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Abstract

In this paper, we study the nonlinear evolution equation of Hele-Shaw type with dy-
namical boundary conditions. That is, the equation ut = ∆w + f where u ∈ H(w) and
H is the Heaviside function, with boundary condition µ(x,w) ∂tw + k∇w · ν = g, where
ν denotes the outward normal vector of the fixed boundary of the domain. We prove
existence, uniqueness and some qualitative properties of the solution.
keywords : Hele-Shaw problem, dynamical boundary condition, Neuman boundary con-
dition, evolution problem, nonlinear semigroup theory.

1 Introduction and main results

An equation of the Hele-Shaw type is a nonlinear pde of the form

ut = ∆w + f with u ∈ H(w)(1.1)

where H is the multivalued Heaviside function defined by

H(r) =











0 if r < 0

[0, 1] if r = 0

1 if r > 0 .

This equation appears in the study of the weak formulation of the mathematical model of the
so called Hele-Shaw problem (cf. [8], [7] and [10]) . The equation (1.1) stated in a bounded
domain Ω of IRN , with N ≥ 1, needs to be completed with boundary conditions on ∂Ω, the
boundary of Ω. As far as we know, the Hele-Shaw problem was studied with prescribed static
Neumann boundary condition, i.e.

∇w · ν = g on Γ := ∂Ω
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(cf. [8], [18] and [15]). It was studied also with prescribed Dirichlet boundary condition, i.e.
p = h on Γ (cf. [9]). But, in some practical situations it may be not possible to prescribe or
to control the exact value of w on Γ. In [20], the authors consider the case of an evolutionary
condition of nonlocal type, assuming that w has a constant but unknown value along Γ, they
prescribed the condition

µ
d

dt
w +

∫

Γ
∇w · ν = g(t),

where µ ∈ IR and g are given. In this paper, we are interested in the case of local evolutionary
boundary conditions where the value of w and the flux on Γ has unknown values related by
the equation

µ(x,w) ∂tw + ∇w · ν = g(t, x) for x ∈ Γ,(1.2)

with µ : Ω × IR+ → IR+ and g : (0, T ) × Ω → IR+ are given measurable functions.
Notice that µ may vanishes on a part of Γ, so that the boundary condition is static on a part

and dynamic on the remaining one. Denoting ρ(., r) =

∫ r

0
µ(., s)ds, the formulation (1.2) is

equivalent to
∂tρ(x,w) + ∇w · ν = g on Γ.(1.3)

In other words the boundary condition (1.2) means that w is related to the flux by

ρ(x,w(t)) +

∫ t

0
∇w(x, s) · ν ds = λ(t, x),

for a given function λ depending on the initial data of w and possibly reactions terms on Γ.
This kind of boundary condition is called dynamical boundary one, they appear in numerous
problems (cf. [19], [5], [1], [14], [13], [22] and the references therein).

So, taking into acount the initial data for the problem, the weak formulation of the Hele-
Shaw problem with dynamical boundary condition reads

E(u0, z0, f, g)



































∂tu− ∆w = f(t, x), u ∈ H(w) in QT = (0, T ) × Ω

∂tz + ∂νw = g(t, x), z = ρ(x,w) on ΣT = (0, T ) × Γ

u(0) = u0 in Ω, z(0) = z0 on Γ,

where ∂ν denotes the outward normal derivative of w, i.e. ∇w · ν, the functions f and
g summarize driving forces terms in Ω and on Γ, respectively, u0 and z0 are the initial
data for u and z respectively. Our main goal is to study the existence and uniqueness of a
solution (u, z), as well as to prove some natural qualitative properties of this solution, like
the increasing property of the moving interface and the nondecreasing property of the mushy
region. Various results of existence, uniqueness and others properties for linear and nonlinear
evolution problem with dynamical boundary condition was proven in this last decade (cf [1],
[14], [22], [11] and [16]). The most relevant in the study of this particular case is the fact
that the inverse of the graph H is not everywhere defined, the domain of H−1 is reduced to
[0, 1]. Recall that in [16], the existence and uniqueness of solutions for problems of the type
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E(u0, z0, f, g) was proved for a large class of maximal monotone graph instead of H, with an
everywhere defined inverse. For the case of the Heaviside function, the problem is completely
different, a necessary condition appears for the existence of a solution. Recall that even in
the case where ρ ≡ 0, i.e. static boundary condition, existence and uniqueness of a solution

for this kind of evolution problem is known to be true only if

∫

Ω
u0+

∫ t

0
(

∫

Ω
f+

∫

Γ
g) ∈ (0, |Ω|)

for any t ∈ [0, T ) (cf. [9], [15] and [18]). In the case ρ 6≡ 0, we prove that this condition
becomes

∫

Ω
u0 +

∫

Γ
z0 +

∫ t

0
(

∫

Ω
f +

∫

Γ
g) ∈ (0, |Ω| +

∫

Γ
sup

r∈IR+

ρ(., r)).(1.4)

The notion of solution of the problem E(u0, z0, f, g), we have in mind is naturally defined
as follows.

Definition 1 Let 0 < T ≤ ∞, (u0, z0) ∈ L2(Ω) × L2(Γ) and (f, g) ∈ L2
loc([0, T );L2(Ω)) ×

L2
loc([0, T );L2(Γ)) be given. A solution of E(u0, z0, f, g) in (0, T ) is a couple (u, z) such that

u ∈ C([0, τ);L1(Ω)), z ∈ C([0, τ);L1(Γ)) ∩ L2(ΣT ), 0 ≤ u ≤ 1 a.e. in QT , u(0) = u0 a.e. in
Ω, z(0) = z0 a.e. in Γ and there exists w ∈ L2

loc(0, T ;H1(Ω)) such that u ∈ H(w) a.e. in QT ,

z = ρ(., w) a.e. on ΣT and

d

dt

∫

Ω
u ξ +

d

dt

∫

Γ
z ξ +

∫

Ω
∇w.∇ξ =

∫

Ω
f ξ +

∫

Γ
g ξ in D′(0, T )(1.5)

for any ξ ∈ C1(Ω).

Throughout the paper, we denote by

∫

−
Ω
f the average of f in Ω, given by

1

|Ω|

∫

Ω
f.

