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FROM FAST TO VERY FAST DIFFUSION
IN THE NONLINEAR HEAT EQUATION

NOUREDDINE IGBIDA

Abstract. We study the asymptotic behavior of the sign-changing solution of
the equation ut = ∇·(|u|−α∇u)+f, when the diffusion becomes very fast, i.e.

as α ↑ 1. We prove that a solution uα(t) converges in L1(Ω), uniformly for t in

subsets with compact support in (0, T ), to a solution of ut = ∇·(|u|−1∇u)+f.
In contrast with the case of α < 1, we prove that the singularity 0 created in
the limiting problem, i.e. α = 1, is an obstruction to the existence of sign-
changing solutions. More precisely, we prove that, for each t ≥ 0, the limiting
solutions are either positive or negative or identically equal to 0 in all Ω. This
causes the limit to be singular, in the sense that a boundary layer appears at
t = 0, when one lets α ↑ 1.

1.. Introduction and main results

In this paper we study the asymptotic behavior of the sign-changing solutions
of the equation

(1.1) ut = ∇ · (|u|−α ∇u) + f,

as α ↑ 1.
Equation (1.1) with α < 0 is the so-called porous medium equation. Existence,

uniqueness, asymptotic behavior as the diffusion is very slow, i.e. α ↓ −∞, and
many other properties have been extensively studied for this equation. If 0 ≤ α < 1,
(1.1) is the nonlinear fast diffusion equation, since it is a particular case of the
general formulation ut = ∇ · (D(u)∇ u) + f with the diffusivity D(u) satisfying
D(u) → +∞ as u → 0, though it must be borne in mind that D(u) → 0, as
u → ∞. The study of the peculiar case 0 < α ≤ 1 is also motivated by some
physical applications. For instance, equation (1.1) arises in plasma physics, the
kinetic theory of gases and solid state (cf. [8], [24] and [21]). It also appears in
Riemannian geometry to describe the evolution of a conformal metric in the plane
under Ricci flow (cf. [15], [30, 29]). The reader can also see papers [2], [26] and [27]
for extensive references on equation (1.1).

The study of the limit as α ↑ 1 is a part of a wide program for understanding
the singular limit phenomena for evolution problems. Indeed, for α very close to
1, a self-organizer process appears in the equation and makes the limiting problem

Received by the editors February 4, 2005 and, in revised form, September 19, 2006, February
9, 2007 and March 12, 2007.

2000 Mathematics Subject Classification. Primary 35K60, 35K65, 35B40.
Key words and phrases. Singular limit, fast diffusion, logarithmic diffusion equation, degener-

ate parabolic equation, nonhomogeneous Neumann boundary condition, porous medium equation,
sign-changing solution, boundary layer, semigroup of contraction.

c©2009 American Mathematical Society

5089



5090 NOUREDDINE IGBIDA

strikingly different. For other singular limits for (1.1), one can also see papers [11]
and [3] for α ↓ −∞ and paper [25] for α → 0. In [27], the author discusses the fast
and superfast cases of (1.1) which correspond to 0 < α < 2.

In this paper, we focus our attention on the case α = 1, since even if this case
is a borderline of the case α < 1, the properties of the solutions in both cases
are completely different. For instance, as we show, in contrast with α < 1, for
which the existence of solutions holds for every L1 initial data, the existence of a
solution when α = 1 holds only with an additional sign condition on the initial
data. Moreover, in contrast with the case α < 1, in which for any t > 0, a solution
u(t) may vanish in a subregion of Ω and changes sign, in case α = 1, for any t > 0,
either u(t) > 0 in Ω or u(t) < 0 in Ω or u(t) ≡ 0 in Ω. This is strongly connected
with the fact that equation (1.1) may be written in the standard form

(1.2) ut = ∆ϕα(u) + f,

where ϕα is given by

(1.3) ϕα(r) =

{
1

1−α Sign(r)|r|1−α for r ∈ R if α < 1,

Sign(u) log(|u|) for r ∈ R
∗ if α = 1.

