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Abstract

This paper is concerned with a nonlinear parabolic problem, with nonlinear bound-
ary conditions, for which the diffusion coefficient becomes very large in a sub-region
of the physical domain.
keywords Singular limit, localized large diffusion, Diffusion-convection prob-
lem, elliptic-parabolic problem, weak solution, integral solution, integral
(sub/super)solution, Semigroup of contraction.

1. Introduction

There is a large class of physical problems for which the behavior is described by the
study of the perturbation of the evolution, or stationary, equations. In these equations,
there appears some parameters that vary strongly, and for a large class of problems, the
perturbed equation is of totally different character then the unperturbed one : this a
singular limit phenomena. For instance, take the reaction-diffusion system ut − d ∆u +
k g(u) = 0, where u = (u1, u2, ..., un), d = (d1, d2, ...., dN ) is a N-uplet of the diffusion
coefficients and k is the reaction rate. The limit becomes singular when the diffusivity di

of the component species ui and/or the reaction rate k is very large (cf. [25], [19], [24],
[22], [27], [15] and [16]). Other examples appear in the the study of the extreme cases of
the porous medium equation ut = 1

m∆um, i.e. the very slow diffusion : m→∞ (cf. [18],
[7], [9, 10, 11], [29, 30]) and the very fast diffusion : m → 0 (cf. [37] and [28]). Also,
the study of the sandpile model exhibits the study of the singular limit of the p-laplacien
equation ut = ∆pu, as p→∞ (cf. [23]).

In this paper, we will be concerned with a nonlinear diffusion equation in a bounded
domain Ω, for which the diffusion coefficient vary strongly in a sub-domain of Ω. Concretely
this situation can be found in models of diffusive process for which the diffusion is very
large in a subregion. For example, in chemical engineering, the heat diffusion properties
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in a composite material differ very strongly from one part to another one, or in population
dynamics when one species diffuses and/or reacts much faster than the others in some
determined regions, and many other situations. In connection with the examples cited
above, this is a situation where the singular limit phenomena is localized in space, so that
the passage to the limit will exhibit some instantaneous local redistribution of the spatial
inhomogeneities of the solution.

To give a brief description of our main results, let us consider, for instance, the model
∂tu = ∇ ·

(
aε ∇ϕ(u)

)
+ f in Q = (0, T )× Ω

aε ∇ϕ(u) · −→n = g on Σ = (0, T )× ∂Ω
u(0) = u0 in Ω

(1.1)

where ϕ is an increasing continuous function in IR, f ∈ L2(Q), g ∈ L2(Σ), −→n denotes the
outward normal vector of the boundary ∂Ω and aε is a regular function in Ω such that,
for any ε > 0, 0 < m ≤ aε ≤ Mε. It is not difficult to prove that (1.1) has a unique weak
solution uε, i.e. uε ∈ L2(Q), ϕ(uε) ∈ L2(0, T ;H1(Ω)), and satisfies the equation in a weak
sense. Now, let Ω1 be a sub-domain of Ω, such that for any K ⊂⊂ Ω1, inf

x∈K
aε(x) →∞, as

ε→ 0 and aε → a0 uniformly in Ω0 = Ω\Ω1. We are interested in the asymptotic behavior
of uε, as ε→ 0. In the case where Ω0 = ∅, it is known that a very rapid redistribution of
the spatial inhomogeneities of u and therefore u converges to a space constant function,

which is equal to
∫
−u0 +

1
|Ω|

∫ t

0

( ∫
Ω
f +

∫
Γ
g
)
, for each instant t > 0. As to the case where

Ω1 = ∅, obviously uε → u and u is a solution of

ut = ∇ ·
(
a0 ∇ϕ(u)

)
+ f(1.2)

with the corresponding boundary condition

a0 ∇ϕ(u) · −→n = g.(1.3)

So, if Ω0 and Ω1 are not empty, then one expects that inside Ω0, uε converges to a function
u which satisfies (1.2) in Ω0 and (1.3) on (0, T )×(∂Ω∩∂Ω0). As to inside Ω1, uε approaches
uΩ1 a constant function in Ω1. This constant is not arbitrary and must take into account
the limit of boundary value of ∂ϕ(uε) on ∂Ω1. In fact, integrating over Ω1 and using the
inward normal −→n 1 in the integration by parts, we obtain∫

Ω1

(uε)t +
∫

∂Ω1

aε ∇ϕ(uε) · −→n 1 =
∫
Ω1

f

and formally taking the limit and dividing by |Ω1| we obtain

(uΩ1)t +
1
|Ω1|

∫
∂Ω1

a0 ∇ϕ(u) · −→n 1 =
1
|Ω1|

∫
Ω1

f in (0, T )× Ω1.

So, taking into account the boundary condition and the initial data, the limiting problem
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should be

∂tu = ∇ ·
(
a0 ∇w

)
+ f, w = ϕ(u), in (0, T )× Ω0

u(t) is constant on Ω1 for t ∈ (0, T )
d

dt
u(t) +

1
|Ω1|

∫
∂Ω1

a0 ∇w · −→n 1 =
1
|Ω1|

∫
Ω1

f(t) in (0, T )× Ω1

a0 ∇w · −→n = g on (0, T )× (∂Ω \ ∂Ω1)
u(0) = u0.

(1.4)

Recall that, if ϕ = IdIR and Ω1 is interior to Ω, i.e. ∂Ω∩∂Ω0 = ∂Ω, then the problem is a
particular case of [3]. In this case, (1.1) and (1.4) are semi-linear equations in Lp(Ω), with
p > 1, for which the authors used the results of [38] for the associate elliptic equation and
the results of [26] and [2] for semi-linear equations in abstract form. Among the results
of [3], it is proved that for any initial data u0 ∈ L2(Ω) such that u0 is constant in Ω1,
(1.4) has a unique solution u which is the limit of uε. Moreover, u solves (1.4) in a strong
sense, more precisely u and ut are in C([0, T );X) where X is some fractional power space,
so that the normal derivative of w and ∇ · (a0 ∇ w) are integrable functions and can be
used explicitly in the formulation of the solution (in other words the equations in (1.4) are
pointwise satisfied). In the nonlinear case, i.e. ϕ 6= IdIR, this kind of formulation turns
out to be useful, since even for (1.1), with ε > 0, the existence of strong solutions is not
true in general, a weak formulation of the solution is needed. In this paper, we introduce
the notion of weak solution for problems of type (1.4) which coincides with the strongest
one whenever u and w are regular enough. Moreover, we prove that (1.4) is well posed
via this notion and that these solutions are limits of weak solutions of (1.1). On the other
hand, one sees that functions u0 which are constant on Ω1 are the natural initial datums
for (1.4). However, we will prove that even with an initial data u0 not constant on Ω1, the
problem (1.4) still has a unique solution which is also the solution with the initial data

u0(x) =


1
|Ω1|

∫
Ω1

u0 for any x ∈ Ω1

u0(x) a.e. x ∈ Ω0.

(1.5)

Though, it must be born in mind that, in this case the limit of uε is singular and, in the
passage to the limit, there appears a boundary layer at time t = 0 in the domain Ω1 given

by
1
|Ω1|

∫
Ω1

u0.

In fact, in this paper, we consider the equation

β(w)t = ∇ ·
(
aε ∇w + σ(x,w)

)
+ F (t, x, w) in (0, T )× Ω(1.6)

where T > 0, Ω is a regular bounded domain, aε is the diffusion coefficient, the function β is
assumed to be nondecreasing, the convection σ is assumed to be dissipatif and the reaction
term F is a caratheodory function satisfying assumptions that we precise in section 2. This
equation is considered with nonlinear boundary condition of the type(

aε ∇w + σ(x,w)
)
· −→n + γ(x,w) = g(x, t)(1.7)
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on a part of the boundary of Ω and homogeneous Dirichlet boundary condition in the
remaining one. The problem (1.6)-(1.7) appears as a model for a large class of evolution
physical problems, as for instance, diffusion in porous medium ([5]), dynamical population
(cf. [35]) and many others. Recall that in particular β may be such that β is increasing in
(−∞, 1] and β is constant and equals, for example, to 1 in [1,∞). In this case (1.1) is of
elliptic-parabolic type and models problems of evolution equation for which the evolution
is null in the region [u ≥ 1] and the equation becomes elliptic. Existence and uniqueness
of a weak solution for (1.1)-(1.2) is well known by now when the boundary conditions
are homogeneous (cf. [36] and [12] and the references therein). In this paper, we extend
slightly this results, by treating the case of boundary conditions of the type (1.7). Our
main interest lies in the study of the asymptotic behavior of the solutions of (1.6)-(1.7),
as ε→ 0, by assuming that aε →∞, in a connected sub-domain Ω1 of Ω. We identify the
limiting problem that we call the Shadow problem : it consists of an evolution PDEs for
which the solution tends to be a space constant function in Ω1. We introduce the notion
of weak solution for this kind of problems and prove the existence and the uniqueness.
Moreover, although a solution of (1.6)-(1.7) converges to a solution of the Shadow problem,
we prove that the limit is singular and a boundary layer appears in Ω1, for small time
t > 0.

