZ2

(X(t, i)− û(t, i))2
 ≤ ∫ t

0

∑
j∈ZZ2

f̂(j, s)
)
ds, for any t ≥ 0.(9)

Thanks to [6], recall that the proof of Theorem 1 is based on the following estimates.

Lemma 1 Under the assumptions of Theorem 1, for any w ∈ S, we have

±
∑

j∈ZZ2

c±(j,X, t) (X(t, j)− w(j)) ≤ ±
∑

i∈ZZ2

f̂(t, i) (X(t, i)− w(i)) ∀w ∈ S.(10)

The estimates (10) are some kind of microscopic version of (2). To prove (10) the authors
of [6] prove some elementary intermediate estimates evolving various types of sets. In these
notes, we use essentially the following remark and give a direct and short proof of this result.
Then, the proof of Theorem 1 follows more or less the same step of [6]. Indeed, Lemma 1 gives
the connection between X(t) and (8). Then, we transform (8) into an evolution problem in
L2(IR2) governed by a sub-differential operator of the indicator function of the set of rescaled
configurations (see (14)). This transformation allows us to give the connection between (1), (15)
and the stochastic model.
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Remarks 1. For a given ξ ∈ S, if p+(i, j, ξ) > 0, then there exists at least one staircase
i0 = i ∼ i1 ∼ ... ∼ im = j, such that ξ(ip) = ξ(ip+1) + 1 for any p = 0, 1, ...m − 1. Let us
denote this staircase by C+(i, j) ; i.e.

C+(i, j) = [i0, i1, ..., im−1, j],

and, for any k ∈ C+(i, j), we denote by k̃, the adjacent side to k such that u(k) = u(k̃)+1.
It is clear that C(i, j) may not be unique, so (it is not essential) to simplify the presentation,
let us consider the application :

C+ : ZZ2 × ZZ2 → C+(i, j)a staircase between i and j.

2. For a given ξ ∈ S, if p−(i, j, ξ) > 0, then there exists at least one upward staircase i0 =
i ∼ i1 ∼ ... ∼ im = j, such that ξ(ip) = ξ(ip+1) + 1 for any p = 0, 1, ...m− 1. Let us denote
this staircase by C−(i, j) ; i.e.

C−(i, j) = [i0, i1, ..., im−1, j],

and, for any k ∈ C(i, j), we denote by k̃, the adjacent side to k such that u(k) = u(k̃)−1. It
is clear that C(i, j) may not be unique, so (it is not essential) to simplify the presentation,
let us consider the application :

C− : ZZ2 × ZZ2 → C−(i, j) a staircase between i and j.

Proof of Lemma 1: Thanks to (4), we have∑
j∈ZZ2

c+(j,X, t) (X(t, j)− w(j)) =
∑

j,i∈ZZ2

p+(i, j,X(t)) f̂+(t, i) (X(t, j)− w(j))

=
∑

j,i∈ZZ2

p+(i, j,X(t)) f̂+(t, i) (X(t, i)− w(i))

+
∑

j,i∈ZZ2

p+(i, j,X(t)) f̂+(t, i)
(
(w(i)− w(j))− (X(t, i)−X(t, j))

)

= I1 + I2

Since
∑

j∈ZZ2

p+(i, j,X(t)) = 1, for any (t, i) ∈ ZZ2 × (0,∞), then it is clear that

I1 =
∑

i∈ZZ2

f̂+(t, i) (X(t, i)− w(i)).
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Let us prove that I2 ≤ 0. Thanks to Remark , we have

I2 =
∑

j,i∈ZZ2

p+(i, j,X(t)) f̂+(t, i)
∑

k∈C+(i,j)

(
(w(k)− w(k̃))− (X(t, k)−X(k̃, t))

)

≤
∑

j,i∈ZZ2

p+(i, j,X(t)) f̂+(t, i)
∑

k∈C+(i,j)

(
(w(k)− w(k̃))− 1

)

≤ 0,

where we used the fact that |w(k)− w(k̃)| ≤ 1 (since w ∈ K and k ∼ k̃). The proof of∑
j∈ZZ2

c−(j,X, t) (X(t, j)− w(j)) ≥
∑

i∈ZZ2

f̂−(t, i) (X(t, i)− w(i)),

follows in the same way, we let the details to the reader.