Note that if α < 1, then ϕα is a continuous increasing function in R. On the other
hand, when α = 1, the graph of ϕ1 is a union of two graphs of continuous increasing
functions in R and singular at 0. The singularity of ϕ1 at 0 seems to create an
obstruction to the existence of sign-changing solutions. For the asymptotic behavior
of a solution of (1.1), as α ↑ 1, one expects that a solution uα of (1.1), for α < 1,
converges to a solution corresponding to α = 1. However, due to the obstruction
phenomena at 0, the limit is singular in the case where u0 is a sign-changing function
and a boundary layer appears when one reaches the limit. In the case of N = 1,
this problem was studied in [28] in connection with the (1−α)-Laplacian operator
in R. In that paper, the authors pointed out the obstruction phenomena at 0 for
the limiting problem. Papers [13] and [17] treat the cases N = 1, 2 when the initial
data is nonnegative. In this paper, we will prove convergence results of solutions
uα of (1.1), as α ↑ 1, and show how the boundary layer appears with respect to the
average of the initial data and f, and also with respect to the average of the flux
of the solution on the boundary.

Remember that, in R
N , and in contrast with the case α < 1, (1.1) can be ill

posed if α = 1, because of the nonuniqueness of the solution (cf. [12]). However,
if N = 1, 2, Esteban, Rodriguez and Vazquez show in a series of papers (see the
last paper [13] and the references therein) that the problem is well posed under
additional conditions on the flux at infinity. For instance, a unique nonnegative
radial symmetric solution exists in case N = 2 with nonnegative radial symmetric
initial data u0 ∈ L1(R2) and Neumann boundary condition at infinity described by

lim
r→∞

r ur(x, t)
u(x, t)

= −g(t),

where g ≥ 2, r = |x| and ur is the derivative of u along the radial direction. In
other words, if α = 1, one must consider (1.1) with some nonstandard boundary
conditions in R

N of Neumann type. This approach was used in [16] to construct
again nonnegative solutions of (1.1) for α = 1, as limits of solutions in a ball B(R),
of radius R > 0, with nonhomogeneous Neumann boundary condition on ∂B(R),
by letting R → ∞.
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In this paper, we consider equation (1.1), in a smooth bounded domain Ω, with
nonhomogeneous time dependent boundary condition on Γ, the boundary of Ω,

(1.4) u−α ∇u · −→n = g,

where −→n denotes the outward normal of Γ, g ∈ L2(Σ) and Σ = (0, T ) × Γ. So,
throughout the paper we denote by Eα(u0, f, g) the following evolution problem:

Eα(u0, f, g) =

⎧⎪⎨
⎪⎩

ut = ∇ · (u−α ∇u) + f in Q = (0, T ) × Ω,

u−α ∇u · −→n = g on Σ = (0, T ) × Γ,

u(0, .) = u0(.) in Ω.

We begin by a more or less known result concerning the existence and uniqueness
of a solution of Eα(u0, f, g), for α < 1.

Proposition 1. For any α < 1, if u0 ∈ L2−α(Ω), f ∈ L2(Q) and g ∈ L2(Σ), there
exists a unique solution u of Eα(u0, f, g) in the sense of
(1.5)⎧⎪⎪⎨

⎪⎪⎩
u ∈ C([0, T ); L1(Ω)), ϕα(u) ∈ L2(0, T ; H1(Ω)), u(0) = u0 a.e. Ω,

d

dt

∫
Ω

ξu +
∫

Ω

∇ ϕα(u) · ∇ξ =
∫

Γ

ξ g +
∫

Ω

ξ f in D′(0, T ), ∀ξ ∈ C1(Ω).

For α = 1 and due to the nature of the graph of ϕ1, we introduce the following
subset of Lp(Ω) for 1 ≤ p ≤ ∞ :

Lp(Ω)+ =
{

u ∈ Lp(Ω) ; u ≥ 0 a.e. Ω
}
,

Lp(Ω)− =
{

u ∈ Lp(Ω) ; u ≤ 0 a.e. Ω
}

and

Lp(Ω)± = Lp(Ω)− ∪ Lp(Ω)+.