In the following section, we give the assumptions that will be hold throughout the pa-
per and after a formal derivation of the limiting problem (the shadow problem), we state
our main results concerning the existence, the uniqueness and the convergence. Section 3
and Section 4 are devoted to preparatory results for the proof of the mains theorem. In
Section 3, we prove the existence of a solution for the problem (1.1)-(1.2) and the Shadow
problem. For the existence of a solution of (1.1)-(1.2), we use the nonlinear semigroup
theory, as to the Shadow problem, we obtain the existence by proving the convergence
of solutions of (1.1)-(1.2). In a first time, we prove the convergence directly by showing
the relative compactness of the solutions of (1.1)-(1.2). Then in the concern of showing
uniqueness and exhibiting the singular limit phenomena, we improve the convergence by
using nonlinear semigroup theory. Section 4 is devoted to the proof of uniqueness. We use
the concept of integral sub/super solution for (1.1)-(1.2) and also for the Shadow prob-
lem. We show that weak solutions are integral solutions and, thus, unique too. At last,
in Section 5, we gather the main results of the Section 3 and Section 4 to complete the
proofs of the main theorems given in Section 2.

At last, we notice that in order to simplify the presentation we are treating only the
case where Ω is a connected domain. However, one will see that all our results may be
stated in the case where Ω1 is an union of connected domain.

2. Assumptions and main results

Throughout the paper Ω is a bounded regular open connected domain of IRN and Γ is
the boundary of Ω with Γ = ΓN ∪ ΓD is a partition of Γ, such that ΓD is nonempty. The
diffusion coefficient aε(x) is such that
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aε ∈ C1(Ω) and 0 < m0 ≤ aε(x) ≤Mε,(2.1)

for every x ∈ Ω and 0 < ε ≤ ε0. The convection term σ is a function defined from Ω× IR
in IRN such that σ(x, r) is Lipschitz in r ∈ IR and belongs to W 1,∞(Ω) in x and

∇x · σ(x, r) ≤ 0 a.e. x ∈ Ω and for any r ∈ IR.(2.2)

We assume moreover, that σ satisfies the structure condition

σ(x, r) = σ̃(x, β(r)) for each (x, r) ∈ Ω× IR(2.3)

where σ̃(x, s) is continuous in s. To simplify the notation, for 0 < ε ≤ ε0, we set

Aε(x, r, η) = aε(x) η + σ(x, r) for any (x, r, η) ∈ Ω× IR× IRN ,

and we consider the problem

Pε(u0, F, g)


∂tu−∇ ·Aε(x,w,∇w) = F (t, x, u), u = β(w) in Q = (0, T )× Ω
∂−→n ε

w + ρ(x,w) = g on ΣN = (0, T )× ΓN

w = 0 on ΣD = (0, T )× ΓD

u(0) = u0 in Ω

where ∂−→n ε
denotes the conormal derivative relative to the diffusion operator ∇· (aε∇w+

σ(x,w)), i.e.
∂−→n ε

w =
〈
aε ∇w + σ(x,w),−→n

〉
,

and −→n denotes the outward normal vector of the related boundary. The nonlinearity
β : IR → IR is a nondecreasing Lipschitz continuous function and ρ : ΓN × IR → IR is
measurable in x ∈ ΓN and nondecreasing continuous in r ∈ IR. We assume that β(0) =
ρ(x, 0) = 0 a.e. x ∈ ΓN and

|ρ(x, r)| ≤ a(x)|r|+ b(x) a.e. x ∈ ΓN(2.4)

with a, b ∈ L∞(ΓN ). The reaction term F (t, x, u) is continuous in u, measurable in
(t, x) ∈ Q and satisfies the following i)

∂F

∂u
(t, x, u) ≤ K in D′(IR), K ∈ IR+

ii) |F (t, x, u)| ≤ K1(t, x)|u|+K2(t, x)
(2.5)

with Ki ∈ L∞(Q), for i = 1, 2. The initial data u0 ∈ L1(Ω) satisfies

u(x) ∈ Im(β) = [β(−∞), β(+∞)] a.e. x ∈ Ω.(2.6)

At last, we denote by V the space V =
{
w ∈ H1(Ω) ; w = 0 on ΓD

}
whose dual space

is denoted by H−1, and we assume that σ satisfies∫
ΓN

(∫ w(x)

0
σ(x, s)ds dx

)
· −→n ≤ 0 for any w ∈ V.(2.7)
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Definition 1 For g ∈ L1(ΣN ) and u0 ∈ L1(Ω), we say that u is a solution of Pε(u0, F, g),
if there exists a measurable function w : Q→ IR such that

u ∈ L2(Q), w ∈ L2(0, T ;V ), u = β(w) a.e. in Q∫ ∫
Q

(
− u ξt +Aε(x,w,∇w) · ∇ξ

)
=
∫
Ω
u0 ξ(0) +

∫ ∫
Q
F (., u) ξ

+
∫ ∫

ΣN

(
g − ρ(., w)

)
ξ, ∀ ξ ∈ C1(Q) ∩ L2(0, T ;V )s.t. ξ(T ) ≡ 0.

(2.8)

Theorem 1 For any g ∈ L2(ΣN ) and u0 ∈ L2(Ω) satisfying (2.6), there exists a unique u
solution of Pε(u0, F, g.) Moreover, u ∈ C([0, T );L1(Ω)), u(0) = u0 and if for i = 1, 2, u0i ∈
L2(Ω) satisfies (2.6), gi ∈ L2(ΣN ), Fi satisfies (2.5) and ui is a solution of Pε(u0i, Fi, gi)
then

d

dt

∫
Ω

(
u1(t)− u2(t)

)+
≤
∫
[u1>u2]

(
F1(., u1)− F2(., u2)

)
+
∫
[u1=u2]

(
F1(., u1)− F2(., u2)

)+
+
∫
ΓN

(
g1 − g2

)+(2.9)

in D′(0, T ).

Let Ω1 ⊆ Ω be an open connected domain of Ω and denote by Γ1 its boundary,
Ω0 = Ω \Ω1 and Γ0 the boundary of Ω0. Assume that the diffusion becomes very large on
Ω1, as ε→ 0 ; i.e. we assume that as ε→ 0, we have

aε(x) →
{
a0(x) uniformly on Ω0

+∞ uniformly on compact subsets of Ω1.

If we formally take the limit in Pε(u0, F, g), we expect that inside Ω0, the solution u
satisfies

ut −∇ · (a0∇w + σ(x,w)) = F (t, x, u) with u = β(w) in Q0 := (0, T )× Ω0.

As to inside Ω1, we intuitively guess that for small values of ε, the solution of Pε(u0, F, g)
should be approximatively constant and satisfies

d

dt
u(t) +

1
|Ω1|

∫
Γ1

∂−→n 0
w(t) =

1
|Ω1|

∫
Ω1

F (t, ., u(t)) u = β(w), in Q1 := (0, T )× Ω1.

