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Abstract. The purpose of this paper is to study the existence, the uniqueness and the limit in
Ll(fz), ast — oo, of solutions of general initial-boundary-value problems of the féym—

Aw = 0 andu € S(w) in a bounded domaire with dynamical boundary conditions of the form
orp(w) + pw =0,
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1. Introduction

Consider the equation
u—Aw =0, uepBw) inQ=(0,o00)x £2, Q)

wheres? is a bounded domain @&" with smooth boundary™ and the nonlin-
earity g is a maximal monotone graph R (see [7]). In particulap may be
multivalued, so that (1) appears in various phenomena with changes of states,
like multiphase Stefan problem (cf. [11]). On the other hghdpyay be a con-
tinuous function inR, so that (1) is the filtration equation which includes the
flow of liquids or gases through porous media, the heat propagation in plasmas,
population dynamics, spread of thin viscous films and others (cf. [3]).

Equation (1) needs to be completed by boundary conditions and initial
data. Inspired by physical considerations, different sorts of boundary conditions
exist in the literature. In this paper, we consider dynamical ones, that is

7+ dw=0, z=pw) onX =(0,00) xI" (2)

whered,w is the normal derivative ab andp : R — R is a continuous nonde-
creasing function. This kind of boundary conditions appears when the boundary
material has a large thermal conductivity and sufficiently small thickness. Hence,
the boundary material is regarded as the boundary of the domain. For instance,
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one considers an iron ball in which water and ice coexists. For more details
about above physical considerations one can see for instance [20] and [1]. An-
other interesting application we have in mind concerns the filtration equation
with boundary conditions of the form (2) (see for instance [22]). It appears for
example in the study of rainfall infiltration through the soil, when the accumula-
tion of the water on the ground surfaces caused by the saturation of the surface
layer is taken into account. Notice thaimay be such that ) # R, so that
we can cover the case where the boundary conditions are dynamical only on a
part of the boundary. For instance, one can think about the situation where the
saturation happens only for valueswfin a subinterval oRR.

Completed with initial data

u(@0) =ug in2 and z(0)=z, onTr, 3)

Problem (1)-(2)-(3) was studied by many authors, for different particular cases of
B andp. Interesting results may be found in [9], [17],[16] and [14]. We notice also
that there exists a series of papers by Aiki where different methods of existence
and uniqueness were used (see [1] and references therein).

In this paper, we study existence, uniqueness and asymptotic behavior of a
weak solution(u, z) of (1)-(2)-(3) with general nonlinearitigsandp, assumed,
respectively, to be only a maximal monotone graph everywhere defined and
a continuous function. Assuming(r) = c1(r — b)* — c2(r)~, Aiki proves
in [1] that the abstract theory of nonlinear evolution equations governed by
time-dependent subdifferentials in Hilbert space hands up very well this kind of
problems. Our approach is completely different, we will treat (1), (2) and (3)
in the context of nonlinear semigroup theory in Banach spaces. We prove that
for any (uo, zo) € L*(§2) x LY(I"), such that;o(x) € Im(p) a.e.x € I, the
initial-boundary-value problem (1)-(2)-(3) has a unique mild-solutiory) <
LY(£2)x LY(I") (inthe sense of Crandall-Ligget exponential formula). Moreover,
if (ug, zo) € L™ (£2) x L°°(I"), we prove(u, z) is the unique weak solution, i.e.
there existsy € L2 ([0, 00); H*(£2)) and(u, w, z) solves Egs. (1)-(2)-(3) in a
weak sense.

The second part of this paper deals with the asymptotic behavioraso,
ofthe solution(u, z). In[18] (see also [19]), the first author studied the asymptotic
behavior of the Eq. (1) with general static boundary conditions of the form

hw+yw)>0 onI (4)

wherey is assumed to be a maximal monotone grapR.irf50, assuming that
p = 0, Problem (1)-(2)-(3) is a particular case of [18]. Actuallyyif= 0,
we know (cf. Theorem 2 of [18]) that a solutionstabilizes, ag — oo, by

converging inL.'(£2), to a stationary solution,, which satisfies/ 20:/ uo.
2 2
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L 1 . . . :
—— [ ugif — [ wugis a continuous point of. Otherwise,
1£2] Jo 1£2]

the characterization of the Iim'gogis a difficult problem in general that the
author solved only if additional assumptions @anare fulfilled (cf. Theorem 4

of [18]). In this work, we generalize a part of these results to the case where
the boundary conditions are of type (2), witha continuous nondecreasing
function. We prove that a solutiaia, z) stabilizes, as — oo, by converging in
LY(2) x LX) t0 (ug, p(c)) € L*(£2) xR, with ¢ € R. The characterization of

(ug, p(c)) depends on the quantities := (/ ug +/ zo)/|S2| and® (my),
2 r

with @ (r) := B~1(r) + p(r)|I"|/182], for anyr € R. Indeed, we will prove that
c € @ Y(myp) anduy(x) € B(c), a.e.x € £2 ; so that ifmg is a continuous point
of B, then(u,, p(c)) is uniquely given by = @ (mo) andu, = B(c).