As common when dealing with purely Neumann boundary conditions, the quantity

µ(t) =
∫

Ω

u0 +
∫ t

0

( ∫
Γ

g +
∫

Ω

f
)

for any t ∈ [0, T )

plays a crucial role in the study of E1(u0, f, g). We are going to use it extensively
throughout the following subintervals (possibly empty) of [0, T ) :

I =
{
t ∈ [0, T ) ; µ(t) = 0

}
,

I+ =
{
t ∈ [0, T ) ; µ(t) > 0

}
,

I− =
{
t ∈ [0, T ) ; µ(t) < 0

}
and

I± = I+ ∪ I−.
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Theorem 1. For any u0 ∈ Lp(Ω)±, with p > 1, f ∈ L2(Q) and g ∈ L2(Σ), there
exists a unique solution u of E1(u0, f, g) in the following sense:

(1.6)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u ∈ C([0, T ); L1(Ω)±), u(0) = u0 a.e. Ω, u(t) ≡ 0 in Ω, for any t ∈ I,

u(t) µ(t) > 0 a.e. in Ω, for any t ∈ I±, log(|u|) ∈ L2(I±; H1(Ω)),
d

dt

∫
Ω

ξ u +
∫

Ω

∇ϕ1(u) · ∇ξ =
∫

Γ

g ξ +
∫

Ω

f ξ in D′(t1, t2),

∀ ξ ∈ C1(Ω) and (t1, t2) ⊆ I±.

In the following corollary, we give a particular case of Theorem 1 that we believe
is of particular interest. More precisely we give a consequence of the theorem in
the case where u0 ≥ 0, f ∈ L2(Ω) and g ∈ L2(Γ), which is interesting for the study
of maximal solutions in case Ω = R

N (cf. [12] and [16]).

Corollary 1. Assume that u0 ∈ L1(Ω)+, g ∈ L2(Γ) and f ∈ L2(Ω).

i) If
∫

Γ

g +
∫

Ω

f ≥ 0, then there exists a unique solution u of E1(u0, f, g) in

the following sense:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u ∈ C([0,∞); L1(Ω)+), u(0) = u0 a.e. in Ω, u > 0 a.e. in (0,∞) × Ω,

w := log(u) ∈ L2
loc

(
0,∞; H1(Ω)

)
,

d

dt

∫
Ω

ξ u +
∫

Ω

∇w · ∇ξ =
∫

Γ

g ξ +
∫

Ω

f ξ

in D′(0, +∞) and ξ ∈ C1(Ω).

ii) If
∫

Γ

g +
∫

Ω

f < 0, then setting

(1.7) τ = −
∫

Ω

u0

/( ∫
Γ

g +
∫

Ω

f
)
,

there exists a unique solution u of E1(u0, f, g) in the following sense:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u ∈ C([0,∞); L1(Ω)±) ∩ L2(Q), u(0) = u0 a.e. in Ω, u(τ ) ≡ 0 in Ω,

u > 0 a.e. in (0, τ ) × Ω, u < 0 a.e. in (τ,∞) × Ω,

w := ϕ1(u) ∈ L2
loc

(
(0, τ ) ∪ (τ,∞); H1(Ω)

)
,

d

dt

∫
Ω

ξ u +
∫

Ω

∇w · ∇ξ =
∫

Γ

g ξ +
∫

Ω

f ξ in D′(t1, t2)

∀ ξ ∈ C1(Ω) and (t1, t2) ⊂ (0, τ ) ∪ (τ,∞).

At last, let us give results that show how a sign-changing solution of Eα(u0, f, g)
for α < 1 converges, as α ↑ 1, to a solution of E1(u0, f, g), which does not change
the sign.