Taking into account the boundary condition and the initial data, the limiting problem, or
what we call ”Shadow ” problem should be

Sh(u0, F, g)



∂tu−∇ ·A0(x,w,∇w) = F (t, x, u), u = β(w) in Q0

w(t) is constant on Ω1, for t ∈ (0, T )
d

dt
u(t) +

1
|Ω1|

∫
Γ1

∂−→n 0
w(t) =

1
|Ω1|

∫
Ω1

F (t, ., u(t)), u = β(w), in Q1

∂−→n 0
w + ρ(x,w) = g, on (0, T )× (ΓN \ Γ1)

w = 0, on ΣD

u(0) = u0 in Ω,
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where A0(x, r, η) = a0(x)η+σ(x, r). As in [3], we see that the natural spaces for the study
of the Shadow problem are Lp

Ω1
=
{
u ∈ Lp(Ω) ; u is a constant on Ω1

}
endowed with the

natural norm LP , for 1 ≤ p ≤ ∞, and we denote H1
Ω1

= V ∩ L2
Ω1
.

Definition 2 For g ∈ L1(ΣN ) and u0 ∈ L1(Ω), we say that u is a solution of Sh(u0, F, g),
if there exists a measurable function w : Q→ IR such that

u ∈ L2(Q), w ∈ L2(0, T ;H1
Ω1

), u = β(w) a.e. in Q and∫ ∫
Q

(
− u ξtA0(x,w,∇w) · ∇ξ

)
=
∫
Ω
u0 ξ(0) +

∫ ∫
Q
F (., u) ξ

+
∫ ∫

ΣN

(
g − ρ(., w)

)
ξ, ∀ ξ ∈ C(Q) ∩ L2(0, T ;H1

Ω1
) s.t. ξ(T ) ≡ 0.

(2.10)

Theorem 2 For any g ∈ L2(ΣN ) and u0 ∈ L2(Ω) satisfying (2.6), there exists a unique
u solution of Sh(u0, F, g). Moreover, u ∈ C([0, T );L1

Ω1
), u(0) = u0Ω1

, and if for i =
1, 2, u0i ∈ L2(Ω) satisfies (2.6), gi ∈ L2(ΣN ), Fi satisfies (2.5) and ui is a solution of
Sh(u0i, Fi, gi) then (2.9) is fulfilled in D′(0, T ).

Remark 1 Without abusing, we will say that (u,w) is a solution of Pε(u0, F, g) (resp.
Sh(u0, F, g)), if (u,w) satisfies (2.8) (resp. (2.10)). Though it must be born in mind that
u is unique ; as to the function w, in general, we don not know if it is unique or not.

Corollary 1 A solution (u,w) of Sh(u0, F, g), with u0 ∈ L1(Ω) and F satisfying (2.5)

is also a solution of Sh(u0Ω1
, FΩ1 , gΩ1), where u0Ω1 = u0 χΩ0 +

χΩ1

|Ω1|

∫
Ω1

u0(x) dx, FΩ1 =

F χΩ0 +
χΩ1

|Ω1|

∫
Ω1

F (., y, .) dy and gΩ1 = g χΓ0 +
χΓ1

|Ω1|

∫
Γ1

g(x) dx.

Remark 2 By an appropriate choice of a test function ξ, one sees that the formulation
(2.10) implies that Sh(f, g) is pointwise satisfied whenever u, w, Γ0 and Γ1 are regular
enough.

At last, we close this section of main results by given the theorem of convergence of
solutions of Pε to those one of Sh.

Theorem 3 Let u0 ∈ L2(Ω) satisfying (2.6) and g ∈ L2(ΣN ). If K1 ≡ 0, then there exists
a solution (uε, wε) of Pε(u0, F, g), such that, as ε→ 0,

uε → u in C([δ, T );L1(Ω))(2.11)

for any δ > 0, and, by taking subsequences if necessary,

wε → w in L2(0, T ;V )− weak(2.12)

where (u,w) is a solution of Sh(u0, F, g). Moreover, if u0 ∈ L2
Ω1
, then (2.11) and (2.12)

remains true even if K1 6≡ 0 ; and also, δ = 0 is admissible in (2.11).
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Remark 3 The assumptions (2.2) and (2.7) means that the convection σ is dissipatif,
while (2.3) is a structure condition. We emphasize that our results can be obtained un-
der relaxed assumptions. However, since we are working with nonhomogeneous boundary
conditions, we decided to study the problem under such assumptions only to simplify the
proofs of existence of a solutions of Pε(u0, F, g) (which is not the aim of this paper). For
discussions in this direction, we refer the readers to the papers [1], [13], [32] and the
references therein.

3. Existence of solutions and convergence results

3..1 Existence of a solution for Pε

We introduce the following notation that will be used throughout the paper:

Sign+ (s) =


1 if s > 0

[0, 1] if s = 0
0 if s < 0

, Sign+
0 (s) =

{
1 if s > 0
0 if s ≤ 0

and and for ε > 0, Hε(s) = inf(s+/ε, 1), for any s ∈ IR. We will treat the problem in the
context of nonlinear semigroup theory. Through the implicit discretization in time arising
in this theory, the study of Pε is closely connected to the associate stationary problem
which is

Stε(f, g)


v −∇ ·Aε(x,w,∇w) = f, v = β(w) in Ω
∂−→n ε

w + ρ(x,w) = g on ΓN ,

w = 0 in ΓD.

We say that a couple of function (v, w) is a solution of Stε(f, g), if v ∈ L2(Ω), w ∈ V,

v = β(w) a.e. Ω and
∫
Ω
(v − f) ξ +

∫
Ω
Aε(x,w,∇w) · ∇ξ =

∫
ΓN

(g − ρ(x,w)) ξ, for any

ξ ∈ V.

Proposition 1 For any f ∈ L2(Ω) and g ∈ L2(ΓN ), there exists a unique v and there
exists w such that (v, w) is a solution of Stε(f, g). Moreover, if (vi, wi) is a solution of
Stε(fi, gi) for i = 1, 2, with fi ∈ L2(Ω) and gi ∈ L2(ΓN ), then∫

Ω
(v1 − v2)+ ≤

∫
Ω
(f1 − f2)+ +

∫
ΓN

(g1 − g2)+(3.1)

and ∫
Ω
|v1 − v2| ≤

∫
Ω
|f1 − f2|+

∫
ΓN

|g1 − g2| .(3.2)

The result of this proposition is quite standard. However, we did not find such statement
in the literature ; we will prove it at the end of this subsection.

Now, since we are considering time dependent boundary conditions, then we will study Pε

in X = L1(Ω) × L1(Γ) endowed with the natural norm |(f, g)|X = ‖f‖L1(Ω) + ‖g‖L1(ΓN ),
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for any (f, g) ∈ X. Moreover, X becomes a Banach lattice if equipped with the usual
partial ordering (f, g) ≤ (f̃ , g̃) iff f ≤ f̃ a.e. in Ω and g ≤ g̃ a.e. in ΓN . In X, we define
the operator Aε by, (h, g) = Aε(u, 0) if and only if

u ∈ L2(Ω), h ∈ L2(Ω), g ∈ L2(ΓN ), ∃ w ∈ H1(Ω), u = β(w) a.e. Ω,∫
Ω
Aε(x,w,∇w) · ∇ξ =

∫
Ω
h ξ +

∫
ΓN

(g − ρ(x,w)) ξ , ∀ ξ ∈ H1(Ω),

and we consider the Cauchy problem :

CPε(u0, f, g)

{
Ut +AεU 3 (f, g) in (0, T )
U(0) = (u0, 0).

Thanks to Proposition 1, we see that (I + λ Aε)−1, the resolvent of the operator Aε, is
an order preserving contraction in X, in other words Aε is T-accretive in X. Moreover,
R(I +λAε) ⊇ L2(Ω)×L2(ΓN ), so that Aε

X the closure of Aε in X is m-T-accretive in X.
Then thanks to Crandall-Ligget Theorem (cf. [20]), Aε generates a nonlinear semigroup
of order preserving contractions in X.

Lemma 1 Setting D =
{
u ∈ L1(Ω) ; u(x) ∈ Im(β) a.e. x ∈ Ω

}
, we have D(Aε) =

D ×
{
0
}
.

Proof : Clearly, by density and the definition of Aε we have D(Aε) ⊆ D×
{
0
}
. To prove

that D ×
{
0
}
⊆ D(Aε), it is enough to prove that

(
D ∩ L∞(Ω)

)
×
{
0
}
⊆ D(Aε). So, let

u ∈ D ∩ L∞(Ω) and consider (uλ, wλ) the solution of
uλ − λ∇ ·Aε(x,wλ,∇wλ) = u, uλ = β(wλ) in Ω
∂−→n ε

wλ + ρ(x,wλ) = 0 on ΓN ,

wλ = 0 in ΓD.

