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© Birkhäuser Verlag, Basel, 2001
DOI 10.1007/s00028-003-0088-9

Singular limit of changing sign solutions
of the porous medium equation

Noureddine Igbida and Philippe Benilan

Abstract. In this paper, we study the limit as m → ∞ of changing sign solutions of the porous medium
equation: ut = � : |u|m−1u in a domain � of R

N , with Dirichlet boundary condition.

1. Introduction and main results

We consider the initial boundary value problem:

ut = � |u|m−1u in Q := (0, ∞) × �

u = 0 on � := (0, ∞) × �

u(0) = u0

(Pm)

where � is an open domain of R
N not necessarily bounded, m ≥ 1 and u0 ∈ L1(�).

Throughout the paper we will use the notation rm for |r|m−1r, for any r ∈ R. It is well
known by now that (Pm) has a unique strong solution u, that is u ∈ C([0, ∞); L1(�)) ∩
L∞((δ, ∞) × �) ∩ W 1,1(δ, ∞; L1(�)), um ∈ L2(δ, ∞; H 1

0 (�)), for any δ > 0, ∂tu =
�um in D′(Q) and u(0) = u0 a.e. in �. Let us denote this solution by um. We are interested
in the asymptotic behaviour of um, as m → ∞. If ‖u0‖L∞(�) ≤ 1, it is known (cf. [5] and
[6]) that

um → u0 in C([0, ∞), L1(�)).

But, if ‖u0‖L∞(�) > 1, then one can prove that um is relatively compact in C((0, ∞),

L1(�)), but not in C([0, ∞), L1(�)), an initial boundary layer appears at t = 0 when
passing to the limit: the limit is singular. Indeed, since the nonlinearity ϕm(r) = rm in the
equation (Pm) converges in the graph sense to the maximal monotone graph ϕ∞ given by

ϕ∞(r) =
{

0 if |r| < 1
±[0, ∞) if r = ±1,
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then, the limiting equation is

ut = �w, w ∈ ϕ∞(u) inQ (1.1)

for which a solution u satisfies |u| ≤ 1 and compatible initial data should live in [−1, 1].
Our aim in this paper is to describe the limit of um, when the initial data ‖u0‖L∞(�) > 1.

This kind of question attracts much attention, by its physical interest, since for large m, (Pm)

appears in a variety of physical problems, for instance m = 3 for the spreading of a liquid
film under gravity [23] and semiconductor fabrication [22] and m ∈ (5.5, 6.5) in a radiation
in ionized gazes [25], and also by its mathematical interest in the study of singular limits
of linear and nonlinear semigroups (cf. [2] and [9]). Indeed, in a Banach space X, let
us consider a family of m-accretive operator An, such that D(An) = X and, as n → ∞,
An → A in the sense of resolvent with D(A) 	= X. For any u0 ∈ X, the Cauchy problem

ut + Anu 
 0 in (0, ∞), u(0) = u0

has a unique mild solution un given by the Crandall-Ligget exponential formula

un(t) = L1 − lim
k→∞

(
I + t

k
An

)−k

u0 =: e−tAnu0.

Letting n → ∞, it is known that (cf. [11]) if u0 ∈ D(A), then un → u in C([0, ∞), X)

and u is the mild solution of

ut + Au 
 0 in (0, ∞), u(0) = u0. (1.2)

But, if u0 ∈ X \D(A), then (1.2) is not well posed and in general the limit of un may
not exist. However for a large class of concrete problems the limit exists and it would be
interesting to characterize it. In this case, a conjecture is that there exists u0 ∈ D(A), such
that the limit u is the solution of

ut + Au 
 0 in(0, ∞), u(0) = u0,

but the characterization of u0 is not clear yet in general.
Coming back to the problem (Pm), X = L1(�), and the family of operators Am is given

by

Amu = −�um in D′(�) (1.3)

with

D(Am) = { z ∈ L1(�) ∩ L∞(�) ; zm ∈ H 1
0 (�)and �zm ∈ L1(�)}.

As m → ∞, we prove (cf. Proposition 2.3) that Am converges to A∞ the multivalued
operator given by

z ∈ A∞v ⇔
{

v, z ∈ L1(�), ∃ w ∈ H 1
0 (�), v ∈ Sign(w)a.e. on�

and
∫
�

∇w.∇ξ = ∫
�

z ξ, ∀ ξ ∈ H 1
0 (�) ∩ L∞(�)

(1.4)
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with D(A∞) = {u ∈ L1(�) ∩ L∞(�) ; ‖u‖L∞(�) ≤ 1}. It is known that the mild solution
um is the strong solution of the pde (Pm). It is true that um is convergent in L1(�), but
as far as we know, the characterization of u0 is completely solved only in the case where
u0 ≥ 0; it is known that

u0 = (I + A∞)−1u0. (1.5)