For 1 ≤ p ≤ ∞, Lp(Ω)+ is the cone of nonneagtive functions of Lp(Ω). We assume that
ρ : Γ × IR → IR is a caratheodory function, such that ρ(x, r) is nondecreasing in r,

ρ(., 0) = 0, and ρ(., r) ≤ a(.) |r| + b(.) a.e. in Γ and for any r ∈ IR+(1.6)

with a, b ∈ L∞(Ω). Moreover, setting ρ(x) = sup
r∈IR

ρ(x, r) a.e. x ∈ Γ, we assume that, either

ρ(x) = +∞ a.e. x ∈ Γ or ρ ∈ L1(Γ).(1.7)

Theorem 1 Let f ∈ L2
loc([0, T );L2(Ω)+), g ∈ L2

loc([0, T );L2(Γ)+), u0 ∈ L∞(Ω)+, 0 ≤ u0 ≤ 1

and z0 ∈ L1(Γ)+ such that

∫ z0

0
ρ(., r) dr ∈ L1(Ω),

z0(x) ∈ Im(ρ(x, .)) a.e. x ∈ Γ(1.8)

and, set

µ(t) =

∫

−
Ω
u0 +

1

|Ω|

∫

Γ
z0 +

∫ t

0

(

∫

−
Ω
f +

1

|Ω|

∫

Γ
g
)
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and

T0 = max
{

t ∈ [0, T ) ; µ(t) < 1 +
1

|Ω|

∫

Γ
ρ(x)dx

}

.(1.9)

Then, there exists a unique triplet (u, z, τ), such that τ ≤ T0, (u, z) is the solution of

E(u0, z0, f, g) in [0, τ),

∫

−
Ω
u(t) < 1 for any t ∈ [0, τ) and u(t) ≡ 1 in Ω, for any t ∈ [τ, T0).

Moreover, we have

1. For any t ∈ [0, τ),
∫

−
Ω
u(t) +

1

|Ω|

∫

Γ
z(t) = µ(t).(1.10)

2. If (ui, zi) are two solutions of E(u0i, z0i, fi, gi), i = 1, 2, then

d

dt

∥

∥

∥

(

u1(t) − u2(t)
)+∥
∥

∥

L1(Ω)
+
d

dt

∥

∥

∥

(

z1(t) − z2(t)
)+∥
∥

∥

L1(Γ)

≤
∥

∥

∥

(

f1 − f2

)+∥
∥

∥

L1(Ω)
+
∥

∥

∥

(

g1 − g2

)+∥
∥

∥

L1(Γ)

in D′(0, τ).

3. For any 0 ≤ t1 ≤ t2 ≤ τ,

u(t1) ≤ u(t2) a.e. in Ω.

4. For any 0 ≤ t1 ≤ t2 ≤ τ,

[

u(t2) < 1
]

⊆
[

u(t2) = u(t1) +

∫ t2

t1
f(t)

]

⊆
[

u(t1) < 1
]

.

Since we are considering the case of nonegative driving forces f and g, then the problem
corresponds to the well posed case of the Hele-Shaw problem ; in the sense that there exists
nonegative couple (u, z) solution of E(u0, z0, f, g). Recal that otherwize, i.e. for negative or
changing sign driving forces f and/or g, the problem is ill-posed (cf. [8]), one may loose the
existence of nonegative solution. On the other hand, in the case of static boundary condition,
we know (cf. [9], [18] and [15]) that the problem is well posed up to T0 given by (1.9) for
which the domain is full and the model breaks down. For dynamical boundary condition,
the situation is different. The model turns out to hold on even if the domain is full, with an
evolution problem on the boundary up to T0. More precisely the time τ for which the domain
is full may be different from T0 the time for which the model breaks down. This is the case
in the following theorem.

Theorem 2 Under the assumptions of Theorem 1, we assume moreover that ρ(x, r) = ρ(r),
with ρ convex. Let (u, z, τ) be the solution of E(u0, z0, f, g) given by Theorem 1. Then,
u(t) ≡ 1 inn Ω for any t ∈ [τ, T ) and z is the unique solution of











−∆w = f(t, x), in (τ, T ) × Ω

∂tz + ∂νw = g(t, x), z = ρ(w) on (τ, T ) × Γ.

(1.11)
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in the sense that z ∈ C([τ,∞)), z(τ) = ρ and there exists w ∈ L2
loc(τ,∞;H1(Ω)) such that

z = ρ(w) a.e. on ΣT and

d

dt

∫

Γ
z ξ +

∫

Ω
∇w.∇ξ =

∫

Ω
f ξ +

∫

Γ
g ξ in D′(τ, T0),

for any ξ ∈ C1(Ω).

Remark 1 1. In particular, Theorem 2 shows that even if the domain is full at the time
τ < T0, the model holds on for t ∈ [τ, T0), with w satisfying the evolution problem
(1.11). This is a particular case of evolution problem with an elliptic equation in the
interior of Ω and an evolution one on the boundary. Theorem 2 solves this kind of
question for convex ρ.

2. In general we do not know whenever τ = T0.

3. In terms of the Hele-Shaw problem, the property 4 of Theorem 1 reflects the fact that
the free boundary increases in times. This is du the injection property of the boundary
condition (1.2) and the driving forces terms.

4. The property 4 describes the evolution of the set
[

0 < u(t) < 1
]

, the so called mushy

region. In particluar, 4) implies that it is nondecreasing in time. In particular, this

shows that if f ≡ 0 and u0 = χΩ0
with Ω0 ⊂ Ω, then there exists

(

Ω(t)
)

0≤t≤τ
such that

Ω(t1) ⊆ Ω(t2) for any t1 ≤ t2, u(t) = χΩ(t) for any t ∈ [0, τ ], Ω(0) = Ω0 and Ω(τ) = Ω.

We will use nonlinear semigroup theory to study the problem E(u0, z0, f, g). For this we
need to study the existence and contraction property for the associate stationary problem ;
this is the aim of the next section. Then, we show the existence of a solution in the sense of
Crandall-Ligget exponential formula, and use it to show Theorem 1 and Theorem 2. In the
last section we prove the qualitative properties 3. and 4.. At last, in the Appendix, we give
the proof of a more or less known existence result for an elliptic problem that we need for
the proof of our result.