The paper is organized as follows. In the next section, we state assumptions
that will hold throughout the paper and give our main results concerning exis-
tence, uniqueness and asymptotic behavior. In Sect. 3, we recall some basic tools
from the nonlinear semigroup theory in Banach spaces and prove the existence
and uniqueness results. Finally, in Sect. 4, we prove the stabilization result.

Moreover,u, =

2. Main results

Throughout this paper? is a bounded domain &" with smooth boundary’,
o is a continuous nondecreasing functiofRimnds a maximal monotone graph
in R. We assume that

(Hy) Im(b) = D(b) = R,
and
(H>) 0 € b(0) N p(0).

Hereafter, we begin by announcing our existence and unigueness results con-
cerning the following evolution problem

ou—Aw =0, webu) inQ=(0,00)x 2

E(uo, zo) dhz+0w=0, z=pw) onX = (0,00) x I

u =ug in2, z(0)=z9 onr.
Theorem 1. For anyug € L*(§2) andzg € L*°(I") such that

zo(x) € Im(p), aexelrl, D
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there exists a uniqueét, z) solution ofE (ug, zo) in the following sense

ueL™®(Q), zeL®X), 3w e L: ([0,00); HY(£2)),

loc

w € b(u) a.e.inQ, z = p(w) a.e.onX and

4 (2)

[ [aws [ [ =[] pws [ w0 [ cou

V& e CH[O0, 7] x 2) witht > 0and&(r) = 0.

Moreoveru € C([0, 00); LY(£2)), z € C([0, co); LX(IN)),

/u(t)+/ z(t):/ u0+/zO foranyz > 0, 3)
2 r 2 r

and if (u;, z;) is the solution ofE (ug;, zo;), assumingeg; € L>(£2) andzg; €
L°°(I') satisfying (1), fori =1, 2, then

+ (20 - =)

[ (12 — w20))”

LY(2) LY(I)

(4)
= H (u01 - M02)+ + H (Zm - Zoz>Jr

Now, in order to study the asymptotic behaviortas oo, of the solution
(u, z), we introduce the maximal monotone graptRindefined by

|\

b 0) =[5+ 150000 s 5 €710

LY(2) Lyr)

whereb~! denotes the inverse ofin R, defined byr € b~1(s) if and only if
s € b(r), foranyr € R. We also define the set

&= {r € R ; r is a point of discontinuity obgl},

whereby1(r) = inf b71(r), foranyr e R. On the other hand, for anyto, zo) €
LY(2) x LX), we set

1
mo = uo+ — 20

2 121 Jr
foo= e
where4 ug=— | uo.
2 12 Ja



A degenerate diffusion problem with dynamical boundary conditions 381

Theorem 2. Letug € L™(£2), zo € L*™(I') satisfying (1) and letu, z) be the
solution of E (ug, zo). Then, there exists a uniques ¢,,p‘1(mo), such that

z2(t) = p(c) in LX), ast — oo,
and there exists a unique € L(£2), such thatu(x) € b1(c) a.e.x € £2,
][ u=mo— p(c)|I'l/1$2] and
2

u(t) > u in LX), ast — oo.

Corollary 1. If mg € &, thend)bp*l(mo) is single valued,

20) = p(¢n, " 0m0)) in LA(I)

and
u(t) — bal(qbbp—l(mo)) in L1(£2),
ast — oQ.

In particular, ifb is strictly increasing in a neighborhoodmp, thenmg & £.
The corollary gives the true value of the limit of the solutien z) asr — oo.
But, in general we do not know exactly this value among the elements of the set
K, given by

Ko, z0) = {(u, p(c)) € L*(2) x R ; ¢ € ¢y, mo),

][ u=mo—p()|I'l/I$2] andu(x) € b‘l(c)}.
2
In the next Theorem we give a description of this limit.