Since (uλ, 0) ∈ D(Aε), for each λ > 0, then it is enough to prove that, by choosing a
subsequence if necessary, uλ → u in L1(Ω), as λ → 0. Since u ∈ Im(β) a.e. x ∈ Ω, then
it is clear that λ wλ is bounded in V, ‖uλ‖L∞(Ω) ≤ ‖u‖L∞(Ω) and ‖uλ‖L2(Ω) ≤ ‖u‖L2(Ω).

So that, λ wλ → 0 in H1(Ω)−weak and uλ → u, in L2(Ω)−weak, as λ → 0. Moreover,
since ‖uλ‖L2(Ω) ≤ ‖u‖L2(Ω), then we deduce that uλ → u in L2(Ω) and the convergence in
L1(Ω) follows.

Using nonlinear semigroup theory for abstract evolution problem (cf. [8] and [21]), we
have the following :

Corollary 2 For any u0 ∈ D, f ∈ L1(Q) and g ∈ L1(ΣN ), CPε(u0, f, g) has a unique
mild solution U = (u, 0). Moreover, we may define a mapping Sε : (u0, f, g) ∈ D ×
L1(Q) × L1(ΣN ) → u ∈ C([0, T );L1(Ω)) such that the L1−comparison principle holds.
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More precisely, if for i = 1 2, u0i ∈ D, fi ∈ L1(Q), gi ∈ L1(ΣN ) and ui = Sε(u0i, fi, gi),
then

d

dt

∫
Ω
(u1(t)− u2(t))+ ≤

∫
[u1(t)>u2(t)]

(f1(t)− f2(t))

+
∫
[u1(t)=u2(t)]

(f1(t)− f2(t))+ +
∫
ΓN

(g1 − g2)+
(3.3)

in D′(0, T ).

It is quite natural to ask in what sense the mild solution U = (u, 0) and then u satisfies
the pde Pε(u0, f, g). Under the general assumptions of Corollary 2, i.e. u0, f and g are
just L1, one expects that u satisfies this pde in a renormalized sense. For the case of
homogeneous Dirichlet boundary conditions, one can see [14] and [31]. As to the case of
general boundary conditions, the problem is still open. In this paper, we will not use this
notion of solution, we restrict ourself to the case where u should satisfies the pde in the
usual weak sense. So, we will assume additional assumptions on u0, f and g.

Proposition 2 Let f ∈ L2(Q), g ∈ L2(ΣN ), u0 ∈ L2(Ω) satisfying (2.6) and u =
Sε(u0, f, g). Then, there exists w such that (u,w) is a solution of Pε(u0, f, g) in the sense
of (2.8). Moreover, we have∫

Ω
j(u(t)) +

∫ t

0

∫
Ω
aε|∇w|2 ≤

∫ t

0

( ∫
Ω
f w +

∫
ΓN

g w
)

+
∫
Ω
j(u0)(3.4)

for any t ∈ [0, T ), where j(r) =
∫ r

0
s dβ(s), for any r ∈ IR.

Proof : By definition of Sε(u0, f, g), u ∈ C([0, T );L1Ω)). Moreover, u(t) = L1− lim
ε→0

uλ(t)

uniformly in t ∈ [0, τ ], for any 0 < τ ≤ T, where for λ > 0, uλ is a λ−approximate
solution of CPε(u0, f, g) corresponding to a subdivision t0 = 0 < t1 < ... < tn−1 < τ ≤

tn, with ti − ti−1 = λ, f1, ...fn ∈ L2(Ω) and g1, ...gn ∈ L2(ΓN ) with
n∑

i=1

∫ ti

ti−1

(
‖f(t) −

fi‖L1(Ω) + ‖g(t) − gi‖L1(ΓN )

)
dt ≤ λ . This approximate solution is defined by uλ(t) = ui,

for t ∈ ]ti−1, ti], i = 1, ...n, where ui is such that Ui := (ui, 0) ∈ L2(Ω) × L2(ΓN ) satisfies
Ui − Ui−1 + λAεUi = (λfi, λgi) with U0 = (u0, 0). That is, there exists wi ∈ V such that
(ui, wi) is a solution of

ui − λ∇ ·Aε(x,wi,∇wi) = ui−1 + λfi, ui = β(wi) in Ω,
∂−→n ε

wi + ρ(x,wi) = gi on ΓN ,

wi = 0 on ΓD.

(3.5)

Taking wi as a test function in (3.5) and using the fact that
∫
Ω
(ui−1−ui)wi ≤

∫
Ω
j(ui−1)−∫

Ω
j(ui), we have∫

Ω
j(ui) + λ

∫
Ω
aε|∇wi|2 + λ

∫
Ω
σ(x,wi) · ∇wi ≤

∫
Ω
j(ui−1) + λ

∫
Ω
fiwi

+λ
∫
ΓN

(gi − ρ(x,wi))wi.
(3.6)
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Adding (3.6) from i = 1 to n, we get∫
Ω
j(uλ(τ)) +

∫ τ

0

∫
Ω
aε |∇wλ|2 +

∫ τ

0

∫
Ω
σ(x,wλ) · ∇wλ ≤

∫
Ω
j(u0) +

∫ τ

0

∫
Ω
fλwλ

+
∫ τ

0

∫
ΓN

(gλ − ρ(x,wλ))wλ

(3.7)

where wλ : [0, τ ] → V, fλ : [0, τ ] → L1(Q) and gλ : [0, τ ] → L1(ΣN ) with wλ(t) = wi,
fλ(t) = fi, and gλ(t) = gi for any t ∈ ]ti−1, ti], i = 1, ...n. Thanks to (2.2) and (2.7), we
have ∫

Ω
σ(x,wλ) · ∇wλ =

∫
Ω
∇ · (

∫ wλ

0
σ(x, r)dr)−

∫
Ω

∫ wλ

0
∇x · σ(x, r)dr ≥ 0,(3.8)

so, since j ≥ 0 and ρ(x,wλ)wλ ≥ 0 on ΣN , then (3.7) implies

m0

∫ τ

0

∫
Ω
|∇wλ|2 ≤

∫
Ω
j(u0) + C

(
‖fλ‖L2(Q) + ‖gλ‖L2(ΣN )

)
‖∇wλ‖L2(Q)

which implies that ∇wλ is bounded in L2(Q), wλ is bounded in L2(0, τ ;V ) and, by (2.4),
ρ(x,wλ) is bounded in L2(ΣN ). Let w ∈ L2(0, τ ;V ), χ ∈ L2(ΣN ), and λk → 0, such that
wλk

→ w in L2(0, τ ;V )−weak and ρ(x,wλk
→ χ in L2(ΣN )-weak. Since, for each t > 0,

uλk
(t) = β(wλk

(t)) a.e. in Q and uλk
(t) → u(t) in L1(Ω), then by monotonicity arguments

we deduce that u(t) = β(w(t)) a.e. in Ω and by (2.3), σ(., wλk
) → σ(., w) in L2(Q). Now,

we consider ũλ the function from [0, τ ] into L1(Ω), defined by ũλ(ti) = ui and ũλ linear in
[ti−1, ti], then (3.5) implies that∫ τ

0

∫
Ω
(−ũλ ξt +Aε(x,wλ,∇wλ) · ∇ξ) =

∫
Ω
ξ(0) u0 +

∫ τ

0

∫
Ω
fλ ξ

+
∫ τ

0

∫
ΓN

(gλ − ρ(x,wλ)) ξ ,
(3.9)

for any ξ ∈ C1([0, τ ]× Ω) ∩ L2(0, τ ;V ), s.t. ξ(τ) ≡ 0. Letting λ→ 0, we get∫ τ

0

∫
Ω
(−u ξt +Aε(x,w,∇w) · ∇ξ) =

∫
Ω
ξ(0) u0 +

∫ τ

0

∫
Ω
f ξ +

∫ τ

0

∫
ΓN

(g − χ) ξ .(3.10)

for any ξ ∈ C1([0, τ ]×Ω)∩L2(0, τ ;V ), s.t. ξ(τ) ≡ 0. To end up the proof of the proposition,
it remains to show that χ = ρ(x,w) a.e. in ΣN . Since, ρ(x,wλ) → χ and wλ → w in
L2(ΣN )−weak, then, by using Minty Lemma, it is enough to prove that

lim inf
λ→0

∫ ∫
ΣN

ρ(x,wλ) wλ ≤
∫ ∫

ΣN

ξ χ.