2 The stationary problem

To begin with, let us consider the elliptic problem

Sλ(f, g)











v − λ∆w = f, v ∈ H(w) in Ω

z + λ ∂νw = g, z = ρ(x,w) on Γ,

where λ > 0.
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Definition 2 For f ∈ L1(Ω) and g ∈ L1(Γ), we say that (v, w, z) is a solution of Sλ(f, g) if
v ∈ L1(Ω), w ∈W 1,1(Ω), z ∈ L1(Γ), v ∈ H(w) a.e. in Ω, z = ρ(x,w) a.e. on Γ and

λ

∫

Ω
∇w · ∇ξ =

∫

Ω
(f − v)ξ +

∫

Γ
gξ,

for any test function ξ ∈ C1(Ω).

Proposition 1 For any f1, f2 ∈ L1(Ω) and g1, g2 ∈ L1(Γ), if (vi, wi, zi) is a solution of
Sλ(fi, gi) for i = 1, 2, then

∫

Ω
(v1 − v2)

+ +

∫

Γ
(z1 − z2)

+ ≤

∫

Ω
(f1 − f2)

+ +

∫

Γ
(g1 − g2)

+

and
∫

Ω
|v1 − v2| +

∫

Γ
|z1 − z2| ≤

∫

Ω
|f1 − f2| +

∫

Γ
|g1 − g2| .

Proof : The proof of this proposition follows in the same way as Proposition C of [2]. We
omit the details of the proof to avoid to repeat unnecessary the same arguments.

Corollary 1 For any λ > 0, f ∈ L1(Ω) and g ∈ L1(Γ), Sλ(f, g) has at most one solution.

Setting

R =
[

0, 1 +
1

|Ω|

∫

Γ
ρ(x)dx

[

,

we have the following existence result

Theorem 3 Let f ∈ L1(Ω) and g ∈ L1(Γ) be nonnegative. If
∫

−
Ω
f +

1

|Ω|

∫

Γ
g ∈ R(2.1)

then, Sλ(f, g) has a unique solution.

Recall that in the case g ≡ 0 and ρ independent of x, Theorem 3 is a particular case of [2].
For the case where g ∈ L1(Ω) and ρ satisfies (1.7), we will construct the solution of Sλ(f, g)
as a limit, as m→ ∞, of the solution of the following elliptic equation

v = ∆vm + f on Ω,
∂vm

∂n
+ ρ(x, vm) = g on ∂Ω.(2.2)

Thanks to Proposition A.1 in the Appendix, for any f ∈ L1(Ω)+ and g ∈ L1(Γ)+, the
problem (2.2) has a unique solution vm in the sense that vm ∈ L1(Ω)+, vm

m ∈ W 1,1(Ω),
zm := ρ(x, vm

m) ∈ L2(Γ)+ and
∫

Ω
∇vm

m · ∇ξ =

∫

Ω
(f − vm) ξ +

∫

Γ
(g − zm) ξ,
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for any test function ξ ∈ C1(Ω). Moreover, according to [2],

‖vm‖L1(Ω) + ‖zm‖L1(Γ) ≤ ‖f‖L1(Ω) + ‖g‖L1(Γ),(2.3)

‖vm
m −

∫

−
Ω
vm

m‖W 1,q(Ω) ≤ C
(

‖f‖L1(Ω) + ‖g‖L1(Γ)

)

(2.4)

for any 1 ≤ q < N
N−1 and, for any Ω′ ⊂⊂ Ω, we have

lim
|y|→0

sup
m>0

∫

Ω′

|vm(x+ y) − vm(x)| = 0.(2.5)

Lemma 1
{

vm

}

m≥1
is relatively compact in L1(Ω).

Proof : Thanks to (2.3), (2.4) and Lemma A.1 in the Appendix, for 1 < q < ∞ fixed, we
have

‖vm
m‖Lq(Ω) ≤

(

2

|Ω|
‖vm‖L1(Ω)

)m

|Ω|
1

q + C ‖∇vm
m‖Lq(Ω)

≤

(

2

|Ω|
(‖f‖L1(Ω) + ‖g‖L1(Γ))

)m

|Ω|
1

q +C (‖f‖L1(Ω) + ‖g‖L1(Γ))

so that,

‖vm‖Lq(Ω) ≤ ‖vm
m‖

1

m

Lq(Ω)|Ω|
m−1

mq

≤ C1 (Cm
2 + 1)

1

m

where C1 and C2 are independent of m. Obviously, this implies that vm is bounded in Lq(Ω)
and vm is weakly relatively compact in L1(Ω). So, by using (2.5), we deduce that vm is rela-
tively compact in L1(Ω).

Lemma 2 If (2.1) is fulfilled, then as m → ∞, vm → v in L1(Ω), vm
m → w in W 1,1(Ω)-

weak, ρ(., vm
m) → z in L1(Γ) and (v, w, z) is the unique solution of Sλ(f, g).

Proof : By using Lemma 1, the result of the lemma follows exactly in the same way as in
Theorem B of [2].

Lemma 3 If
∫

−
Ω
f +

1

|Ω|

∫

Γ
g ≥ 1 +

1

|Ω|

∫

Γ
ρ(x)dx(2.6)

then, as m→ ∞,

vm →

∫

−
Ω
f +

1

|Ω|

∫

Γ
(g − ρ) in L1(Ω)

and
zm → ρ in L1(Γ).
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Proof : It is clear that if (2.6) is fulfilled then, the assumption (1.7) implies that ρ ∈ L1(Ω)+.
Due to the contraction property of the solutions of (2.2), it is enough to prove the result for
f ∈ L2(Ω)+, g ∈ L2(Γ)+ and satisfying

∫

−
Ω
f +

1

|Ω|

∫

Γ
g > 1 +

1

|Ω|

∫

Γ
ρ(x)dx .(2.7)

Using Lemma 1, there exits mk → ∞, such that vk := vmk
→ v in L1(Ω), and using (2.4) we

have
w̃k := vmk

mk − Cmk
→ w̃∞ in W 1,1(Ω) − weak(2.8)

where Cm =

∫

−
Ω
vm

m. It is clear that

∫

−
Ω
vk =

∫

−
Ω
f +

1

|Ω|

∫

Γ
g −

1

|Ω|

∫

Γ
ρ(., vk)

> 1 +
1

|Ω|

∫

Γ
(ρ− ρ(., vk))

> 1,

so that, by using Jensen’s inequality, we have

Cmk
=

∫

−
Ω
vk

mk ≥

(∫

−
Ω
vk

)mk

→ ∞.(2.9)

Then, (2.4) implies that
vk

mk → ∞ a.e. Ω(2.10)

and
ρ(x, vk

mk) → ρ(x) a.e. x ∈ Γ(2.11)

and, since ρ(., vk
mk) is bounded above by ρ which is in L1(Γ), then

ρ(., vk
mk) → ρ in L1(Γ).