To simplify the presentation of the proof of Theorem 1, we divide the proof into two steps that
we present in the following Lemmas.

Lemma 2 Under the assumptions of Theorem 1, we have

1. For any w ∈ S and t ≥ 0, we have

1
2
Lt

( ∑
i∈ZZ2

(
X(t, i)− w(i)

)2)
≤
∑

j∈ZZ2

f̂(t, j) (X(t, j)− w(j)) +
1
2

∑
j∈ZZ2

f(t, j).

2. For any w ∈W 1,∞(0, T ;H) such that w(t) ∈ S, for any t ∈ [0, T ), we have

1
2

∑
i∈ZZ2

(X(t, i)− w(t, i))2 ≤
∫ t

0

[ ∑
i∈ZZ2

∂w

∂s
(i, s) (w(i, s)−X(i, s))

+
∑

j∈ZZ2

f(j, s) (X(j, s)− w(j, s)) +
1
2

∑
j∈ZZ2

f(j, s)
]

+M(t)

where
(
M(t)

)
t≥0

is a martingale satisfying

IE(M(t)) = 0 for any t ≥ 0.

Proof :
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1. Let us denote
I =

1
2
Lt

( ∑
i∈ZZ2

(
X(t, i)− w(i)

)2)
By definition of L, we have

I =
1
2

∑
j∈ZZ2

c(j,X, t)
( ∑

i∈ZZ2

(
Tj(X(t))(i)− w(i)

)2
−
∑

i∈ZZ2

(
X(t, i)− w(i)

)2)
.

So,

I =
1
2

∑
j∈ZZ2

c(j,X, t)
( ∑

i∈ZZ

(Tj(X)(i)−X(i))(Tj(X)(i) +X(i)− 2 u(i))
)

=
1
2

∑
j∈ZZ2

c(j,X, t) (2X(j) + 1− 2 u(j))

=
∑

j∈ZZ2

c(j,X, t) (X(j)− u(j)) +
1
2

∑
j∈ZZ2

c(j,X, t).

Thanks to (4), we deduce that

I =
∑

j∈ZZ2

c(j,X, t) (X(j)− u(j)) +
1
2

∑
j∈ZZ2

f(t, j),

and, using Lemma 1, the first step of the lemma follows.

2. As in [6], we use the following stochastic integral equation : for any F : S × (0,∞)→ IR
Lipchitz continuous in t and F (X(., 0), 0) = 0, we have

F (X(., t), t) =
∫ t

0

(
∂F

∂s
+ Ls F

)
(X(., s)) +M(t).(11)

Let F be given by

F (ξ, t) =
1
2

∑
i∈ZZ2

(
ξ(i)− w(t, i)

)2
, for any (ξ, t) ∈ S × (0, T ).

Then,

∂F

∂s
(ξ, s) = −

∑
i∈ZZ2

∂w

∂s
(i, s)

(
ξ(i)− w(i, s)

)
, for any (ξ, t) ∈ S × (0, T ),

and (11) implies that, for any t ≥ 0,

1
2

∑
i∈ZZ2

(X(t, i)−w(t, i))2 =
∫ t

0

( ∑
i∈ZZ2

∂w

∂s
(i, s) (w(i, s)−X(i, s)) +Ls(F (X(., s), s) +M(t).

Then, by using the first step, the result follows.
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Proof of Theorem 1 : Using the fact that û is a solution of (8) and X(t) ∈ K̂, for any t ≥ 0,
we have∑

i∈ZZ2

∂û

∂s
(i, s) (û(i, s)−X(i, s)) +

∑
j∈ZZ2

f̂(j, s) (X(j, s)− û(j, s)) ≤ 0 for any t ≥ 0.

Then, using the second part of Lemma 2 with û, we deduce (9).