More precisely, it was proved in [3] (see also[14] and [12]) that the limit of um is independent
of t : it is equal to the mesa of height 1, that is u0 χ[w=0] + χ[w>0], where w is the unique
solution of the so-called “mesa problem”

w ∈ H 2(�) ∩ H 1
0 (�), w ≥ 0, 0 ≤ �w + u0 ≤ 1, w(�w + u0 − 1) = 0 a.e �,

and one verifies easily that u0 χ[w=0] + χ[w>0] coincides with (I + A∞)−1u0. By the way,
let us remark that, in this case, we can say

lim
m→∞ lim

k→∞

(
I + t

k
Am

)−k

u0 = lim
k→∞ lim

m→∞

(
I + t

k
Am

)−k

u0. (1.6)

Recall that the proofs of these results use strongly the fact that um ≥ 0, since they are based
on the regularizing effect (cf. [4]) of the type

−ut ≤ u

(m − 1)t
a.e. inQ,

which is fulfilled only if u0 ≥ 0. In this paper, our approach is completely different.
Inspired by the paper [15] where the limit, as p → ∞, of a solution of ut = �pu is studied,
we characterize u0 in the case where u0 may change sign. Our technics are general, we
are using only, and strongly, the homogeneity of the equation in (Pm). Let us notice, that
Ph. Bénilan was able to develop most of the arguments we are using in a general setting of
abstract nonlinear homogeneous semigroup (see the article [7]).

Before stating our main results, let us mention that the independence of time of the limit
of um is due to the absence of a reaction in the equation and also to the homogeneity of
the boundary conditions. In connection with the Hele Shaw problem, the equation (1.1) is
used in the weak formulation of this problem (cf. [13]) and obviously u0 corresponds to a
stationary solution; this is due to the absence of an injection and/or a suction. In the case
of non null reaction (cf. [9, 8, 10]) and/or non null boundary conditions (cf. [20], [24] and
[19, 18]), it is proved that the limit may depends on t and is a solution of the equation (1.1)
with the corresponding nonhomogeneous terms and the (compatible) initial data u0.

Throughout the paper, we assume that � is an open domain, not necessarily bounded,
u0 ∈ L1(�) ∩ L∞(�) and um is the mild solution of the Cauchy problem

ut + Amu = 0 in (0, ∞), u(0) = u0, (1.7)
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with Am given as in (1.3). To simplify the notation, we set

a =
{
1 if ‖u0‖∞ ≤ 1

1/‖u0‖∞ if ‖u0‖∞ > 1
and v0 = a u0, a.e. in �.

The main idea of the paper is to consider the change of variables

zm(t) = tum(tm/m)

and study the limit of zm, as m → ∞. So, our main result is

THEOREM 1.1. As m → ∞, we have

zm → z in C([0, ∞); L1(�))

where z is given as follows:

i - z(t) = t u0 for any t ∈ [0, a].
ii - z is the unique mild solution of the evolution problem

{
zt + A∞ z 
 z/t in(a, ∞),

z(a) = v0.
(1.8)

As to the limit of um(t), we can deduce now the following result.

COROLLARY 1.2. As m → ∞, we have

um(t) → z(1) in L1(�), uniformly for t in a compact set of (0, ∞)

where z is given as in Theorem 1.1.

It is clear that Corollary 1.2 implies that the limit of um, as m → ∞, is independent of
time t . Moreover, if ‖u0‖∞ > 1, the convergence cannot be extended to 0; similarly it does
not to ∞. This means that the question arises as to the asymptotic behavior of um(x, t) when
t → 0 (or t → ∞) as m → ∞. Theorem 1.1, implies that with the new scale τ = tm/m,

the limit of the solution um, depends on time and one can describe the asymptotic of the
limit as t → 0 or t → ∞. This kind of results was first studied by A. Friedman and Sh.
Huang [17] (see also [16] and [14]) in the case where u0 ≥ 0. In those papers, the new
scale was τ = tm suggested by the asymptotic behavior of the Barenblatt solutions, and the
authors prove that the limit with the new scale depends on τ and coincides with the mesa
of height 1/τ. In the case where u0 is changing sign, the limit is not a mesa in general (see
Remark 1.3 below).
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REMARK 1.3. 1. Using the results of the appendix of [15], one can prove that, in

contrast to the nonnegative case, the limit of um in general is not a projection on the
closure of the domain of A∞. In other words, (1.5) and (1.6) are not true in general.

2. By using the results of [9], [8] and [20], one can treat (Pm) with a reaction term
and/or nonhomogeneous boundary condition of Dirichlet or Neumann type, exactly
in the same way as in this paper.

2. Proofs

The main ingredient we use for the proof of the first part of the theorem is the following
lemma.