Theorem 2. Assume that u0 ∈ Lp(Ω), for p > 1, f ∈ L2(Q), g ∈ L2(Σ) and
for 2 − p < α < 1, denote by uα the solution of Eα(u0, f, g). Then, there exists
u0 ∈ L∞(Ω)±, such that, by taking a subsequence if necessary, we have

(1.8) uα → u in C
(
[δ, T ), L1(Ω)

)
for any 0 < δ < T, as α → 1,
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and u is the solution of E1(u0, f, g). Moreover, u0 satisfies
i) If u0 ∈ L2(Ω)±, then u0 = u0, and δ = 0 is admissible in (1.8).

ii) If
∫

Ω

u0 = 0, then u0 ≡ 0.

iii) If
∫

Ω

u0 > 0, then 0 ≤ u0 ≤ u+
0 a.e. in Ω and u0 = 0 a.e. in [u0 ≤ 0].

iv) If
∫

Ω

u0 < 0, then −u−
0 ≤ u0 ≤ 0 a.e. in Ω and u0 = 0 a.e. in [u0 ≥ 0].

In particular we have

Corollary 2. Under the assumptions of Theorem 1, if
∫

Ω

u0 =
∫

Ω

f(t) =
∫

Γ

g(t) =

0 a.e. t ∈ [0, T ), then
uα → 0 in C((0, T ), L1(Ω))

as α → 1.

In the rest of this paper, we will prove the above results. In section 2, we point
out the outline of the proof of Proposition 1, and we prove Theorem 1 and a part of
Theorem 2 that correspond to the regular case, i.e. for nonnegative or nonpositive
initial data. In section 3 we complete the proof of Theorem 2 in the singular case,
i.e. for sign-changing initial data. At last, in the Appendix we prove two technical
lemmas that we use in this paper.

2.. The limit of the fast diffusion as α ↑ 1
and the logarithmic diffusion

In order to study the problem Eα(u0, f, g) by using nonlinear semigroup theory
(cf. [14] and [4]), we set X = L1(Ω) × L1(Γ) endowed with the natural norm

|(f, g)|X = ‖f‖L1(Ω) + ‖g‖L1(Γ) for (f, g) ∈ X,

and we consider, in X, the following Cauchy problem:

(2.1)
dU

dt
+ AαU = (f, g) on (0,∞) U(0) = U0,

where U0 ∈ D(Aα) and Aα is the nonlinear operator defined in X by

Aα(v, 0) = (f, g) ⇔

⎧⎪⎨
⎪⎩

v ∈ L1(Ω) ; f ∈ L1(Ω), g ∈ L1(Γ),
w := ϕα(v) ∈ W 1,1(Ω), ∆w ∈ L1(Ω) and∫
Ω
(∇w · ∇ξ + f ξ) =

∫
Γ

g ξ, ∀ ξ ∈ C1(Ω).

Through the implicit discretization in time arising in nonlinear semigroup theory
(cf. [14] and [4]), the study of Eα(u0, f, g) is closely related to the elliptic problem

(2.2) v = ∇ · (v−α ∇v) + f on Ω, v−α ∇v · −→n = g on ∂Ω

with f ∈ L1(Ω) and g ∈ L1(Γ). It is known (see for instance [20]) that for any
α < 1, there exists a unique solution v of (2.2) in the sense that

(2.3)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

v ∈ L1(Ω), ϕα(v) ∈ W 1,1(Ω),

∫
Ω

∇ϕα(v) · ∇ξ =
∫

Ω

(f − v)ξ +
∫

Γ

gξ,

∀ξ ∈ C1(Ω).
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Moreover, we have

(2.4)
∫

Ω

v =
∫

Ω

f +
∫

Γ

g

and if v, v̂ are two solutions corresponding to f, f̂ ∈ L1(Ω) and g, ĝ ∈ L1(Γ), then
(cf. Proposition E in [5])

(2.5)
∫

Ω

(v − v̂)+ ≤
∫

Ω

(f − f̂)+ +
∫

Γ

(g − ĝ)+

and ∫
Ω

|v − v̂| ≤
∫

Ω

|f − f̂ | +
∫

Γ

|g − ĝ| ,

so that the operator Aα defined as above is m-T-accretive in X. Moreover, using
the results of [5] (cf. step 1 of the proof of Theorem I, page 220), we deduce that

D(Aα) = L1(Ω) × {0} for any α < 1.