At last, let us come back to the continuous model of Prigozhin (1) and assume that

f ∈ BVloc(0,∞;L2(IR2)) and there exists R > 0 such that spt(f) ⊆ B(0, R),(12)

here B(0, R) denotes the a ball with center 0 and radius R. Thanks to [4], we know that (1)
has a unique solution u in the sense that u ∈W 1,∞

loc (0,∞;L2(IR2)), u(0) = 0 and, for any t ≥ 0,
u(., t) ∈ K and ∫

IR2

(
f(t, x)− ∂tu(t, x)

) (
u(t, x)− ξ(x)

)
≥ 0 for any ξ ∈ K.

For the connection with the stochastic model, we rescale the source term f
( t
N
,
x

N

)
. We set

f̂(t, i) = f
( t
N
,
x

N

)
for any (t, i) ∈ [0,∞)× ZZ2,

and we consider (X(t))t≥0 the Markov processus generated by f̂ as explained in the previous
section.

Theorem 2 Under the assumption (12), we have

IE

[∫
IR2

∣∣∣u(t, x)− 1
N
X(N t, [N x])

∣∣∣2]→ 0 as N → 0.(13)

Proof : Let û be the solution of (8) and consider

uN (t, x) =
1
N
û
(
N t, [Nx]

)
and fN (t, x) = f

(
t,

[Nx]
N

)
for any (t, x) ∈ [0, T )× IR2.

It is not difficult to see that uN ∈ W 1,∞
loc ((0,∞);L2(IR2)) and, for any t ≥ 0, uN (., t) ∈ KN ,

where
KN =

{
z ∈ L2(IR2) ; |u(x)− u(y)| ≤ 1

N
for |x− y| ≤ 1

N

}
.(14)
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In addition, for any ξ ∈ KN , we have∫
IR2

(
fN (t, x)−∂tuN (t, x)

)(
uN (t, x)− ξ(x)

)
=

1
N3

∑
i

(
f̂(Nt, i)−∂tû(Nt, i)

)(
û(Nt, i)− ξ̂(i)

)
,

where
ξ̂(i) = N3

∫
Ii

ξ(x) dx and Ii = {z ∈ IR2 ; [Nz] = i}.

Now, since ξ ∈ KN and û is the solution of (8), then ξ̂ ∈ K̂ and∫
IR2

(
fN (t, x)− ∂tuN (t, x)

) (
uN (t, x)− ξ(x)

)
≥ 0 for any ξ ∈ KN .

In other words uN is the solution of the nonlinear dynamic
∂tuN + ∂IIKN

(uN ) 3 f̂N

ûN (0) = 0.
(15)

Thanks to [1], we know that

uN → u in C([0, T );L2(IR2)).(16)

Indeed, ∩N∈INKN = K so that, letting N →∞, we have ∂IIKN
converges in the sense of graph

to ∂IIK in L∞(IR2). On the other hand, as N →∞,

fN → f in L2
loc((0,∞);L2(IR2)).

Then, by using classical perturbation result for nonlinear semigroup (cf. [4]), (16) follows. At
last, thanks to Theorem 1, we have

IE

[∫
IR2

( 1
N
X
(
Nt, [Nx]

)
− uN (t, x)

)2
dx

]
= IE

 1
N4

∑
i∈ZZ2

|X
(
Nt, i

)
−N uN (t, i)|2 dx


= IE

 1
N4

∑
i∈ZZ2

|X
(
Nt, i

)
− û

(
Nt, i

)
|2 dx


≤ 1

N4

∫ Nt

0

∑
i∈ZZ2

f̂
(
s, i
)
ds

≤ 1
N2

∫ Nt

0

∫
IR2

f
( s
N
,
[Nx]
N

)
dsdx

≤ 1
N

∫ t

0

∫
IR2

f
(
τ,

[Nx]
N

)
dτdx

→ 0 as N →∞.

so, by using (16), we deduce (13).
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[4] H. Brézis, Opérateurs maximaux monotones et semigroups de contractions dans les espaces de Hilbert.
(French). North-Holland Mathematics Studies, No. 5. Notas de Matemàtica (50). North-Holland
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