To this aim, we see that by letting λ→ 0 in (3.7), we have

lim inf
λ→0

∫ ∫
ΣN

ρ(x,wλ) wλ ≤
∫ ∫

Q
f w +

∫ ∫
ΣN

g w −
∫
Ω
j(u(τ))−

∫ ∫
Q
aε |∇w|2

−
∫ ∫

Q
σ(x,w) · ∇w +

∫
Ω
j(u0).
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On the other hand, since u and w satisfies (3.10), then by using the chain rule Lemma (cf.
Lemma 1 of [1]), we deduce that∫

Ω
j(u(τ)) +

∫ ∫
Q
aε |∇w|2 +

∫ ∫
Q
σ(x,w) w =

∫ ∫
Q
f w +

∫ ∫
ΣN

(g − χ) w +
∫
Ω
j(u0),

and the result follows. At last, by using again (3.8) and passing to the limit in (3.7), we
get (3.4).

In order to treat the problem Pε with a reaction term F (t, x, u) satisfying (2.5), we will
use the general Lemma 1 of [10]. Thus,

Proposition 3 For any u0 ∈ D and g ∈ L1(ΣN ), there exists a unique u ∈
C([0, T );L1(Ω)) such that u = Sε(u0, F (., u(.)), g). If moreover, u0 ∈ L2(Ω) and g ∈
L2(ΣN ), then there exists w such that (u,w) is a solution of Pε(u0, F, g).

Proof : Fix g ∈ L1(ΣN ) and let H be the application from [0, T )×X into X defined by
H(t, U) = (F (t, ., u1), g) for any U = (u1, u2) ∈ X. Thanks to (2.5), H(., U) ∈ L1(0, T ;X)
for any U ∈ X and U → H(t, U) is continuous for a.e. t ∈ (0, T ). Moreover, using again
(2.5) we see that CI −H(t, .) is accretive in X. Then (see for instance [10], Lemma 1), for
any u0 ∈ D, there exists a unique mild solution U = (u, 0) of

dU

dt
+AεU = H(., U) on (0, T ), U(0) = U0 := (u0, 0).(3.11)

Since, by definition of a mild solution of (3.11), U is also the unique mild solution of
CPε(u0, f, g) with f = F (., u(.)), then we deduce that u = Sε(u0, F (., u(.)), g) and by
uniqueness of a mild solution of (3.11) we deduce that u is unique. As to the second part
of the proposition is a simple consequence of Proposition 2.

Now, we end up this subsection by proving Proposition 1.

Proof of Proposition 1. Uniqueness : It is clear that (3.2) and the uniqueness follows
directly from (3.1). To prove (3.1), we substrate the equations satisfied by (v1, w1) and
(v2, w2). Setting V = v1 − v2, W = w1 − w2, F = f1 − f2, G = g1 − g2, and taking
ξ = Hε(w1 − w2), we get∫

Ω
V Hε(W ) +

∫
Ω
aε|∇W |2H ′

ε(W ) +
∫
ΓN

(
ρ(x,w1)− ρ(x,w2)

)
Hε(W )

+
∫
Ω

(
σ(x,w1)− σ(x,w2)

)
· ∇W H ′

ε(W ) =
∫
Ω
F Hε(W ) +

∫
ΓN

GHε(W ).

On the other hand, since σ(x,w) is Lipschitz in w then∣∣∣ ∫
Ω
(σ(x,w1))− σ(x,w2)) · ∇WH ′

ε(W )
∣∣∣ ≤ C

∫
[0≤|W |≤ε]

|∇W | −→ 0 as ε→ 0.

So, since (ρ(x,w1) − ρ(x,w2))Hε(W ) ≥ 0 on ΓN , then letting ε → 0 and using the fact
that (v1 − v2)Sign+

0 (w1 − w2) = (v1 − v2)+, we get (3.1).
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Existence : Let B : V → V ∗ be defined by
〈
Bw, ξ

〉
=
∫
Ω
β(w)ξ +

∫
Ω
Aε(x,w,∇w) · ∇ξ +∫

ΓN

(ρ(x,w)− g) ξ . Since β and σ(x, .) are Lipschitz, then by Poincaré inequality, it is not

difficult to see that B is bounded and is weakly continuous. Moreover, thanks to (2.2) and

(2.7), we have
∫
Ω
σ(x,w) · ∇w ≥ 0, so that,

〈
Bw,w

〉
‖w‖V

≥ m‖w‖V − C‖g‖L2(ΓN ) → ∞ as

‖w‖V → ∞, which implies that B is coercive. So, thanks to [34] (Cf. Chap. 2, Theorem
2.1 and Remark 2.1), we conclude that for f ∈ V ∗ (and in particular for f ∈ L2(Ω)),
there exists w ∈ V, such that

〈
Bw, ξ

〉
=
〈
f, ξ

〉
for any ξ ∈ V, which ends up the proof of

existence.

3..2 Convergence results : existence for Sh

As said in the introduction, we will construct a solution of the Shadow problem as limit of
a solution of the problem Pε, by letting ε→ 0. This is the aim of the following proposition.

Proposition 4 For 0 < ε < ε0, let fε ∈ L2(Q), gε ∈ L2(ΣN ), u0ε ∈ L2(Ω) satisfying
(2.6) and denote by (uε, wε) the solution of Pε(u0ε, fε, gε) given by Proposition 2. Assume
that fε, gε and u0ε are weakly convergente, respectively in L2(Q), L2(ΣN ) and L2(Ω).
Then, there exists u ∈ L2(0, T ;L2

Ω1
) and w ∈ L2(0, T ;H1

Ω1
) such that, u = β(w) a.e.

Q, and by taking subsequences if necessary, we have uε → u in L1(Q) and wε → w in
L2(0, T ;V )− weak. Moreover, (u,w) satisfies∫

Ω

∫ ∫
Q

(
− uξt +A0(x,w,∇w) · ∇ξ

)
= u0 ξ(0) +

∫ ∫
Q
f ξ +

∫ ∫
ΣN

(
g − ρ(., w)

)
ξ(3.12)

for any ξ ∈ C1Q)∩L2(0, T ;H1
Ω1

) such that ξ(T ) ≡ 0, where f, g and u0 are the weak limits
respectively of fε, gε and u0ε.

Proof : Recall that (3.4) with (2.1) and Poincarré inequality implies that∫
Ω
j(uε(t)) +

∫ ∫
Q
aε |∇wε|2 ≤ C, a.e. t ∈ (0, T ),(3.13)

where C is a constant independent of ε, so that wε is bounded in L2(0, T ;V ), there
exists w ∈ L2(0, T ;V ) and a subsequence that we denote again by {ε}, such that
wε → w in L2(0, T ;V )-weak and in L2(ΣN )-weak . Moreover, since aε → a0 uni-
formly in Ω0, then aε ∇wε → a0 ∇w in L2((0, T ) × Ω0)-weak. On the other hand, since

inf
x∈K

aε(x)
∫ T

0

∫
K
|∇wε|2 ≤

∫ T

0

∫
Ω
aε |∇wε|2 ≤ C and inf

x∈K
aε(x) → ∞ as ε → 0, for any

K ⊂⊂ Ω1, then∫ T

0

∫
K
|∇w|2 ≤ lim inf

ε→0

∫ T

0

∫
K
|∇wε|2 = 0, for any K ⊂⊂ Ω1.