So, by using general results of nonlinear semigroup theory we have

Corollary 3. If α < 1, then for any u0 ∈ L1(Ω), there exists a unique u ∈
C([0, T ); L1(Ω)) such that U = (u, 0) is the mild solution of (2.1) with U0 = (u0, 0).
Moreover,

(2.6)
∫

Ω

u(t) =
∫

Ω

u0 +
∫ t

0

( ∫
Ω

f +
∫

Γ

g
)

for each t ∈ [0, T )

and we may define a mapping Sα(u0, f, g) ∈ L1(Ω)×X → u ∈ C([0, T ); L1(Ω)) such
that the L1-comparison principle holds; i.e., for any u01, u02 ∈ L1(Ω), f1, f2 ∈
L1(Q) and g1, g2 ∈ L1(Σ), if ui = Sα(u0i, fi, gi) for i = 1, 2, then

d

dt

∫
Ω

(u1(t) − u2(t))+ ≤
∫

Γ

(g1 − g2)+ +
∫

Ω∩[u1(t)>u2(t)]

(f1(t) − f2(t))

+
∫

Ω∩[u1(t)=u2(t)]

(f1(t) − f2(t))+

in D′(0, T ).

Proposition 2. If α < 1, u0 ∈ L2−α(Ω), f ∈ L2(Q) and g ∈ L2(Σ), then
Sα(u0, f, g) is the unique solution of Eα(u0, f, g) in the sense of Proposition 1.

The proof of this Proposition follows in the same way as the proof of Proposition
3 of [19]. Recall that the main difficulty comes from the fact that we are dealing
with nonhomogeneous Neumann boundary conditions, so that somewhere in the
proof one can get only an a priori estimate on the gradient of ϕα(u) which is not
sufficient when we regularize and go to the limit. So, in order to estimate ϕα(u) in
H1(Ω), we have used the structure of ϕα and the L1-estimate of u (cf. Lemma 4 of
[19]). Note that, in [19], the boundary condition was considered to be independent
of t but this does not present many real difficulties. We omit the details of the
proofs and leave them to the reader.

Now, we can focus on the existence and uniqueness of a solution of E1(u0, f, g).
We construct this solution as the limit of uα as α ↑ 1. Since the solution of
Eα(u0, f, g) is the mild solution given by the nonlinear semigroup generated by
Aα, it is natural to study the limit of this operator as α → 1. This is equivalent to
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studying the limit of a solution of (2.2), as α → 1, which is the aim of the following
proposition:

Proposition 3. Let f ∈ L1(Ω), g ∈ L1(Γ) and for 0 < α < 1, let vα be the solution
of (2.2).

1) If
∫

Ω

f +
∫

Γ

g �= 0 and s = Sign(
∫

Ω

f +
∫

Γ

g), then there exists a unique

solution v of⎧⎪⎪⎨
⎪⎪⎩

v ∈ L1(Ω)±, s v > 0 a.e. on Ω, w := ϕ1(v) ∈ W 1,1(Ω),

∫
Ω

∇w · ∇ξ =
∫

Ω

(f − v) ξ +
∫

Γ

g ξ, ∀ ξ ∈ C1(Ω).

Moreover, as α → 1,

vα → v in L1(Ω)

and

ϕ̃s
α(vα) := ϕα(vα) − s/(1 − α) → w in W 1,1(Ω)-weak.

2) If
∫

Ω

f +
∫

Γ

g = 0, then vα → 0, in L1(Ω), as α → 1.

In order to prove this proposition, we begin by proving the following result:

Lemma 1. If f ∈ L∞(Ω) and g ∈ L∞(Γ), then (vα)0<α<1 is bounded in Lq(Ω),
for any q > 2.

Proof. We prove that

(2.7)
∫

Ω

|vα|q ≤ C1

(
2

2−α
2

|Ω|(1−α)2

(
‖f |L1(Ω) + ‖g‖L1(Γ)

) 2−α
2

+ C Kα

) 2
q−α

,

where

C1 = C(‖f‖L∞(Ω) + ‖g‖L∞(Γ)) max(|Ω|
1−α
q−α , |Γ|

1−α
q−α ), C2 = 2

q−α
2 /|Ω|

q−1−α
2 + C,

kα = 2 ‖v‖
q−α

2
L1(Ω) + 2

(
1

2 C2

( 4
C1(q − α)2

) q−α
2

)− 1
q−1−α

and C denotes a constant depending only on N and Ω. Then, it is clear that C1, C2

and Kα are bounded in m and the result of the lemma follows. Taking ξ = |vα|q−2vα

as a test function in (2.3), we get

(2.8)