Theorem 3. Letug € L™(£2), zo € L*(I") satisfying (1),(u, z) the solution
of E (ug, zo) and considel(u, p(c)) € K(uo, zo) given by Theorem 2, such that
(u, p(c)) = tlim (u(t), z(1)) in LY(£2) x LY*(I"). Setting[l, L] = b(c), we

have
I<u<La.e.ins, (5)
and there existsy € H?(£2), such that
u=ug+ Aw a.e.ing2
(6)
dhw = zo— p(c) a.e.onl”
and, moreover,

w=0ae.in{xe;l<ukx <L}. (7)
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Corollary 2. Under the assumptions of Theorem 3, there exist disjoint subsets
of 2 AC|[l <ug<L], A; and A, such that

u=uo.xa+1.xa + L.xa,. (8)

3. Preliminaries, existence and uniqueness
3.1. Preliminaries

As said in the introduction, we will tred (ug, zo) in the context of nonlinear
semigroup theory in Banach spaces with a ngrfn We refer the reader to [5],
[10] and [15] for background materials on this theory. Nevertheless, we give
a brief collection of materials that we need. Létbe a real Banach space. A
mappingA from X into 2%, the collection of all subsets df, will be called an
operator onX. The domain ofA is denoted byD(A) and its rangeR(A). An
operatorA in X is accretiveif

lx =% <llx—=x+A(y =], forr>0, yeAxandy € Ax. (1)

From (1), it follows that for every. > 0 the problemx + LAx > z has at most
one solutionx € D(A) foragivenz € X. Thus, we may defing; , the resolvent
of A, foreachi > 0 by 7, = (I + 2A) "t andD(J,) = R(I + »A). From (1),
it follows that 7 is a nonexpansive mapping, i.e.,

|Tx — Tkl < llx — x[| forx, X € D(J)).
Let A be an accretive operator ghand consider the initial value problem
u'+Au>0 in(0,T),
(2)
u(0) =uqg .
Discretizing the derivative in (2) and using an implicit difference scheme, we

obtain for any partitionG=tp < 1 < ... < t,_1 < T <t, asystem of difference

relations
up —Uu;_ .
T L Aw; 30, i=1,2,..n (3)
Egi—1

wheree;_; = t; — t;_1. Using the resolvent oA, the valuesu;, in (3) are
determined successively by

U = \78[_1”1'—17 l = 17 2» e

and therefore (3) has a solution if and onlytife R(I + AA). The step function
v : [0,T] — X defined byv(0) = ug andv(®) = u; fort,_1 <t < ¢
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is considered to be an approximate solution of (2) and converge to a unique
continuous functiork on [0, T]. This functionu is called themild-solutionof
(2) on[0, T']. More concretely we have

Theorem. Let A be an accretive operator i such thatR(/ +1A) 2 D(A).
Then, for anyug € D(A)

e ug = lim jt’/‘nuo 4)
n—oo

on compact subsets [, co[. Moreover, the family of operatoes ™, r > 0, is
a continuous semigroup of nonexpansive self-mappingX 4.

Many partial differential equations that can be studied by means of nonlinear
semigroup theory satisfy a “comparison principle”. This fact is equivalent to the
order preserving property of the semigrowp’*u),~0. The operators which
generate order-preserving semigroups are the following :X_Lée a Banach
lattice and letA be an operator itX. A is calledT-accretiveif, for A > 0,

H (x _£)+H = H (x —X+A0y —§)>+H for y € Ax andy € Ax.

It is clear thatd is T-accretive if, and only if, its resolvents afecontractions,
i.e.,
|(Fx = gt| = | —0F| forx, 2 e D).

Now, since everyl'-contraction is order-preserving, we have thatifis T-
accretive then eackr’# is order-preserving. In generdi-accretivity does not
implies accretivity, but in some Banach spa@eaccretivity implies accretivity,
this is the case for the space5(£2) for 1 < p < oo (see for instance [4]).

3.2. Existence and uniqueness
Now, let us come back t& (uq, zo) and consider its associate elliptic problem

v—AAw = f, weblw) inf
S)»(f,g,b, p)
z+Adw=g, z=pw) onrl,

with A > 0.
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Definition 1. For f € LY(£2)andg € L*(I"), we say thatv, w, z) is a solution
Of S)\(fv gv ba IO) lf

ve LY R), we W (2), w e b(v) a.e.ins2,

ze LYI), z = p(w) a.e.onl" and

/\/QDw-DéJr/rzé:fQ(f—v)S+/FgS, ©

V &£ e Wh((0).

Proposition 1. (cf. [6]) For any fi, f» € LY(2) and g, g» € LYI), if
(v;, w;, z;) is a solution ofS; (f;, gi, b, p) fori =1, 2, then

/(Ul—vz)J”F/(Zl—Zz)+ ff(fl_f2)++/(gl_82)+
2 r 2 r

f|v1—v2|+/|zl—zZ|sf |f1-fz|+/|g1—gzl-
2 r 2 r

Corollary 3. Forany f € LY(2) andg € LY(I"), S,(f, g, b, p) has at most
one solution.

and

The existence of a solution & (f, g, b, p) is well known by now in the case
whereb is a continuous increasing (strictly) functionl(cf. [8]) and also in
the case wherg = 0 (cf. [6]). Next, we extend slightly part of results of [6] to
the casg # 0, that will be useful for the study df (uo, zo). We begin by giving
a priori L>° estimates of solutions &, ( f, g, b, p).