On the other hand, thanks to (2.8) and (2.9), we have
w̃k

Cmk

→ 0 a.e. in Ω and

(

vk
mk

Cmk

)
1

mk
=

(

1 +
w̃k

Cmk

)
1

mk
→ 1 a.e. in Ω

so that v = lim
mk→∞

(Cmk
)

1

mk is constant in Ω. At last, since

∫

Ω
vm +

∫

Γ
ρ(., vm

m) =

∫

Ω
f+

∫

Γ
g,

then by passing to the limit, we deduce that v is equal to

∫

−
Ω
v =

∫

−
Ω
f+

1

|Ω|

∫

Γ
(g−ρ).
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Now, one sees that the natural space to study E(u0, z0, f, g) is X = L1(Ω)+×L1(Γ)+ provided
with the natural norm

‖(f, g)‖ = ‖f‖L1(Ω) + ‖g‖L1(Γ), for (f, g) ∈ X.

Equipped with the usual partial ordering (f, g) ≤ (f̃ , g̃) if and only if f ≤ f̃ a.e. in Ω and
g ≤ g̃ a.e. in ΓN , X is a Banach lattice. In X, we define the multivalued operator A, by

(f, g) ∈ A(v, z) if and only if v, f ∈ L1(Ω)+, g, z ∈ L1(Γ)+,

∫

Ω
f =

∫

Γ
g and either



































v ≡ µ with µ ∈ IR, µ ≥ 1 and z = ρ a.e. in Γ

or, there exists w ∈W 1,1(Ω), v ∈ H(w) a.e. in Ω,

z = ρ(., w) a.e. in Γ and

∫

Ω
∇w · ∇ξ =

∫

Ω
f ξ +

∫

Γ
g ξ , ∀ ξ ∈ C1(Ω).

(2.12)

Lemma 4 A is m-T-accretive in X, i.e. for each λ > 0, (I + λA)−1 is a T-contraction
everywhere defined in X.

Proof : With A being defined as above, for (f, g) ∈ X, we have (v, z) + A(v, z) 3 (f, g) if

and only if v ∈ L1(Ω)+, z ∈ L1(Γ)+,

∫

Ω
v +

∫

Γ
z =

∫

Ω
f +

∫

Γ
g and either















v ≡

∫

−
Ω
f +

1

|Ω|

∫

Γ
(g − ρ) ≥ 1 in Ω and z = ρ a.e. in Γ

or, there exists w such that (v, w, z) is the solution of S1(f, g).

So, according to Lemma 2 and Lemma 3, there exists a unique solution (v, z) of (v, z) +
A(v, z) 3 (f, g) and

(v, z) = X − lim
m→∞

(vm, ρ(x, vm
m)),

where vm is the solution of (2.2).

Moreover, we have

Proposition 2 The closure of the domain of A in X is given by

D(A) = DA := D1 ∪D2,

where

D1 =
{

(u, z) ∈ X ; |u| ≤ 1 a.e. in Ω and z(x) ∈ Im(ρ(x, .) a.e. x ∈ Γ
}

and
D2 =

{

(µ, ρ) ; µ ∈ IR, µ ≥ 1
}
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Proof : By definition of A, we see easily that D(A) ⊆ DA and D2 ⊆ D(A). So, it remains
to prove that D1 ⊆ D(A). For this, it is enough to prove that D(A) ⊇ K, where

K =
{

(u, z) ∈ L∞(Ω)+ × L∞(Γ)+ ; u ≤ 1 a.e. in Ω and z(x) ∈ Im(ρ(x, .)) a.e. x ∈ Γ
}

.

Let (u, z) ∈ K and consider (uε, wε, zε) the solution of Sε(u, z). It is clear that (uε, zε) ∈ D(A).
On the other hand, since z ∈ Im(ρ(x, .), then, thanks to Proposition 1, one proves exactly in
the same way of Proposition 4 of [16] that zε is bounded in L∞(Γ), uε is bounded in L∞(Ω)
and shows that uε → u in L1(Ω) and zε → z in L1(Γ), as ε→ 0, which ends up the proof of
the proposition.

3 The evolution problem

Now, let us consider the evolution problem

CP (U0,H)











Ut +AU 3 H in (0, T )

U(0) = U0,

with U0 = (u0, z0) ∈ DA and H = (f, g) ∈ L1
loc([0, T );X). In order to define the notion of

mild solution of CP (U0,H) in (0, T ), for ε > 0, we consider a subdivision t0 = 0 < t1 < ... <

tn−1 < T = tn with ti − ti−1 = ε, f1, ...fn ∈ L2(Ω), g1, ...gn ∈ L2(Γ), z0ε ∈ L2(Γ) and

‖z0 − z0ε‖L1(Γ) +
n
∑

i=1

∫ ti

ti−1

(

‖f(t) − fi‖L1(Ω) + ‖g(t) − gi‖L1(Γ)

)

dt ≤ ε.

Thanks to Lemma 4, there exists a unique solution (ui, zi) ∈ X of the time discretize scheme
associated with (CP ), i.e.