∫
Ω

|v|q +
4

(q − α)2

∫
Ω

|∇ v
q−α

2 |2 =
∫

Ω

f |v|q−2v +
∫

Γ

g |v|q−2v

≤ C1

(
‖v‖Lq−α(Ω) + ‖v‖Lq−α(Γ)

)

≤ C1 ‖v
q−α

2 ‖
2

q−α

H1(Ω),

where we drop the index m. Moreover, using Lemma 8 in the Appendix, we have

(2.9) ‖v
q−α

2 ‖L2(Ω) ≤
2

q−α
2

|Ω| q−1−α
2

‖v‖
q−α

2
L1(Ω) + C ‖∇ v

q−α
2 ‖L2(Ω)
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and

(2.10) ‖v
q−α

2 ‖H1(Ω) ≤ C2

(
‖v‖

q−α
2

L1(Ω) + ‖∇ v
q−α

2 ‖L2(Ω)

)
.

So, (2.8) and (2.10) imply that

4
(q − α)2

∫
Ω

|∇ v
q−α

2 |2 ≤ C1

[
C2

(
‖v‖

q−α
2

L1(Ω) + ‖∇ v
q−α

2 ‖L2(Ω)

)] 2
q−α

,

which is equivalent to

‖∇ v
q−α

2 ‖q−α
L2(Ω) ≤ C2

(C1 (q − α)2

4

) q−α
2

(
‖v‖

q−α
2

L1(Ω) + ‖∇ v
q−α

2 ‖L2(Ω)

)
.

Using Young, this implies that

‖∇ v
q−α

2 ‖L2(Ω) ≤
ε C2

(
C1 (q−α)2

4

) q−α
2 ‖v‖

q−α
2

L1(Ω) + ε−
1

q−1−α

1 − ε C2

(
C1(q−α)2

2

) q−α
2

for any ε such that

0 < ε <
1
C2

( 4
C1(q − α)2

) q−α
2

.

Taking ε =
1

2 C2

( 4
C1(q − α)2

) q−α
2

, we deduce that

‖∇ v
q−α

2 ‖L2(Ω) ≤ Kα,

so that (2.10) implies

(2.11) ‖v
q−α

2 ‖H1(Ω) ≤
2

q−α
2

|Ω| q−1−α
2

‖v‖
q−α

2
L1(Ω) + C Kα

and (2.7) follows by using (2.8). �

Lemma 2. Under the assumptions of Proposition 3, (vα)0<α<1 is relatively com-
pact in L1(Ω).

Proof. First, we know (see for instance step 3 of the proof of Theorem B′ [5]) that
for all ω � Ω, we have

lim
|y|→0

sup
α<1

∫
ω

|vα(x + y) − vα(x)| dx = 0,

so that vα is relatively compact in L1(ω) , and since

‖vα‖L1(Ω) ≤ ‖f‖L1(Ω) + ‖g‖L1(Γ),

then there exists αk → 1 and v ∈ L1(Ω) such that

(2.12) vαk
→ v a.e. Ω.

Assume that f ∈ L∞(Ω) and g ∈ L∞(Γ). Then using Lemma 1, we deduce that vα is
bounded in Lp(Ω), with p > 2. This implies that vα is relatively compact in Lp(Ω)-
weak and then in L1(Ω)-weak. So, using (2.12) we deduce that vα is relatively
compact in L1(Ω). If f ∈ L1(Ω) and g ∈ L1(Γ), then we consider fε ∈ L∞(Ω),
gε ∈ L∞(Γ) such that fε → f in L1(Ω) and gε → g in L1(Γ), as ε → 0. Using
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the first step of the proof, we denote by vαε the corresponding solution which is
convergent in L1(Ω). Using (2.5) for n ≤ m ≤ 1, we have

‖vn − vm‖1 ≤ ‖vn − vnε‖1 + ‖vm − vmε‖1 + ‖vnε − vmε‖1

≤ 2
(
‖f − fε‖1 + ‖g − gε‖1

)
+ ‖vnε − vmε‖1.