Proposition 2. If f € L™(£2), g € L™(I') satisfies
gx)yelm(p) aexel (6)

and(v, w, z) isasolution ofS, (£, g, b, p), then(u, w, z) € L®(2) x H3(§2) x
L*(I') and we have
lollz<cay < max (1l fllcen b opg gl By ofg lgli~cr)
@)
=: Ma(f. 8).

Il < o max(b(Ma(f. ) U (=bo(—Ma(f, 8))))
®)
= MZ(f’ g)7
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lwil~) = max[b(Ma(f. ) U (= b(=Ma(f. 2))]
©)
= Ms(f. ).

and
Il = C(1f e + gl ) (10)

whereb(r) = —b(—r) and5(r) = —p(—r), foranyr € R, andC is a constant
depending o2, My(f, g) and Mx(f, g).

Now, we set our existence resultf&r(f, g, b, p), under the Assumption (6),
sufficient for the study of (ug, zo).

Proposition 3. For any f € L*(£2) andg € L*(I") satisfying (6), there exists
a unique(v, w, z) solution ofS, (f, g, b, p).

Remark 1.Notice that Condition (6) is not necessary for the existence of a so-
lution of S, (f, g, b, p) (see for instance Remark 2.12 of [4]). However, without
this condition we do not know it.* estimates of type (7), (8) and (9) remain
true.

As a consequence of Proposition 1 and Proposition 2, one ses that the natural
space where we can stud(uo, g) is X = LY(§2) x LY(I") provided with the
natural norm

ICf @ = 1) + gl for (f, g) € X.
In X, we define the operator (possibly multivaluetpy
A =] (f.9 e X; Fwewri@),
(v, w, z) isasolutionofSi(f +v,g+2z,b,p) }
and consider the evolution problem

U, + AU 30 in (0, c0)
(11)
U =U .
As an immediate consequence of Proposition 1 and Proposition 2, we have

Corollary4. 1. A s T-accretive inX.
2. R +1A)D {(f, @) eX: g(x) elm(p)aex e F}.
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Using the general theory of nonlinear semigroupsgenerates a continuous
nonlinear semigroup of contraction operats§(s) in X. Moreover, we have

Proposition 4.

D(A) = {(u, 7)€ X; z(x) e lIm(p) a.e.x € F}

= DA.

So, for anyUy € D4, S(t)Up is the unique mild solution of (11). By definition
of S(),
S(HUp = Iim0 Ust) inX

uniformly for ¢ € [0, t], where fore > 0, U, is ane—approximate solution
corresponding to a subdivisiog = 0 < #; < ... < t,_1 < T < t,, With
t; —t;_1 = ¢ and defined by, (0) = Uy, U.(t) = U; fort € t;_1, t;] where
U; € X satisfies
Ui— Ui
—— 4+ AU; 5 0.
&

Proposition 5. If (ug, zg) € D4 NL>®(£2) x L°(I"), then the curveéu(¢), z(¢))
= S(t)(uo, zo) Satisfies
u € C([0, 00); LX(£2)) N L™(0), z € C([0, 00); LXI")) N L®(X),

Jwel?

loc

(10, 00); HY(£2)) N L®(Q), w € b(u) a.e.inQ,

z=p(w) ae.on X and

//s,u+/ s<0>uo+/ /zs,+/zOs<0>
0 2 2 0 r r
=// Dw.Ds+f s<r>u<r>+/s<r>z<r),
0 2 2 r

vV & eCY0, 7] x £2) witht > 0.

(12)
Moreover, for anyr > 0,

lu(T) |l Lo(2y < M1(uo, 20), (13)
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||Z(T)||L°°(F) =< MZ(an ZO)’ (14)

|lwllLee (@) < M3(uo, z0), (15)

/M(T)-l-/Z(T):/ M0+/Z0 (16)
Q r 17, r
and
fj(u(t))+fw(z(t))+f / |Dw|2§/ j(uo)+flﬁ(20) (17)
17, r 0 Jo Q r

wherej : R — [0, oo] is a proper convex |. s. c. function such tlbat 9 and

Y(r) = / 0o (s)ds, for anyr € R.
0

Proof. By definition of mild solutioru € C([0, o0); L1(£2)) andz € C([0, o0);
LY(I")). Let (u,, z,) be thes—approximate solution witk = t/»n and for
i=1, ...n, letw; € H*(£2) such that

u; — eAw; = uj_1, w; € b(u;) in $2,
(18)
Zi +edyw; = zi—1, 7 = p(w;) onT.
Thanks to Propositions 1 and 2, it follows thgat € L™(2), z; € L),