Since Ω1 is connected, we conclude that w(t) is constant in Ω1, for each t > 0, so that
w ∈ L2(0, T ;H1

Ω1
).
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Now, let us prove that, as ε → 0, uε → β(w) =: u in L1(Q). Since for any k > 0 and

r ∈ IR, |β(r)| ≤ 1
k
j(r) + sup{−β(−k), β(k)}, then, (3.13) implies that for any measurable

set Q̃ ⊆ Q and k > 0, we have∫ ∫
Q̃
|uε| ≤

C

k
+ |Q̃| sup{−β(−k), β(k)},

which implies that {uε} is equi-integrable in L1(Q). On the other hand, since β is Lipschitz,
uε = β(wε) and wε is bounded in L2(0, T ;V ), then {uε} is also bounded in L2(0, T ;V )

and lim
h→0

∫ T

0

∫
ω
|uε(t, x + h) − uε(t, x)| = 0, for each ω ⊂⊂ Ω. So, thanks to Theorem 2 of

[33], we deduce that {uε} is relatively compact in L1(Q). Then, there exists u ∈ L1(Q),
such that uε → u in L1(Q), and by monotonicity argument we deduce that u = β(w) a.e.
in Q. This ends up the proof of the first part of the proposition. To prove that (v, w)
satisfies (3.12), we consider ξ as in the statement of (3.12) and take it as a test function
in (2.8), i.e.∫ ∫

Q

(
− u ξt +Aε(x,wε,∇wε) · ∇ξ

)
=
∫
Ω
u0ε ξ(0) +

∫ ∫
Q
fε ξ +

∫ ∫
ΣN

(
gε − ρ(., wε)

)
ξ.

Obviously,
∫ T

0

∫
Ω
Aε(x,wε,∇wε) ·∇ξ =

∫ T

0

∫
Ω0

Aε(x,wε,∇wε) ·∇ξ, so, using (2.3) and let-

ting ε→ 0, we get
∫ ∫

Q

(
−uξt+A0(x,w,∇w)·∇ξ

)
=
∫
Ω
u0ξ(0)+

∫ ∫
Q
f ξ+

∫ ∫
ΣN

(
g−χ

)
ξ,

where χ is a weak limit in L2(ΣN ) of ρ(x,wε). By using monotonicity arguments (Minty
Lemma) exactly in the same way as in the proof of Proposition 2, we deduce that
χ = ρ(x,w) a.e. in ΣN , and complete the proof of the proposition.

Now, in the concern of showing uniqueness (cf. Section 4) and exhibiting the singular
limit phenomena, we improve the convergence by using nonlinear semigroup theory. We
will be interest in the limit, as ε → 0, of the semigroup generated by Aε. For this, let us
introduce the elliptic problem associated with Sh(u0, f, g), that is

S0(f, g)


v −∇ ·A0(x,w,∇w) = f, v = β(w) in Ω0

w is constant in Ω1

∂−→n0
w + ρ(x,w) = g on ΓN ∩ Γ0

w = 0 on ΓD.

Proposition 5 Let f ∈ L2(Ω), g ∈ L2(ΓN ), (vε, wε) a solution of Stε(f, g). As, ε→ 0, we
have vε → v in L1(Ω) and, by taking subsequences if necessary, wε → w in H1(Ω)−weak.
The couple (v, w) solves S0(f, g) in the following sense : v ∈ L2(Ω), w ∈ H1

Ω1
, v = β(w)

a.e. Ω and
∫
Ω
(v − f) ξ +

∫
Ω
A0(x,w,∇w) · ∇ξ =

∫
Γ
(g − ρ(x,w)) ξ, for any ξ ∈ H1

Ω1
.

Moreover, v is unique.

Proof : The proof of uniqueness follows in the same way for the problem Stε(f, g).
Indeed, subtracting the equations satisfying by two solutions (v1, w1) and (v2, w2), one
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sees that ξ = Hε(w1 − w2) is an admissible test function and the proof follows in in the
same way of Proposition 1. To prove the convergence of (vε, wε) to (v, w), observe that
(vε, wε) is also a solution of Pε(vε, f − vε, g), so that, by using (3.4), we deduce that wε

is bounded in H1(Ω) and, since β is Lipschitz, then vε is bounded in L2(Ω). So, applying
Proposition 4 the convergence results follow.

Applying Proposition 5, we define in X the limiting operator A0, by (h, g) ∈ A0(u, 0) if
and only if

u ∈ L2
Ω1
, h ∈ L2(Ω), g ∈ L2(ΓN ), ∃ w ∈ H1

Ω1
, u = β(w) a.e. Ω,∫

Ω
A0(x,w,∇w) · ∇ξ =

∫
Ω
h ξ +

∫
ΓN

(g − ρ(x,w)) ξ, ∀ ξ ∈ H1
Ω1
.

Denoting by Jε
λ (resp. J0

λ) the resolvent of Aε (resp. A0), we have

Corollary 3 As, ε→ 0, Jε
λ (f, g) → J0

λ (f, g) for any f ∈ L2(Ω), g ∈ L2(ΓN ) and λ > 0.

This means that the operator Aε converges to the operator A0 in the sense of resolvent.
So, A0 is T-accretive and we have R(I + λA0) ⊇ L2(Ω)×L2(ΓN ), which implies that A0

generates a nonlinear semigroup of order preserving contractions in X. Moreover, we have

Lemma 2 D(A0) =
(
D ∩ L1

Ω1

)
×
{
0
}
.

Proof : We follow the same idea of the proof of Lemma 1. By density and the definition
of A0 we have D(A0) ⊆

(
D ∩ L1

Ω1

)
×
{
0
}
. To prove that

(
D ∩ L1

Ω1

)
×
{
0
}
⊆ D(A0), it

is enough to prove that
(
D ∩ L∞Ω1

)
×
{
0
}
⊆ D(A0). So, let u ∈ D ∩ L∞Ω1

and consider
(uλ, wλ) the solution of

uλ − λ∇ ·A0(x,wλ∇wλ) = u, uλ = β(wλ) in Ω
w is constant in Ω1

∂−→n0
w + ρ(x,w) = 0 on ΓN ∩ Γ0

wλ = 0 on ΓD.

Since u ∈ Im(β) a.e. x ∈ Ω, and (cf. Proposition 5) uλ is obtained as limit of a solution
of Stε(f, 0), as ε→ 0, then we deduce that λ wλ is bounded in V, ‖uλ‖L∞(Ω) ≤ ‖u‖L∞(Ω)

and ‖uλ‖L2(Ω) ≤ ‖u‖L2(Ω). And, the convergence uλ → u in L1(Ω) follows exactelly in the
same way of Lemma 1.

As in the previous subsection, considering the Cauchy problem in X

CP0(u0, f, g)

{
Ut +A0 U = (f, g) in (0, T )
U(0) = (u0, 0) =: U0,

we have
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Corollary 4 1. For any u0 ∈ D ∩ L1
Ω1
, f ∈ L1(Q) and g ∈ L1(ΣN ), CPε(u0, f, g)

has a unique mild solution U = (u, 0). Moreover, we may define a mapping S0 :
(u0, f, g) ∈

(
D ∩ L1

Ω1

)
× X → u ∈ C([0, T );L1

Ω1
) such that the L1−comparison

principle holds.

2. For any u0 ∈ D∩L1
Ω1

and g ∈ L1(ΣN ), there exists a unique u ∈ C([0, T );L1
Ω1

) such
that u = S0(u0, F (., u(.)), g).

Now, applying Corollary 3 with classical theorems for regular semigroup perturbation (cf.
[17] and also [10]), we have

Corollary 5 1. For ε > 0, let u0ε ∈ D, gε ∈ L1(ΣN ) and uε = Sε(u0ε, F (., uε(.)), gε).
If, letting ε → 0, gε → g in L1(ΣN ) and u0ε → u0 in L1(Ω), with u0 ∈ L1

Ω1
, then

uε → u in C([0, T );L1(Ω)), where u = S0(u0, F (., u(.)), g).

2. If, moreover, u0ε ∈ D ∩ L2
Ω1
, gε ∈ L2(ΣN ) and wε is the function given by

Proposition 2, then, by taking subsequence if necessary, we have wε → w in
for any ξ ∈ H1

Ω1
L2(0, T ;V )-weak and (u,w) is a solution of Sh(u0, F, g).