(ui, zi) + ε A(ui, zi) = ε (fi, gi) + (ui−1, zi−1) for i = 1, 2, ..., n and z0 = z0ε ;(3.1)

so that, we can define the ε− approximate solution Uε = (uε, zε), by











uε(0) = u0, zε(0) = z0ε,

uε(t) = ui, zε(t) = zi, for t ∈ ]ti−1, ti], i = 1, . . . n

.(3.2)

By using the nonlinear semigroup theory (cf. [2], [6], [12] and [21]) and thanks to Lemma
4, CP (U0,H) has a unique mild solution U = (u, z) ∈ C([0, T );X), such that U(0) = U0,

u(t) = L1 − lim uε(t) and z(t) = L1 − lim zε(t) uniformly for t ∈ [0, T ). So, we have
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Corollary 2 We may define the mapping S : (U0,H) ∈ DA × L1
loc([0, T );X) → U ∈

C([0, T );X), by S(U0,H) is the mild solution of CP (U0,H). Moreover, we have

1. If (u, z) = S(u0, z0, f, g), then

∫

Ω
u(t) +

∫

Γ
z(t) =

∫

Ω
u0 +

∫

Γ
z0 +

∫ t

0

(

∫

Ω
f +

∫

Γ
g
)

,

for any t ∈ [0, T ).

2. For any 0 ≤ t1 ≤ t2 < T, we have

S(u0, z0, f, g)(t2) = S
(

S(u0, z0, f, g)(t1), f(.+ t1), g(. + t1)
)

(t2 − t1).

3. The L1−comparison principle holds. More precisely, if for i = 1, 2, (u0i, z0i, fi, gi) ∈
DA × L1

loc([0, T );X) and (ui, zi) = S(u0i, z0i, fi, gi), then

d

dt

∫

Ω
(u1(t) − u2(t))

+ +
d

dt

∫

Γ
(z1(t) − z2(t))

+

≤

∫

Ω
(f1(t) − f2(t))

+ +

∫

Γ
(g1(t) − g2(t))

+

(3.3)

in D′(0, T ).

Now, the basic idea of the proof of Theorem 1 is to show that S(u0, z0, f, g) is the unique
solution of E(u0, z0, f, g), whenever u0, z0, f and g satsify the assumptions of the Theorem.
First, let us introduce the intervals

I =
{

t ≥ 0 ; µ(t) < 1 +
1

|Ω|

∫

Γ
ρ
}

and J =
{

t ≥ 0 ; µ(t) ≥ 1 +
1

|Ω|

∫

Γ
ρ
}

.

We begin by to give a description of S(u0, z0, f, g)(t) for t ∈ J.

Lemma 5 Let (u0, z0, f, g) ∈ DA × L1
loc([0, T );X). For any t ∈ J, we have

S(u0, z0, f, g)(t) =
(

µ(t) −
1

|Ω|

∫

Γ
ρ, ρ

)

.

Proof : Set (u, z) := S(u0, z0, f, g). By Definition of S(u0, z0, f, g), we know that
S(u0, z0, f, g)(t) ∈ DA, for each t ∈ [0, T ). On the other hand, thanks to Corollary 2, we

know that

∫

−
Ω
u(t)+

1

|Ω|

∫

Γ
z(t) = µ(t). Then µ(t) 6∈ R implies that (u(t), z(t)) ∈ D2, so that,

for any t ∈ J, z(t) = ρ, on Γ, u(t) is a constant function in Ω and necessarly it is equal to

µ(t) −
1

|Ω|

∫

Γ
ρ.

For the description of S(u0, z0, f, g), for t ∈ I, we need the following technical result.
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Lemma 6 Let u ∈ C([0, T ], L1(Ω)+) such that

∫

−
Ω
u(t) < 1 for any t ∈ [0, T ], and let uε ∈

C([0, T ], L1(Ω)+) such that uε → u in C([0, T ], L1(Ω)). There exists a constant C, independent
of ε (and t), such that for any wε ∈ L2(0, T ;H1(Ω)) satisfying uε ∈ H(wε) a.e. in [0, T ]×Ω,
and for any ε > 0, we have

‖wε(t)‖L2(Ω) ≤ C ‖∇wε(t)‖L2(Ω) a.e. t ∈ [0, T ].

Proof : First, one sees that by using Poincaré’s inequality, for any K ⊆ Ω and w ∈ H 1(Ω),
we have

∣

∣

∣

∫

−
Ω
w
∣

∣

∣ |K|
1

2 ≤ C
(

‖∇w‖L2(Ω) + ‖w‖L2(K)

)

(3.4)

where C is a real constant depending only on N and Ω. Using the assumptions of the lemma,
there exists 0 < δ < 1, such that

max
t∈[0,T ]

∫

−
Ω
u(t) < δ,

so that K(t) := [u(t) < δ] is such that |K(t)| > 0, for any t ∈ [0, T ] and

inf
t∈[0,T ]

|K(t)|
1

2 =: M > 0.(3.5)

Now, let us denote by Kε(t) = [uε(t) < δ]. Since uε(t) → u(t) in L1(Ω), then

|K(t)| ≤ lim inf
ε→0

|Kε(t)| for any t ∈ [0, T ].(3.6)

Applying (3.4) with w = wε(t), K = Kε(t) and using (3.5) and (3.6), we deduce that, for ε
small enough, we have

∣

∣

∣

∫

−
Ω
wε(t)

∣

∣

∣ ≤
C

M

(

‖∇wε(t)‖L2(Ω) + ‖wε(t)‖L2(Kε(t))

)

, for any t ∈ [0, T ].(3.7)

Since wε(t) = 0 a.e. in Kε(t), then (3.7) implies that

∣

∣

∣

∫

−
Ω
wε(t)

∣

∣

∣ ≤ C1‖∇wε(t)‖L2(Ω) for any t ∈ [0, T ]

and the result of the lemma follows by using Poincaré inequality again.

Lemma 7 Assume that T < ∞, f ∈ L2(0, T ;L2(Ω)+), g ∈ L2(0, T ;L2(Γ)+) and (u0, z0) ∈

D1 is such that

∫ z0

0
ρ(., r) dr ∈ L1(Γ),

µ(t) ∈ R and

∫

−
Ω
u0 < 1 for any t ∈ [0, T ].(3.8)

Then, the curve (u, z) := S(u0, z0, f, g) is the unique solution of E(u0, z0, f, g) in (0, T ).
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Proof : Let us come back to the definition of a mild solution and consider the time discretize
scheme and the ε−approximate solution of CP (u0, z0, f, g). Thanks to our hypothesis, we
assume, moreover, that















z0ε(x) ∈ (Im(ρ(x, .)) a.e. x ∈ Γ,

∫ z0ε

0
ρ(., r) dr ∈ L1(Γ) and

∫

−
Ω
u0ε +

1

|Ω|

∫

Γ
z0ε +

j
∑

i=1

∫ ti

ti−1

(

∫

−
Ω
fi +

1

|Ω|

∫

Γ
gi

)

< 1 +
1

|Ω|

∫

Γ
ρ for any 1 ≤ i ≤ n.