So,

lim sup
n→0

‖vn − vm‖1 ≤ 2
(
‖f − fε‖1 + ‖g − gε‖1

)
→ 0, as ε → 0

and, we deduce that vα is relatively compact in L1(Ω). �

Proof of Proposition 3. If
∫

Ω

f +
∫

Γ

g > 0, then s = 1 and, as α → 1, ϕ̃1
α(.) → log(.)

in the graph sense. Since we can replace ϕα in (2.3) by ϕ̃s
α, then one can prove

exactly in the same way as Theorem B of [5] that a limit v, through a subsequence of
solution vα (which exists by Lemma 2) is such that v > 0, ϕ̃s

α(vα) → log(v) = ϕ1(v)
in W 1,1(Ω)-weak and v satisfies∫

Ω

∇ ϕ1(v) · ∇ ξ =
∫

Ω

(f − v) ξ +
∫

Γ

g ξ, ∀ ξ ∈ C1(Ω).

Using the symmetry vα → −vα, the case
∫

Ω

f +
∫

Γ

g < 0 can be reduced to the

previous case. The uniqueness follows by Proposition E of [5].

To prove the second part of the proposition, let us assume that
∫

Ω

f +
∫

Γ

g = 0.

Again, according to [5], we have

(2.13)
(
ϕ̃1

α(vα) − Cα

)
m≥1

is bounded in W 1,1(Ω),

where Cα =
∫
−ϕ̃1

α(vα). Using Lemma 2, there exists αk → 1 such that vk := vαk
→ v

in L1(Ω) and using (2.13) we have w̃k := ϕ̃1
αk

(vk) − Cαk
⇀ w̃∞ in W 1,1(Ω) and

a.e. in Ω. Since vk and w̃k converge in L1(Ω), then Cαk
is not bounded. Indeed, if

Cαk
is bounded, then ϕ̃1

αk
(vk) converges in L1(Ω) and using that ϕ̃1

α is monotonic
and the fact that ϕ̃1

α → log in the graph sense, as α → 1, we deduce that v > 0,

which contradicts the fact that
∫

Ω

v =
∫

Ω

f +
∫

Γ

g = 0. So, using again (2.13), we

deduce that ϕ̃1
αk

(vk) → ±∞ a.e. in Ω. Now, since for α close enough to 1, we have
ϕ̃1

α(vα) ≤ v+
α and vα converges in L1(Ω), then we deduce that ϕ̃1

αk
(vk) → −∞ a.e.

in Ω, which implies that vk → 0. �

Using Proposition 3, we have Aα → A1 in the graph sense, where

A1 = B ∪
{
((0, 0), (f, g)) ∈ X × X ;

∫
Ω

f +
∫

Γ

g = 0
}
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and B is the T-accretive operator in X defined by

B(v, 0) = (f, g) ⇔

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

v ∈ L1(Ω)±, f ∈ L1(Ω), g ∈ L1(Γ),

|v| > 0 a.e. in Ω, w := ϕ1(v) ∈ W 1,1(Ω) and

∫
Ω

∇w · ∇ξ =
∫

Ω

f ξ +
∫

Γ

g ξ ∀ ξ ∈ C1(Ω).

Indeed, A1 being defined as above, for (f, g) ∈ X, we have

(v, 0) + A1(v, 0) � (f, g) ⇔

⎧⎪⎪⎨
⎪⎪⎩

v ∈ L1(Ω),
∫

Ω

v =
∫

Ω

f +
∫

Γ

g and

either v ≡ 0 or v is a solution of S1(f, g),

so that according to Proposition 3, there exists a unique solution v of (v, 0) +
A1(v, 0) � (f, g) and

(v, 0) = X − lim
α→1

(I + Aα)−1 (f, g).

Moreover, we have

Proposition 4.

D(A1) = L1(Ω)± × {0},

where D(A1) denotes the closure in L1(Ω) of the domain of A1.