4. Uniqueness

To prove uniqueness we use the concept of integral (sub/super) solution, which is well
known in the context of the abstract Cauchy problem (cf. [6], [4] and [8]). This concept
was previously used in [12] for the proof of uniqueness of weak solution for elliptic-parabolic
problems, with homogeneous Dirichlet boundary conditions. Before to give a definition
of this notion in our context, let us first introduce the following stationary problems
associated with Pε and Sh respectively :

−∇ ·Aε(x, η,∇η) = h in Ω
∂−→n ε

η + σ(x, η) = l on ΓN

η = 0 on ΓD

(4.1)

and 
−∇ ·A0(x, η,∇η) = h in Ω0

η is constant in Ω1

∂−→n 0
η + ρ(x, η) = l on ΓN ∩ Γ0

η = 0 on ΓD.

(4.2)

For h ∈ L2(Ω) and l ∈ L2(ΓN ) we say that η is a solution of (4.1) (resp. of (4.2)), if η ∈ V
(resp. η ∈ H1

Ω1
) and

∫
Ω
Aε(x, η,∇ η) ·∇ξ =

∫
ΓN

(l− ρ(x, η)) ξ+
∫
Ω
h ξ for any ξ ∈ V (resp.∫

Ω1

A0(x, η,∇ η) · ∇ξ =
∫
ΓN

(l − ρ(x, η)) ξ +
∫
Ω
h ξ for any ξ ∈ H1

Ω1
.)

Definition 3 Let u0 ∈ D (resp. u0 ∈ D ∩ L1
Ω1

), f ∈ L1(Q) and g ∈ L1(ΣN ).
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i) An integral subsolution of Pε(u0, f, g) (resp. Sh(u0, f, g)) is a function u ∈ L1(Q)
(resp. u ∈ L1(0, T ;L1

Ω1
)), such that ess- lim

t→0
‖(u(t)− u0)+‖L1(Ω) = 0, and moreover,

for any h ∈ L2(Ω), l ∈ L2(ΓN ) and η solution of (4.1) (resp. (4.2)), we have

d

dt

∫
Ω
(u(t)− β(η))+ ≤

∫
[u(t)>β(η)]

(f − h) +
∫
[u(t)=β(η)]

(f − h)+

+
∫
ΓN

(g − l)+ in D′(0, T ).
(4.3)

ii) An integral supersolution of Pε(u0, f, g) (resp. Sh(u0, f, g)) is a function u ∈ L1(Q)
(resp. u ∈ L1(0, T ;L1

Ω1
)), such that ess- lim

t→0
‖(u0−u(t))+‖L1(Ω) = 0, and, moreover,

for any h ∈ L2(Ω), l ∈ L2(ΓN ) and η solution of (4.1) (resp. (4.2)), we have

d

dt

∫
Ω
(β(η)− u(t))+ ≤

∫
[β(η)>u(t)]

(h− f) +
∫
[u(t)=β(η)]

(h− f)+

+
∫
ΓN

(l − g)+ in D′(0, T ).
(4.4)

iii) A function u ∈ L1(Q) (resp. u ∈ L1(0, T ;L1
Ω1

)) is called an integral solution of
Pε(u0, f, g) (resp. Sh(u0, f, g)), if u is an integral subsolution and also an integral
supersolution.

First, let us prove the uniqueness of integral solutions. This is the aim of the following
proposition.

Proposition 6 Let u0 ∈ D (resp. u0 ∈ D ∩ L1
Ω1

), f ∈ L1(Q) and g ∈ L1(ΣN ). Suppose
that u is an integral subsolution of Pε(u0, f, g) (resp. Sh(u0, f, g)) and û is an integral
supersolution of Pε(ũ0, f̃ , g̃) (resp. Sh(ũ0, f̃ , g̃)). Then u and ũ satisfy the comparison
principle; i.e.

d

dt

∫
Ω

(
u(t)− ũ(t)

)+
≤

∫
[u(t)>ũ(t)]

(
f(t)− f̃(t)

)
+
∫
[u(t)=ũ(t)]

(
f(t)− f̃(t)

)+
+
∫
ΓN

(
g(t)− g̃(t)

)+(4.5)

in D′(0, T ). In particular there is uniqueness of an integral solution of Pε(u0, f, g) (resp.
Sh(u0, f, g)).

Proof : This proposition follows in the same way of Proposition 4.3 of [12]. For com-
pleteness, let us give the arguments. It is clear that the uniqueness assertion follows by
(4.5). To prove (4.5), recall from [4] that an integral subsolution of CPε(u0, f, g), with
u0 ∈ D, u0 ∈ L1

Ω1
if ε = 0, and (f, g) ∈ L1(0, T ;X) is U = (u, 0) such that u ∈ L1(Q),

u ∈ L1(0, T ;L1
Ω1

) if ε = 0, ess- lim
t→0

‖(u(t)− u0)+‖L1(Ω) = 0 and, moreover,

d

dt

∫
Ω

(
u(t)− z

)+
≤
∫
[u(t)>z]

(f − h) +
∫
[u(t)=z]

(f − h)+ +
∫
ΓN

(g − l)+(4.6)
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in D′(0, T ), for any (z, h, l) ∈ L1(Ω)×X such that (h, l) ∈ Aε(z, 0). Now, one sees easily,
that Definition 3.i) implies that (4.6) is satified for any (h, l) ∈ Aε(z, 0). On the other
hand, recall from section 2 that Aε is m-accretive in X and since the notion of integral
solution is invariant under the closure of the operator, then we deduce that (4.6) is satis-
fied for any (h, l) ∈ Aε(z, 0). So, assume for instance, that ε > 0 and let u (resp. û) be an
integral subsolution (resp. supersolution) of Pε(u0, f, g) (resp. Pε(ũ0, f̃ , g̃)). Thanks to
the first part of the proof, U = (u, 0) (resp. Û = (û, 0)) is an integral subsolution (resp.
supersolution) in the sense of [4] of the corresponding Cauchy problem CPε(u0, f, g) (resp.
CPε(ũ0, f̃ , g̃)) with the operator Aε. Thus estimates (4.3) follows directly from Theorem
3 of [4]. The proof remains the same if ε = 0.

Now, it is clear that uniqueness of u such that (u,w) is a weak solution of Pε(u0, f, g) or
Sh(u0, f, g) follows by proving that u is an integral solution.

Proposition 7 Let u0 ∈ L2(Ω) ∩D (resp. u0 ∈ L2
Ω1
∩D), f ∈ L2(Q) and g ∈ L2(ΣN ).

If u ∈ L2(Q) (resp. u ∈ L2(0, T ;L2
Ω1

))) is such that there exists w such that (u,w) is a
solution of Pε(u0, f, g) (resp. Sh(u0, f, g)) in the sense of (2.8) (resp. (2.10)), then u is
an integral subsolution of Pε(u0, f, g), (resp. Sh(u0, f, g)).

Proof : We will give the proof for the problem Pε, with ε > 0, as to the problem Sh the
proof follows exactly in the same way. Let h, l and η be as in the statement of Definition
3 and let ξ ∈ D(−∞, T ) with ξ ≥ 0. First, let us prove that

−
∫ ∫

Q
ξt

∫ w

w0

Hε(s− η) dβ(s) +
∫ ∫

Q
ξ Aε(x,w,∇ w).∇Hε(w − η)

≤
∫ ∫

Q
f ξ Hε(w − η) +

∫ ∫
ΣN

(g − σ(., w)) ξ Hε(w − η),
(4.7)

where w0 is a mesurable function in Ω such that u0 = β(w0) a.e. in Ω. To this end, for

δ > 0, we consider ψδ(t) =
1
δ

∫ t+δ

t
Hε(w(s) − η)ξ(s)ds, a.e. Ω, where we extend w onto

IR× Ω by 0 if t > T, by w0 if t < 0. It is clear that ψδ is an admissible test function and∫ ∫
Q

(
β(w)− u0

)
ψδ

t =
∫ ∫

Q
ξHε(w(t)− η)

β(w(t− δ)− β(w(t))
δ

.

So, since Hε(p− η)
(
β(p)− β(q)

)
≤
∫ q

p
Hε(r− η) dβ(r) for any p, q ∈ IR, then we deduce

that ∫ ∫
Q
ξ Aε(x,w,∇ w).∇ ψδ −

∫ ∫
Q
f ξ ψδ −

∫ ∫
ΣN

(g − σ(., w)) ξ ψδ

≤
∫ ∫

Q

ξ(t+ δ)− ξ(t)
δ

∫ w(t)

w0

Hε(r − η) dβ(r).