(3.9)

So, by definition of A, for any i = 1, 2, ..n, the solution (ui, zi) of (3.1) is such that there
exists wi ∈W

1,1(Ω) satisfying the equations











ui − ε∆wi = ui−1 + εfi, ui ∈ H(wi) in Ω,

zi + ε∂νwi = zi−1 + εgi, zi = ρ(x,wi) on Γ.

(3.10)

Moreover, since fi, gi, u0ε and z0ε are assumed to be nonnegative L2 function, then wi ∈
H1(Ω) and, thanks to (1.6), zi ∈ L2(Γ)+. Taking wi as a test function in (3.10) and using
the facts that

∫

Ω
(ui − ui−1)wi ≥ 0

and
∫

Γ
(zi − zi−1)wi ≥

∫

Γ
ψ(., zi) −

∫

Γ
ψ(., zi−1),

where ψ(., r) =

∫ r

0
ρ(., s) ds, we get

∫

Γ
ψ(., zi) + ε

∫

Ω
|∇wi|

2 ≤ ε

(

∫

Ω
fiwi +

∫

Γ
giwi

)

+

∫

Γ
ψ(., zi−1)

≤ ε

(

‖fi‖L2(Ω) + ‖gi‖L2(Γ)

)

‖wi‖H1(Ω) +

∫

Γ
ψ(., zi−1).

(3.11)

Adding (3.11) for i = 0, ...n, we deduce that wε defined by wε(t) = wi for t ∈ ]ti−1, ti],
i = 1, . . . n, satisfies

∫

Γ
ψ(., zε(T )) +

∫ T

0

∫

Ω
|∇wε|

2 ≤

∫ T

0

(

‖fε‖L2(Ω) + ‖gε‖L2(Γ)

)

‖wε‖H1(Ω) +

∫

Γ
ψ(., z0).(3.12)

Now, since sup
t∈[0,T ]

∫

−
Ω
u(t) < 1, then by using Lemma 6, (3.12) implies that

∫

Γ
ψ(., zε) +

∫ T

0

∫

Ω
|∇wε|

2 ≤ C‖∇wε‖L2(QT )

∫ T

0
(‖fε‖L2(Ω) + ‖gε‖L2(Γ)) +

∫

Γ
ψ(., z0ε).
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By Young’s inequality, we deduce hat |∇wε| is bounded in L2(Q), and by using again Lemma
6, we deduce that wε is bounded in L2(0, T ;H1(Ω)). So, there exists a subsequence, that we
denote again by wε, such that

wε → w weakly in L2(0, T ;H1(Ω)) as ε→ 0

and
wε → w weakly in L2(ΣT ), as ε→ 0.

Since, uε → u in L1(QT ) and zε → z in L1(ΣT ), then, by classical monotonicity argument
(see for instance [2]), we deduce that 0 ≤ u ≤ 1, u ∈ H(w) a.e. in Q and z = ρ(., w) a.e.
in ΣT . At last, let ũε and z̃ε be the functions from [0, T ] into L1(Ω) and L1(Γ) respectively,
defined by ũε(ti) = ui, z̃ε(ti) = zi and (ũε, z̃ε), is linear in [ti−1, ti]. For ξ ∈ C1Ω), we have

d

dt

∫

Ω
ũεξ +

d

dt

∫

Γ
z̃εξ +

∫

Ω
∇wε · ∇ξ =

∫

Ω
fεξ +

∫

Γ
gεξ.

Passing to the limit we get that (u,w, z) satisfies (1.5). As to the uniquness, this follows
exactly in the same way as in [16], we omitt the details of the proof here.

Lemma 8 Let f ∈ L2(QT )+, g ∈ L2(ΣT )+, (u0, z0) ∈ DA such that ψ(., z0) ∈ L1(Γ) and
(u, z) = S(u0, z0, f, g). For any 0 ≤ t ≤ T, we have

[

u(t) < 1
]

⊆
[

u(t) = u0 +

∫ t

0
f(s)ds

]

(3.13)

Proof : Using again the definition of S, we come back to the time discretize scheme associated
with CP (u0, z0, f, g) and we consider the ε− approximate solution (uε, zε) given by (3.1) by
repalcing T by t. We prove that

[

uε(t) < 1
]

⊆
[

uε(t) = u0 +

∫ t

0
fε(s)ds

]

.(3.14)

It is clear that, for i = 1, 2, ...n, ∆wi = 0 and ui = ui−1 + ε fi a.e. in
[

ui < 1
]

, so that

[ui < 1] ⊆
[

ui = ui−1 + ε fi and ui−1 + ε fi < 1
]

.

Moreover, since ui−1 + ε fi > ui−1, then
[

ui = ui−1 + ε fi and ui−1 + ε fi < 1
]

⊆
[

ui−1 < 1
]

⊆
[

ui−1 = ui−2 + ε fi−1 and ui−2 + ε fi−1 < 1
]

,

so that,

[ui < 1] ⊆
[

uj = uj−1 + ε fj and uj−1 + ε fj < 1
]

, for each 1 ≤ j ≤ i ≤ n
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and
[

uε(τ) < 1
]

=
[

un < 1
]

⊆
[

ui+1 = ui + ε fi+1 and ui + ε fi+1 < 1
]

,

for any 0 ≤ i ≤ n−1, which implies (3.14). At last, since uε → u in L1(Q) then (3.13) follows
by letting ε→ 0 in (3.14).

Corollary 3 Under the assumptions of Lemma 8, we have

u(t1) ≤ u(t2) a.e. in Ω,(3.15)

for any 0 ≤ t1 ≤ t2 ≤ T.

Proof : To prove (3.15), we see that, since f ≥ 0, then (3.13) implies that u(t2) ≥ u(t1) a.e.
in Ω. Indeed, if u(t2, x) = 1 then, it is clear that u(t1, x) ≤ u(t2, x). Otherwise, thanks to
Lemma 8, we have

u(t1, x) ≤ u(t2, x) = u(t1, x) +

∫ t2

t1
f ≤ 1,

which implies that u(t1, x) = u(t2, x), a.e. x ∈ Ω.