LEMMA 2.1. Let f ∈ L1(�) ∩ L∞(�) such that ‖f ‖∞ ≤ 1 and, for λ > 0, let us
consider fm = (I + λ Am)−1f. As m → ∞, we have

fm → f and Am fm → 0 in L1(�).

Proof. Since Amfm = f −fm, then it is enough to prove that fm → f and the conclusion
of the lemma follows. We begin by assuming that ‖f ‖L∞(�) ≤ c < 1. By definition of
Am, fm satisfies

f m
m ∈ H 1

0 (�)and − λ �f m
m = f − fm in D′(�); (2.1)

and, moreover, we have

‖fm‖Lp(�) ≤ ‖f ‖Lp(�) for any 1 ≤ p ≤ ∞. (2.2)

Taking f m
m as a test function and letting m → ∞, we get

λ

∫
�

|∇f m
m |2 =

∫
�

(f − fm) f m
m

≤ 2 cm ‖f ‖1 → 0 as m → 0,

so that (2.1) implies that, fm → f in D′(�) and by using (2.2) we deduce that the con-
vergence holds true in L1(�). Indeed, thanks to (2.2), fm → f, in Lp(�)-weak and
‖f ‖Lp(�) = limm→∞ ‖fm‖Lp(�), for any 1 < p < ∞, so that the convergence holds true
in Lp(�), for any 1 < p < ∞. Then, by using again (2.2), with p = ∞, and Lebesgue’s
dominated convergence theorem, we deduce, by choosing a subsequence that we denote
again by m, that fm → f , in L1(�). At last, if ‖f ‖∞ = 1, then we consider a sequence
{fε}ε>0 in L1(�) such that ‖fε‖∞ < 1 for any ε > 0 and, as ε → 0, fε → f in L1(�).
Then, thanks to the L1 contraction property of the operator (I + λ Am)−1, we deduce, by
using the previous part of the proof, that fm → f in L1(�) and the proof is complete. �
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As a consequence of this lemma, we have

LEMMA 2.2. As m → ∞, we have

um(tm/m) → u0 in L1(�) uniformly for t ∈ [0, a].

Proof. Set fm = (I + Am)−1v0 and f̃m = 1
a

fm. It is clear that fm ∈ D(Am), f̃m ∈
D(Am), and, thanks Lemma 2.2, f̃m → u0 and Am fm → 0 in L1(�), as m → ∞. Using

the fact that um(tm/m) = e− tm

m
Amu0, we can write

|um(tm/m) − u0| ≤ |e− tm

m
Amu0 − e− tm

m
Amf̃m|

+ |e− tm

m
Amf̃m − f̃m| + |f̃m − u0|,

so that, by using the L1 contraction property of the semigroup generated by Am and the
homogeneity of Am, we deduce that

‖um(tm/m) − u0‖1 ≤ 2 ‖u0 − f̃m‖1 + tm

m
‖Amf̃m‖1

≤ 2 ‖u0 − f̃m‖1 + 1

m
(t/a)m ‖Amfm‖1.

Letting m → ∞, the second term of the last inequality tends to 0, uniformly for t ∈ [0, a],
and the result of the lemma follows. �

At this stage, one sees that Lemma 2.2 gives the proof of the first part of Theorem 1.1. In
other words, it characterizes the limit of zm(t), as m → ∞, for t ∈ [0, a]. For the remaining
part, i.e. for t ∈ [a, ∞), the main ingredient we use is, in this paper, is the convergence of
Am to A∞ in the sense of resolvent. Recall that the result is well known by now in the case
where � = R

N (cf. [5]) and also in the case where � is a bounded domain of R
N (cf. [6]).

As to the case of an open domain �, not equal to R
N and not necessarily bounded, this is

done in [21]. For completeness, we give hereafter the proof.

PROPOSITION 2.3. For any f ∈ L1(�) ∩ L∞(�), as m → ∞, we have

(I + Am)−1f → (I + A∞)−1f in L1(�).

To simplify the notation, set um = (I + Am)−1f, then um is the unique solution of

um
m ∈ H 1

0 (�) and − �um
m = f − um in D′(�)

and, recall that (cf. [1]),

‖um‖Lp(�) ≤ ‖f ‖Lp(�) for any 1 ≤ p ≤ ∞.

To prove the proposition, we need to prove that (um)m≥1 is relatively compact in L1(�)

and that (um
m)m≥1 is weakly relatively compact in H 1

0 (�). For this, we need the following
technical lemma.
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LEMMA 2.4. (cf. [21]) For any w ∈ H 1
0 (�) and k > 0, we have

‖(|w| − k)+‖2 ≤ C |[|w| > k]|1/N

(∫
[|w|>k]

|∇w|2
)1/2

where C is a constant depending only on �.

LEMMA 2.5. The sequence (um
m)m≥1 is bounded in H 1(�).