Letting δ → 0 and using the fact that ψδ → Hε(w − η) in L2(0, T ;V ), (4.7) follows.

Now, it is clear that, as ε → 0,
∫ w(t,x)

η
Hε(s − η) dβ(s) →

(
β(w(t, x)) − β(η)

)+

a.e.
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(t, x) ∈ Q, so that by Lebesgue’s dominated convergence theorem, the first term in (4.7)

converges to
∫ ∫

Q

(
(u(t, x)− β(η))+− (u0− β(η))+

)
ξt. Obviously,

∫ ∫
Q
f ξ Hε(w− η) and∫ ∫

ΣN

(g−σ(., w))ξHε(w−η) converges, respectively, to
∫ ∫

Q
f ξSign+

0 (w−η) and
∫ ∫

ΣN

(g−

σ(., w))ξSign+
0 (w−η). As to the second term, note that using the definition of a solution of

(4.1), we have
∫ ∫

Q
ξAε(x,w,∇w).∇Hε(w−η) = I1

ε +I2
ε , with I1

ε =
∫ ∫

Q
ξ
(
Aε(x,w,∇w)−

Aε(x, η,∇η)
)
· ∇Hε(w− η) and I2

ε =
∫ ∫

Q
ξ hHε(w− η) +

∫ ∫
ΣN

(l− ρ(x, η)) ξ hHε(w− η).

Clearly, I2
ε converges to

∫ ∫
Q
ξ h Sign+

0 (w− η) +
∫ ∫

ΣN

ξ Sign+
0 (w− η) (l− σ(x, η)). On the

other hand, lim inf
ε→0

I1
ε ≥ lim

ε→0

∫ ∫
Q
ξ H ′

ε(w − η) (σ(x,w) − σ(x, η)) · ∇ (w − η) = 0. So,

letting ε→ 0 in (4.7), we get

−
∫ ∫

Q

(
(u− β(η))+ − (u0 − β(η))+

)
ξt +

∫ ∫
ΣN

(ρ(., w)− ρ(., η))+ξ

≤
∫ ∫

Q
ξ Sign+

0 (w − η) (f − h) +
∫ ∫

ΣN

ξ Sign+
0 (w − η) (g − g̃)

≤
∫ T

0

{∫
[u(t)>β(η)]

ξ (f − h) +
∫
[u(t)=β(η)]

ξ (f − h)+
}

+
∫ ∫

ΣN

(g − l)+.

(4.8)

As ξ ∈ D(−∞, T ) was arbitrary, it follows that (4.3) holds. Now, note that (4.8) implies
that for any t ∈ [0, T ), we have∫

Ω
(u(t)− z)+ ≤

∫
Ω
(u0 − z)+ +

∫ t

0

∫
[u(t)>z]

(f − h) +
∫ t

0

∫
[u(t)=z]

(f − h)+ +
∫ t

0

∫
ΓN

(g − l)+

for any z ∈ D and (h, l) ∈ Aε(z, 0). A a consequence, ess- lim
t→0

∫
Ω
(u(t)−z)+ ≤

∫
Ω
(u0−z)+,

for any z ∈ D and u0 ∈ D implies that ess- lim
t→0

‖(u(t)− u0)+‖L1(Ω) = 0. This ends up the

proof of the proposition.

Corollary 6 Let u0 ∈ D (resp. u0 ∈ D ∩ L1
Ω1

) and g ∈ L2(ΣN ). There is uniqueness of
u such that there exists w such that (u,w) satisfies (2.8) (resp. (2.10)).

Proof : If u1 and u2 are such that (u1, w1) and (u2, w2) satisfy (2.8), then (u1, w1) and
(u2, w2) are two solutions of Pε(u0, f1, g) and Pε(u0, f2, g) respectively with f1 = F (., u1(.))
and f2 = F (., u2(.)). So, applying Proposition 7 and Proposition 6, we deduce that∫

Ω
(u1(t)− u2(t))+ ≤

∫ t

0

∫
[u1≥u2]

(F (., u1)− F (., u2)) ≤ C

∫ t

0

∫
Ω
(u1 − u2)+,

which implies, by Granwall, that u1 ≤ u2. In the same way we can prove that u2 ≤ u1,
and deduce that u1 = u2. The uniqueness of u such that (u,w) satisfies (2.10) in the case
where u0 ∈ D ∩ L1

Ω1
follows in the same way.
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5. Proofs of the main Theorems

Proof of Theorem 1 : Now, it is clear that the existence of (u,w) satisfying (2.8)
follows by Proposition 4 and the uniqueness of u follows by Corollary 6. On the other
hand, since by Proposition 4, u = Sε(u0, F (., u(.)), g), then u ∈ C([0, T );L1(Ω)), u(0) = u0

and the comparaison principle is satisfied.

Proof of Theorem 2 : The existence assertion of the theorem follows by Corollary 5.
As to the uniqueness and the comparaison principle, recall that a solution u of Sh(u0, F, g)
is also a solution of Sh(u0Ω1

, F, g), which is unique by Corollary 6. Thanks to Corollary
5, u is given by u = S0(u0Ω1

, F (., u(.)), g), so that u ∈ C([0, T );L1(Ω)), u(0) = u0Ω1 and
the comparaison principle is satisfied.

Proof of Theorem 3 : Assume that u0 ∈ L1
Ω1
. Since uε = Sε(u0, F (., uε), g) and

u = S0(u0, F (., u(.)), g) then the theorem is a simple consequence of Corollary 5.
Now, in order to prove the theorem in the case where u0 6∈ L1

Ω1
, we begin by to treat

the case F ≡ 0. In this case uε = Sε(u0, 0, g) and, for any t ≥ τ > 0, we have uε(t) =
Sε(uε(τ), 0, g(.+τ))(t−τ). Applying Proposition 4, we know that there exists εk → 0, such
that, for a fixed τ > 0, uεk

(τ) → S0(u0Ω1
, 0, g(.+ τ))(τ) in L1(Ω). Then, applying the first

part of the proof in (τ, T ), we deduce that uε → S0(S0(u0Ω1
, 0, g(.+ τ))(τ), 0, g)(.− τ) =

S0(u0Ω1
, 0, g) in C([τ, T );L1(Ω)). Since τ > 0 is arbitrary, then the results of the Theorem

follows in the case F ≡ 0. To end up the proof, assume that F 6≡ 0. For fixed τ > 0,
we set Fτ (t) = F (t) χ(τ,T )(t) for t ∈ (0, T ), and we consider zτ

ε = Sε(u0, Fτ (., zτ
ε , g) and

zτ = S0(u0Ω1
, Fτ (., zτ ), g). Using the fact that uε = Sε(u0, F (., uε), g), Corollary 2 and

(2.5) implies that∫
Ω
|uε(t)− zτ

ε (t)| ≤
∫ t

0

∫
Ω

(
K2 χ(0,τ) +K|uε − zτ

ε | χ(τ,T )

)
,

so that, by Granwall, we get
∫
Ω
|uε(t)− zτ

ε (t)| ≤ e
∫ t

τ
K
∫ τ

0

∫
Ω
K2 for any t ∈ (τ, T ). In the

same way, since u = S0(u0Ω1
, F (., u(.), g), then

∫
Ω
|u(t)− zτ (t)| ≤ e

∫ t

τ
K
∫ τ

0

∫
Ω
K2 for any

t ∈ (τ, T ). On the other hand, since zτ
ε (τ) = Sε(u0, 0, g)(τ) and zτ (τ) = S0(u0Ω1

, 0, g)(τ),
then using the second part of the proof we have zτ

ε (τ) → zτ (τ) in L1(Ω), and, by reg-

ular semigroup perturbation thereoms, we deduce that sup
t∈[τ,T )

∫
Ω
|zε(t) − zτ (t)| → 0. So,

lim
ε→0

sup
t∈[t1,t2]

∫
Ω
|uε(t)− u(t)| ≤ 2 e

∫ t

τ
K
∫ τ

0

∫
Ω
K2, for any 0 < τ ≤ t1 < t2 < T, and the con-

vergence (2.11) follows. For the convergence of wε, this follows by Proposition 4.
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