luill L2y < Ma(uo, z0)s |zillLory < Ma(uo, zo)and | u;+ | zi = | uo+

2 r 2
/ 20, SO that
r

lue ()| L0 (2) < M1(uo, o), (19)

lze () |l Loo(ry < M2(uo, 20)

fug(r)+/z€(r)=/ Mo+on-
2 r 7} r

Then, lettinge — 0, and using the fact that, (1) — u(r) in L1(£2) andz.(t) —
z(t) in LY(I"), for anyt € [0, 7), we deduce that andz satisfy (13), (14) and
(16). To prove that there existssuch thatu, w, z) satisfies (12), (15) and (17),
we takew; as a test function in (18). Using the fact that

f(ui—l_ui)wi Sf j(ui—l)_/ J(u;)
7 7 7

and
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/(Zil—Zi)wi E/ W(Zil)—/ Y (zi),
r r r

we conclude that

fj(u,»>+e/ |Dwi|z+/w<zf>sf j(u,-_1>+/ V. (20)
2 2 r 2 r
Adding (20) fromi = 1 ton, we get

/j(ug<r))+/ / |Dws|2+/ wzg(r))s/ j(uo>+/w<zO> (21)
2 0 2 r 2 r

wherew, : [0, 7] — HY(£2) andw,(r) = w;, foranyr € |t,_1, 1], i = 1, ..n.
Thanks to(H1), M3(uo, zo) < oo, and (19) implies that

and

|we| < M3(uo, z0)- (22)

Sincej > 0 andy > 0, we deduce from (21) and (22), that is bounded
in L2(0, t; HY(£2)). There are a subsequengg} andw € L?(0, t; HX(£2))
such thatw,, — w weakly in L?(0, t; HX(2)) andwe, . — w,r weakly in
L%(0, t; L?(I")). Clearly,u,, — wu in L?(0, t; L?(2)) andz,, — z L?(0, t;
L2(I")). Sinceb (resp.p) is amaximal monotone graphirf (0, t; L2(£2)) (resp.
L2(0, t; L3(I"))), we obtainw(z) € b(u(r)) a.e. inf2 (resp.z(t) = p(w(t)) a.e.
onI), foranyt € (0, 7).

Finally, letii, andZ, be the functions fromi0, 7] into L1(£2), defined by
u.(t;) = u;, Z.(t;) = z; andii,, Z, linear in[#;_q, t;]1, then (18) implies that

/ / ik + / / 5E + f EOuo + / 20£(0)
0 2 0 r 2 r
- f / Duw,.DE + f (D) + f E (0. (1)
0 2 I 2

forany¢ € C1([0, 7] x £2). Lettinge — 0in (21), (22) and (23), we get (17),
(15) and (12). O

Proof of Proposition 2. Using Proposition 1, we see that for any> 0 and
¢ € b(a), we have

/(M—CI)JW-/(Z—,O(C))Jr < / (f—a)+—|—/(g—,0(c))+. (24)
Q r 2 r

It is clear that(f — M1)™ = 0 a.e. inf2. On the other hand, we observe that
either there exists € b(M1) such that|g| .~ = p(c), or for anyc € b(My)
we have| gL~y < p(c). This implies that there exists € b(M7) such that
(g — p(c)t = 0 a.e. onl. Then, takinga = M; in (24), we conclude that

(23)
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u < Mia.e.in2 andz < M, a.e. onl". Using the fact that—u, —w, —z) is a
solution ofS; (— f, —g, b, §), one can prove in the same way that < M, a.e.

in 2 and—z < M. This ends the proof of (7) and (8). On the other hand, we
see that Hy) implies thatM3(f, g) < oo and, sincaw € b(u), then (7) implies
(9). O

Lemma l. Let f € L™(£2), g € L*°(I") satisfying (6) > 0and let(v, z) =
J.(f, g).Foranyy € R" and¢ e C%(£2) supportedix € £2 ; distance(x, I")
> |y|, } we have

[ 506+ 3) = vl dx = €yl 1A N (1 1a) + gl
2

+fgs<x> G4 y) — f0)ldx

where(C is a constant depending only GR.