Proposition 3 Let f ∈ L2(QT )+, g ∈ L2(ΣT )+, (u0, z0) ∈ DA such that ψ(., z0) ∈ L1(Γ)
and (u, z) = S(u0, z0, f, g).

1. If (u0, z0) ∈ D2, i.e. u0 = µ ∈ (1,∞) and z = ρ, then for any t ∈ [0, T ),

u(t) = µ(t) −
1

|Ω|

∫

Γ
ρ and z(t) = ρ.

2. If (u0, z0) ∈ D1, i.e. 0 ≤ u0 ≤ 1 and z0 ∈ L2(Γ), then for any t ≥ T0,

u(t) = µ(t) −
1

|Ω|

∫

Γ
ρ and z(t) = ρ,

and there exists τ ∈ [0, T0], such that (u, z) is the unique solution of E(u0, z0, f, g) in
(0, τ) and u(t) ≡ 1 in Ω for any t ∈ (τ, T0).

Proof : Since f ≥ 0 and g ≥ 0, then it is clear that t → µ(t) is nondecreasing. So, if
(u0, z0) ∈ D1, then J = (0, T ) and the first part follows by Lemma 5. As to the second
part, it is clear that I = (0, T0) and J = (T0,∞). Thanks to lemma 5, for any t ≥ T0,

u(t) = µ(t) −

∫ t

0

1

|Ω|

∫

Γ
ρ and z(t) = ρ. Now, let τ be defined by

τ = inf
{

t ∈ (0, T0) ;

∫

−
Ω
u(t) = 1

}

.

Thanks to Corollary 3, for any t ∈ (τ, T0), u(t) ≡ 1 in Ω. At last, since

∫

−
Ω
u(t) < 1 for any

t ∈ (0, τ), then Lemma 7 implies that (u, z) is the unique solution of E(u0, z0, f, g) in (0, τ).
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Lemma 9 Asumme that ρ(x, r) = ρ(r), with ρ convex, T < ∞, f ∈ L2(0, T ;L2(Ω)+),

g ∈ L2(0, T ;L2(Γ)+) and z0 ∈ L1(Γ)+ such that

∫ z0

0
ρ(., r) dr ∈ L1(Ω) satisfying (1.8) and

1 +
1

|Ω|

∫

Γ
z0 +

∫ t

0

(

∫

−
Ω
f +

1

|Ω|

∫

Γ
g
)

∈ R for any t ∈ [0, T ].(3.16)

If (u, z) = S(1, z0, f, g), then u(t) ≡ 1, in Ω for any t ∈ [0, T ) and (1, z) is the unique solution
of E(1, z0, f, g), i.e. there exists w ∈ L2

loc([0, T ),H1(Ω)) such that w ≥ 0, z = ρ(., w) a.e. in
(0, T ) × Γ and

d

dt

∫

Γ
z ξ +

∫

Ω
∇w.∇ξ =

∫

Ω
f ξ +

∫

Γ
g ξ in D′(0, T ),(3.17)

for any test function ξ ∈ D(Ω).

Proof : We take again the ε−approximate solution (uε, zε) of CP (1, z0, f, g). Thanks to the
assumpyions of the lemma, we assume, moreover, that















z0ε(x) ∈ (Im(ρ) a.e. x ∈ Γ,

∫ z0ε

0
ρ(r) dr ∈ L1(Γ) and

1 +
1

|Ω|

∫

Γ
z0ε +

j
∑

i=1

∫ ti

ti−1

(

∫

−
Ω
fi +

1

|Ω|

∫

Γ
gi

)

∈ R for any 1 ≤ i ≤ n.

So, by definition of A, for any i = 1, 2, ..n, the solution (ui, zi) of (3.1) is such that there
exists wi ∈W

1,1(Ω) satisfying the equations










ui − ε∆wi = ui−1 + εfi, ui ∈ H(wi) in Ω,

zi + ε∂νwi = zi−1 + εgi, zi = ρ(wi) on Γ.

Since wi = 0 a.e. in [ui < 1], then ui = ui−1 + ε fi a.e. in [ui < 1]. So, since u0 ≡ 1 and
fi ≥ 0 for any i = 1, 2, ..N, then ui ≡ 1 for any i = 1, 2, ...N, and (3.10) is reduced to











−ε∆wi = εfi, in Ω,

zi + ε∂νwi = zi−1 + εgi, zi = ρ(x,wi) on Γ.

(3.18)

Now, thanks to Jensen inequality, we have

1

|Γ|

∫

Γ
wε ≤ ρ−1

(

1

|Γ|

∫

Γ
zε

)

,

which implies that
1

|Γ|

∫

Γ
wε is bounded, and by Poincaré inequality we deduce that

‖wε‖L2(Ω) ≤ C
(

‖∇wε‖L2(Ω) + 1
)

,

and the proof completes exactely in the same way of the proof of Lema7.
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4 Appendix

In this appendix, we prove the existence of a solution for the elliptic problem

(A1)











v − ∆ϕ(v) = f in Ω

∂νϕ(u) + ρ(x, ϕ(u)) = g on Γ,

where ϕ : IR → IR is an increasing continuous function in IR, ρ satisfies the assumptions of
Section 1, f ∈ L1(Ω) and g ∈ L1(Γ). Before we give the existence result, let us prove the
following technical Lemma.

Lemma A.1 There exists C = C(N,Ω) such that for any 1 ≤ q < ∞ and z ∈ L1(Ω) such
that ϕ(z) ∈W 1,q(Ω), we have

(A2) ‖ϕ(u)ϕ(u)‖Lq (Ω) ≤ ϕ

(

2

|Ω|
‖z‖L1(Ω)

)

|Ω|
1

q + C‖∇ ϕ(z)‖Lq(Ω),

where ϕ(r) = max
|s|≤r

(ϕ(s), for any r ∈ IR.