Proof. First, thanks to Lemma 2.4, we see that it is enough to prove that∫
[|um

m|≥1]
|∇um

m|2 is bounded. (2.3)

Indeed, it is clear that

|[|um
m| ≥ 1]| = |[|um| ≥ 1]| ≤ ‖f ‖1,

and∫
�

|um
m|2 =

∫
[|um

m|≤1]
|um

m|2 +
∫

[|um
m|≥1]

|um
m|2

≤ ‖f ‖1 + (‖(|um
m| − 1)+‖2 + |[|um

m| ≥ 1]|1/2)2,

so that, by using Lemma 2.4, and (2.3), we deduce that um
m is bounded in L2(�). As to the

boundness of ‖∇um
m‖2, this follows from the fact that∫

�

|∇um
m|2 =

∫
�

(f − um) um
m

≤ 2‖f ‖2 ‖um
m‖2.

Now, by taking (|um
m| − 1)+ as a test function and using Lemma 2.4, we see that∫

[|um
m|≥1]

|∇um
m|2 =

∫
(f − um) (|um

m| − 1)+

≤ 2 ‖f ‖2 ‖(|um
m| − 1)+‖2

≤ 2 C ‖f ‖2‖f ‖1/N

1

(∫
[|um

m|≥1]
|∇um

m|2
)1/2

,

and (2.3) follows. �

LEMMA 2.6. The sequence (um)m≥1 is relatively compact in L1(�).
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Proof. First, we see that

lim|y|→0
sup
m≥1

∫
�′

|um(. + y) − um(.)| = 0, (2.4)

for any �′ ⊂⊂ �. Indeed, for any ξ ∈ H 1
0 (�′) and y ∈ R

N such that |y| ≤ dist(�′, �), we
have∫

�

(um(. + y) − um(.)) ξ

+
∫

�

∇(um
m(. + y) − um

m(.)) · ∇ξ =
∫

�

(f (. + y) − f (.)) ξ,

so that, by using standard arguments (see for instance [6]), we deduce that∫
�

|um(. + y) − um(.)| ξ ≤
∫

�

|um
m(. + y) − um

m(.)| �ξ +
∫

�

|f (. + y) − f (.)| ξ

and, by using Lemma 2.5, we get (2.4). This implies that (um)m≥1 is relatively compact in
L1

loc(�). To end up the proof of the lemma, we show that

um− ≤ um ≤ um+ a.e. in � (2.5)

where um− (resp. um+) is the solution of

um− − �um
m− = f − (resp um− − �um

m+ = f +) in R
N,

in the sense that um− ∈ L∞(RN) ∩ L1(RN) (resp. um+ ∈ L∞(RN) ∩ L1(RN)), um
m− ∈

H 1(RN) (resp. um
m+ ∈ H 1(RN)) and the equation is satisfied in D′(RN). Indeed, since um−

and um+ are relatively compact in L1(RN) (cf. [5]), then (2.5) and the relative compactness
of (um)m≥1 in L1

loc(�), ends up the proof of the lemma. So, let us prove (2.5). It is clear
that∫

�

(um − um+) ξ +
∫

�

∇(um
m − um

m+) · ∇ξ =
∫

�

(f − f +) ξ

for any ξ ∈ H 1
0 (�). On the other hand, it is not difficult to see that, (um

m −um
m+)+ ∈ H 1

0 (�),
so that∫

�

(um − um+) (um
m − um

m+)+ +
∫

�

|∇(um
m − um

m+)|2

=
∫

�

(f − f +) (um
m − um

m+)+

≤ 0

and we deduce that um ≤ um+ a.e. in �. In the same way one can prove that um− ≤ um

a.e. in � and (2.5) follows. �
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Proof of Proposition 2.3. Using Lemma 2.5 and Lemma 2.6, the proposition follows by
standard arguments (cf. [5] and [6]). We omit the details of the proof.

Proof of Theorem 1.1. Now, it is clear that the first part of the theorem follows from
Lemma 2.1. Let us prove part 2. It is clear that zm is the mild solution of du

dt + Am u 
 u/t

in (a, ∞), so that since zm(a) → a u0 in L1(�), as m → ∞, and a u0 ∈ D(A∞), then, by
using Proposition 2.3 with classical theorem for regular perturbation of nonlinear semigroup
(cf. [11]), we deduce that zm → z in C([a; ∞), L1(�)) where z is the unique mild solution
of (1.8), and the proof of the theorem is complete.

Proof of Corollary 1.2. It is clear that, for any t > 0, um(t) = 1

(mt)1/m
zm((mt)1/m) and,

as m → ∞, (mt)1/m → 1, then the corollary is a simple conseqence of the L1 convergence
of zm(t) to z(t), uniformly for t in a compact subset of (0, ∞).
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