Proof. The proof follows exactly in the same way of Lemma 1 of [18]. Indeed,
letw € H(£2), such that(v, w, z) is the solution ofS, (£, g, b, p). Using the
results of [6] (cf. Step 3 of the proof of Theorem B’), for apye RY and

£ € C%(2) supported inx € £2 ; distancéx, I') > |y|}, we have

Ls<x>|v(x+y>—v<x>|dx9/9|A§||w<x+y)—w<x>|dx
+/Qé(x)|f(X+y)—f(X)Idx

< A1yl 1 A& || o@) 1212 1 Dw ]l 120
+f EQ) | f(x+y) — f(x)|dx
22

then, using (10), the result follows. O

Proof of Proposition 3.We begin by proving existence fgf € L*(£2) and
g € L*™(I"). For this, we consideb, a sequence of continuous and increasing
functions inR such that

b, — b inthe sense of graph

i.e. (I +b,)"r — (I +b)r, for anyr e R. Using Corollary 21 of [8]
and Proposition 2, for any € L*(£2) andg € L*(I") there exists a unique
(U, W, 2,) € L®(82) x H?(§2) x L= (I") solution ofS( f, g, by, p). Using (8),
(9) and (10), it is not difficult to see thét, } and{w,} (resp.{z,}) are bounded
in L*(£2) (resp. inL>°(I")). Thus, Lemma 1 implies thdt:,} is relatively
compact inL(£2), and (10) implies thaw,} is bounded inH(£2). Consider
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a subsequence that we denote agaimbguch thatw, converges inL?(£2)
and inH(£2)—weak, andw, - converges irL?(I"). Sincep is continuous and
the sequence, = p(w,,r)) is bounded inL>(I"), then we deduce that,,)
is also convergent ilL1(I"). Passing to the limit in the equation satisfied by
(u,, wy, z,), and using standard monotonicity and compactness arguments, we
deduce that a limit ofu«,,, w,, z,,) is a solution ofS, (f, g, b, p).
For f € LY(£2)andg € LY(I"), we considerf, € L>(£2) andg, € L>(I"),
such thatas — oo, || fullLye) < 1fllLr@), lgnllriry < gl

fo— finLY2) and g, —» gin LY(I)

and considefu,,, w,, z,) the solution ofS; (f,, g, b, p). Using Proposition 1,
we have

lun — umll iy + 1z — Zmllrry < o = fullire) + 1180 — &mllLicry,

which implies that there exist € L(£2) andz € LY(I") such thatu, — u

in LY(2) andz, — z in L*(I"), asn — oo. To prove that there exists <
wil(£2), such thatu, w, z) is a solution ofS, (£, g, b, p), itis enough to prove
that (w,) is bounded inW'1(£2) and conclude by passing to the limit in the
equation satisfied bgu,,, w,, z,), exactly in the same way of the first part of the
proof. Using Proposition C of [6], we have

lw, — fwn”WL‘i(.Q) < C(”f”Ll(.Q) + ”g”Ll(F)) (25)

forl<gqg < NT*1 On the other hand, following the same idea of [6], we see that
][w,, is bounded. Indeed ifw, — oo (resp.][wn — —00), then using (25) we

will have w, (x) — oo (resp.w, (x) - —oo)a.ex € £2, and sincew, € b(u,),
this contradicts the fact that,,) is convergent (through a subsequence) a.e. in
£2. This ends the proof of the Proposition. O

Proof of Proposition 4.By definition of A, we see easily thab(A) € D,. So,
it is enough to prove that

D(A) 2 {(u,2) € L¥(2) x L¥(I) 5 z(x) € Im(p) aex e I } — K.

Let(u, z) € K and conside(u,, w,, z.) the solution ofS,. (u, z, b, p). By defini-

tion of A, itis clear that(u,, z.) € D(A). Our aim now is to prove that, — u

in L1(£2) andz, — zin LY(I"), ase — 0, which ends the proof of (3.2). Using
Proposition 2 and Lemma 1 in the same way as for the proof of Proposition
3, we conclude thatu,} (resp.{z.}) is relatively compact ir.1(£2) (resp. in
LY(I")). Moreover{w,} is bounded in.>(£2), thensw, — 0in L>®(£2) and in
H'(£2)—weak. So, passing to the limit, as— 0, in the integral equality satis-
fied by (u,, w,, z.), we deduce that, — « in L}(£2) andz, — zin L*(I"). O
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Proof of Theorem 1.0bviously, the existence of a soluti@gn, z) in the sense
of (2) follows by Proposition 5. Moreover, singe(t), z(¢)) = S()Uy, then
u € C([0,00), LY(2)), z € C([0, 00), L*(I")), (3) and (4) are fulfilled. To
prove uniqueness, l€l;, z;), fori = 1, 2, be two solutions ofF (g, zo) and
let w; be such thatu;, w;, z;) satisfies (2). Settingy = u; —us, Z =z1 — 22
andW = w; — w», we have

f()TLU€I+fOTﬁZ$,:/OTva.vg (26)

forany¢ e C([0, T] x £2) such thatt(T) = 0. By density, for an arbitrary
7 > 0, we can take& as follows
—/ W(s)ds ifr<t
t
§(r) =

0 ift >t

as a test function in (26). Then

/T/UW+/t/ZW=—/r/VW-V(/TW(S))
0 2 0 r 0 2 t
17 [ 9 g 2
=§A /QE‘V/I W(s)ds‘
1 : 2
=—§/Q‘vfo W(s)ds‘.