Proof : We set w = ϕ(z) and we denote by C every constant depending only on N and Ω.
Using Poincaré inequality, we have

∣

∣

∣

∫

−
Ω
w
∣

∣

∣ ≤
1

|K|1/q

(

C‖∇ w‖Lq(Ω) + ‖w‖Lq(K)

)

,

for any K ⊆ Ω with |K| 6= 0 and we have

‖w‖Lq(Ω) ≤ C‖∇ w‖Lq(Ω) + |Ω|1/q
∣

∣

∣

∫

−
Ω
w
∣

∣

∣

≤ C
(

(

1 +
( |Ω|

|K|

)1/q
)

‖∇ w‖Lq(Ω) +

(

|Ω|

|K|

)1/q

‖w‖Lq(K)

≤ C

(

|Ω|

|K|

)1/q
(

‖∇ w‖Lq(Ω) + ‖w‖Lq(K)

)

Taking K = [|z| < λ], and using the fact that

|K| = |Ω| − |[|z| ≥ λ]|

≥ |Ω| −
1

λ
‖z‖L1(Ω),

we get

‖ϕ(z)‖Lq (Ω) ≤
|Ω|

|Ω| − 1
λ‖z‖L1(Ω)

C
(

‖∇ w‖Lq(Ω) + ϕ(λ)|Ω|1/q
)

for all λ >
1

|Ω|
‖z‖L1(Ω). Then, taking for instance λ =

2

|Ω|
‖z‖L1(Ω), the result follows.
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Proposition A.1 For any f ∈ L1(Ω) and g ∈ L1(Γ), there exists a unique solution of (A1)
in the sense that v ∈ L1(Ω), ϕ(v) ∈W 1,1(Ω), ρ(x, ϕ(v)) ∈ L1(Γ) and

∫

Ω
∇ϕ(u) · ∇ξ =

∫

Ω
(f − v) ξ +

∫

Γ
(g − γ(x, ϕ(v)) ξ

for any test function ξ ∈ C1(Ω).

Proof : Thanks to Theorem 23 of [3], we know that for any ε > 0, there exists a unique
vε ∈ L1(Ω), wε := ϕ(vε) ∈W 1,1(Ω), zε := γ(x, ϕ(vε)) ∈ L1(Γ) and

∫

Ω
∇wε · ∇ξ =

∫

Ω
(f − vε − ε wε) ξ +

∫

Γ
(g − zε) ξ

for any test function ξ ∈ C1(Ω). It is enough to prove that uε = vε + ε wε, wε and zε are
relatively compact in L1(Ω), in W 1,1(Ω)-weak and in L1(Γ), respectively. Recall that (cf. [2])

(A3)

‖uε‖L1(Ω) = ε ‖wε‖L1(Ω) + ‖vε‖L1(Ω)

≤ ‖f‖L1(Ω) + ‖g‖L1(Γ),

(A4) ‖wε −

∫

−wε‖W 1,q(Ω) ≤ C
(

‖f‖L1(Ω) + ‖g‖L1(Γ)

)

for any 1 ≤ q < N
N−1 , and

(A5) lim
|y|→0

sup
ε>0

∫

Ω′

|uε(x+ y) − uε(x)| = 0.

It is clear that (13) and (A4) implies that‖vε‖L1(Ω) and ‖∇wε‖Lq(Ω) are bounded, so that

Lemma A.1 implies that wε is bounded in W 1,1(Ω). So, wε is relatively compact in W 1,1(Ω)-
weak and in L1(Γ). Moreover, by using the continuity of r → ρ(x, r) a.e. x ∈ Γ and (1.6),
we deduce that zε is relatively compact in L1(Γ). For the precompacteness of uε is L1(Ω),
let us assume for the moment that f ∈ L∞(Ω) and g ∈ L∞(Γ). We know, that vε ∈ L2(Ω),
wε := ϕ(vε) ∈ H1(Ω), zε := ρ(x, ϕ(vε)) ∈ L2(Γ), so that we can take wε as a test function
and we get

∫

Ω
vεwε +

∫

Ω
|∇wε|

2 ≤

∫

Ω
fε wε +

∫

Γ
gε wε

≤ C(‖f‖L∞(Ω) + ‖g‖L∞(Γ)) ‖wε‖W 1,1(Ω)

where C is independent of ε. So, that we deduce that

∫

Ω
vεwε is bounded by a constant M

independent of ε. Now, since

|vε| ≤
1

min(ϕ(k),−ϕ(−k))
vεϕ(vε) + k
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for any k > 0, then
∫

E
|vε| ≤

1

min(ϕ(k),−ϕ(−k))

∫

Ω
vεϕ(vε) + k |E|

≤
M

min(ϕ(k),−ϕ(−k))
+ k |E|

for any k > 0 and measurable E ⊆ Ω. Thus,

∫

E
|vε| → 0, uniformly in ε, as |E| → 0, and by

using (A4), we deduce that the relative compactness of uε in L1(Ω). For the case where f and
g are just L1, the relative compactness of uε in L1(Ω) follows by the contraction property.

References

[1] T. Aiki. Multi-dimensional two-phase Stefan problems with nonlinear dynamic boundary
conditions. In Warsaw, editor, Nonlinear analysis and applications, pages 1–25, 1994.

[2] Ph. Bénilan, M.G. Crandall, and P. Sacks. Some L1 existence and dependence
results for semilinear elliptic equations under nonlinear boundary conditions. Appl.
Math. Optim., 17:203–224, 1988.

[3] H. Brezis and W. Strauss. Semilinear elliptic equations in L1. J. Math. Soc. Japan,
25:565–590, 1973.

[4] L. A.. Caffarelli and A. Friedman. Asymptotic behavior of solution of ut = ∆um as
m→ ∞. Indiana Univ. Math. J., pages 711–728, 1987.

[5] J. R. Canon. One-dimenesional heat equation. In Addison-Wesley Publishing Company,
editor, Encyclopedia of Mathematics and its Applications, 1984.

[6] M.G. Crandall. An introduction to evolution governed by accretive operators. In
J. Hale L. Cesari and J. LaSalle, editors, Dynamical Systems-An Internationnal sympo-
sium, pages 131–165, New York, 1976. Academic Press.

[7] J. Crank. Free and Moving Boundary Problems. Oxford Univ. Press, Oxford, 1984.

[8] E. Dibenedetto and A. Friedman. The ill-posed Hele-Shaw model and the the Stefan
problem for supercooled water. Trans. Amer. Math. Soc., 282:183–204, 1984.
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