SinceUW > 0a.e.(0,T) x 2 andZW > 0 a.e.on(0, T) x I', then (27)
implies that‘V/ W(s)ds‘ = 0in £2 for eacht > 0, so that we deduce that
0

W (¢) is a constante function if2 for eachr > 0. Then using (26) we géf =0
in (0, T) x £2 and using again (27) and the fact ttd¥ > 0 a.e. on0, T') x I,
we deduce thaZ W = 0 on(0, T) x I" which implies thatZ = 0. This ends the
proof of uniqueness. O

(27)

4. Stabilization results

Using Proposition 4, Theorem 2 is a particular case of the following result.
Theorem 4. For any Uy € D4, there exists a uniqué, € K(Up), such that

St)Up— U, inX, ast — oo.
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In order to prove stabilization result, we need to know the orbits of the semigroup
S(), i.e. {S@®) Uy ; t = 0}, are relatively compact iX. Among the results of
[18], it is proved that this is true ip = 0 (see also [19], [2,21]). The next
Proposition is a generalization of these results.

Proposition 6. For anyUy € D4, S(t)Uy is relatively compact irk.

Proof. First, using Lemma 1 and (7), we see that for any O fixed andB
a bounded subset db, N [ L>(£2) x L”(F)), J,.B is a relatively compact

subset ofX. Indeed, for any{(f,., g.)} € B, if (va, 2,) = Jo(f, g1)» then with
an appropriate choice ¢f we have

lim sup |vn(x+y)_vn(x)| =0
=0 »n Jor

for any 2’ cc £2, which implies, with (7), thafv,} is relatively compact in
L(£2). On the other hand, sincg = p(w,) wherew, € H(£2) is such that

(Vn, Wy, z,) is the solution ofS, ( f,, g., b, p), then using (8), (9), (10) and the
continuity of p, we deduce thatz,} is relatively compact inL*(I"). At last,

the proof of the relative compactness &)Uy, in X follows exactly in the
same way as in the proof of Theorem 2.2 in [21] (see also [12], Theorem 3).

In fact, one proves, firstly, tha{tS(r)Uo} is relatively compact for any/y €

DA (LOO(.Q) X L°°(F)> by using the inequality

1S0)Uo — FoSWoll < ainf (U115 U € AU).

Then, forUy € D4, the compactness of a subsequence @jU, follows by
approximatingl/y and the fact that
supinf [|S(1)Uo — S(s)Voll =< [lUo — Voll,  foranyVo € Dy. 1)
t>0 5=

O

Now, for anyug € LY(£2) andzo € LY(I"), we define thev—limit set of
E (uo, zo) by

oo, 20) = |, 2) € X5 @, ) = lim_S(t,) (o, z0) in X

for some sequenag — oo}.

This set is possibly empty. Now, it is well known (see [13]) that§f) Uy is
relatively compact, them (Up) is a non empty compact and connected subset
of X. Furthermorew (Up) is invariant underS(z), i.e., S®)w(Uy) < w(Up)

for anyr > 0. An equilibrium or stationary solution is any € X such that
(V) ={S®)V} = {V}. We denote by the set of equilibrium solutions. As a
consequence of Proposition 6, we have the following result.
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Remark 2.For anyUy € D4, K(Up) C £. Indeed, if(u, p(c)) € K(Up), then it

is not difficult to see thatu, ¢, p(c)) is a solution ofS; (u, p(c), b, p), for any

A >0, SOtha(I—i-LA)_"(g, p(©) = (u, p(c)),foranyt > 0andn =1, 2, ....
n

Then, by definition of mild solutions we deduce ti§at) («, p(c)) = (u, p(c)).

Corollary 5. ForanyUy € Dy, w(Up) # 0.

Proof of Theorem 4.Using the fact thatC(Up) is a closed subset of and
Inequality (1), one sees that it is sufficient to prove the Theorem folany a

dense subset d,. So, assume thdfy =: (1o, zg) € DaN (L°°(.Q) X L°°(F))
and let(u(r), z(t)) = S(t)(uo, zo) andw(r) € H(2), for eachr > 0, such that

(u, w, z) satisfies (12). Thanks to (17) and since- 0 andyr > 0, there exists
a sequence¢,), t, — oo, such that

lim / |Dw(t,)?=0 |, (2)
2

1 —>00

then, using (15) and the Poinedriequality, we deduce théib (z,)} is bounded

in H(£2). Thanks to Proposition 6, l&t, 2) € w(ug, zo) and(t,x), ty — 00,

such that(t,;) — u in L*(2), z(tx) — z in LY(I") and, letw € H*(2) be

such thatw (1,,) — w in L? (22) and inH*(£2)—weak, andu (1,¢),r — w - in
L?(I"). Then, as in the proof of Proposition 5, using standard compactness and
monotonicity arguments, we obtain

w e b(u) a.e.2andz = p(w) a.e.l'. 3)

Passing to the limitin (2), ag, — oo, we get

[ 1pwf =0
2

which implies that there existse R such that
w = ca.e.inf. 4)
Now, passing to the limit in (3), we obtain

\r|
][pr(c)ﬁ —mo . 5)

On the other hand, sinae € b~ %(c) andb1(c) is a subinterval ofR, then
r . . . .
][ u € b Yc) and][ u + p(c)% € ¢np(c), which with (5) implies that
2 2
¢ € ¢y, * (mg) . From this, we deduce thak, z) € K(Up), which implies by
Remark 2 thal(¢)(u, z) = (u, z). Then, the convergence 8fr) U, ast — oo,

follows immediately by the contraction property $ft) in X. ]
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ForanylUy € D4 andr € &, setting(u(z), z(¢t)) = S(t)Up, we define
M,(Uo) = {(t,x) € Q; u(t,x) €int(b™(r)},

foranyr € &, and
M, (Uo.10) = [ x € 2 (10, ) € M,(Up) }.

Remark 3.In terms of the Stefan problend/, (Uy, tp) is called the “Mushy
region”, the set which separates two different phases.

Proposition 7. Foranyr € £ andUp € Dy,
M, Uy, t2) € M, (Ug, 1) forany r, > 1, (6)
in the sense of me¥, (U, t2) \ M, (U, t1)) = O.
Proof. The proof follows exactly the argument of Proposition 4 of [18]. We omit

the details of the proof here to avoid to repeat unnecessarily the same arguments.
m|

We also recall the following Lemma that will be useful for the proof of Theorem
3.

Lemma 2. (see forinstance [18]) Latf,) be asequence éf(£2), f € L1(£2),
such thatf, — f in L1(£2). If xo € 2 is a Lebesgue point of such that
01 < f(xg) < 05, for 61, 6> € R, then, foranys > 0,

mes{x € B(xp,d8); 01 < f(x) <6} >0
and, there existsg = ng(01, 6>, §) > 0, such that
mes(x € B(xg,8) ; 01 < f,(x) <6} >0 foranyn > ng.
Proof of Theorem 3The proof of this Theorem follows the ideas of Proposition
4 of [18]. First, we notice that (5) is a consequence of Theorem 4. Now, in

order to prove (6) and (7), we consider(t), z(t)) = S(t)(ug, z0) andw €
L2 ([0, o00); H(£2)) given by Proposition 5, such that € b(u) a.e. inQ and
t

(u, w, z) satisfies (12). Obviously, for any> 0, W(¢) = / w(s)ds € Hl(Q)

0
and, by an appropriate choice &fin (12), we observe thaW (¢) is a weak
solution of

—AW(@) = ug —u(t) inf
(7)
0, W(t) =z0—2z(t) onrl.
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Thanks to (13) and (14), we havié(r) € H?(2) andW (¢) := W(t)—][W(t) is
bounded in1(£2). Onthe other hand, applying Theorem 2, we hay@ — u in
L*(2)andz(1) — p(c)in L*(I"), ast — oo, withc € ¢, (mo) andu € b™(c)
a.e. inf2. So, there exist§ € H?(2) and a sequena@,), t, — 0o, such that
W) — W weakly in H1(£2) and strongly inL?(£2),
W(t);r — W, strongly inL?(I"),
and W satisfies

—AW =ug—u a.e.ins2,

W =z0—p(c) ae.onl.

Now, letxg € £2 be a Lebesgue point of, such that < u(xg) < L. Using
Lemma 2, for any > 0, there existsgy = 7(l, L, §) > 0, such that

mes{x € B(xgp,8); I <u(t,x) < L} >0 foranyr > 1 ;
then, thanks to Proposition 7,
mes{x € B(xg,8); | <u(t,x) <L} >0 foranyr >0 .
This implies that
mes{x € B(xgp,d8); w(t,x)=c} >0 foranyr>20

so that

mes{x € B(xo,8); W(t,x)=tc— ][W(t)} > Oforanyr >0 (8)

andW(x) = tlim (ctk — ][W(tk)) =:k a.e.x € B(xg, §), wherek € R does
'k —> 00
not depend ong. Takingw = W — k, we see thatv satisfies (6) and

w=0 a.e.inB(x,?d) . (9)

Sincew € C(£2) by standard theory for elliptic problem and satisfies (9) for any
8 > 0, thenw(xo) = 0, which ends the proof of the Theorem. O
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