Proof. From the definition of A1 it is clear that D(A1) ⊆ L1(Ω)± × {0}. Let us
prove that L1(Ω)+ × {0} ⊆ D(A1) and L1(Ω)− × {0} ⊆ D(A1). It is clear that
(0, 0) ∈ D(A1). Now, let u ∈ L1(Ω)+ ∩ L∞(Ω) be such that u �≡ 0. We consider uε

to be the solution of

uε − ε ∆ log(uε) = u in Ω, u−1
ε ∇uε · −→n = 0 on ∂Ω.

Since
∫

Ω

uε =
∫

Ω

u > 0 and, as ε → 0, the graph ε log(.) converges in the graph

sense to the graph β ≡ 0, then by Theorem B of [5], we deduce that uε → u in
L1(Ω). So, since (uε, 0) ∈ D(A1), for each ε > 0, we deduce that (u, 0) ∈ D(A1). At
last, the proof of L1(Ω)− × {0} ⊆ D(A1) follows by using the symmetry u → −u
of the equation. �

Corollary 4. For any u0 ∈ L1(Ω)±, there exists a unique u ∈ C([0, T ); L1(Ω)),
such that U = (u, 0) is the mild solution of

dU

dt
+ A1U = (f, g) on (0,∞), U(0) = (u0, 0).

Moreover, u satisfies (2.6) and we may define a mapping S1(u0, f, g) ∈ L1(Ω)± ×
X → u ∈ C([0, T ); L1(Ω)±) such that the L1-comparison principle holds.
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Using Proposition 1 with the Brézis-Pazy Theorem (cf. [9]), for the regular
perturbations of nonlinear semigroups, we have

Corollary 5. Assume that u0 ∈ L1(Ω)±. If for α < 1, fα ∈ L1(Q), gα ∈ L1(Γ)
and u0α ∈ L1(Ω) are such that, as α → 1, fα → f in L1(Q), gα → g in L1(Σ) and
u0α → u0 in L1(Ω), then

Sα(u0α, fα, gα) → S1(u0, f, g) in C
(
[0, T ); L1(Ω)

)
.

The next proposition leads to the existence and uniqueness of a weak solution of
the diffusion equation with logarithmic nonlinearity and initial data u0 ∈ L1(Ω)±.
To put to paper these results we need to introduce the following nonnegative func-
tion:

j(r) =

{
r log(r) − r + 1 if r > 0,

1 if r = 0.

Proposition 5. Let u0 ∈ L1(Ω)+ such that j(u0) ∈ L1(Ω), g ∈ L2(Σ) and f ∈
L2(Q). Assume that µ(t) > 0 for any t ∈ [0, τ ]. Then u := S1(u0, f, g) is the unique
solution of E1(u0, f, g) in [0, τ ), in the following sense:

(2.14)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u ∈ C([0, τ ], L1(Ω)+), u(0) = u0 a.e. in Ω,

u > 0 a.e. in (0, τ ) × Ω, log(u) ∈ L2(0, τ ; H1(Ω)),
d
dt

∫
Ω

ξu +
∫
Ω
∇ log(u) · ∇ξ =

∫
Ω

fξ +
∫
Γ

gξ

in D′(0, τ ), ∀ ξ ∈ C1(Ω).

Using the symmetry u → −u, we also have the following result:

Corollary 6. Let u0 ∈ L1(Ω)− such that j(−u0) ∈ L1(Ω), g ∈ L2(Σ) and f ∈
L2(Q). Assume that µ(t) < 0 for any t ∈ [0, τ ]. Then u := S1(u0, f, g) is the unique
solution of E1(u0, f, g) in the following sense:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
u ∈ C([0, τ ], L1(Ω)−), u(0) = u0 a.e. in Ω,

u < 0 a.e. in (0, τ ) × Ω, log(|u|) ∈ L2(0, τ ; H1(Ω)),
d
dt

∫
Ω

ξu −
∫
Ω
∇ log(|u|) · ∇ξ =

∫
Ω

fξ +
∫
Γ

gξ

in D′(0, τ ), ∀ ξ ∈ C1(Ω).

Remark 1. Note that in order for u0 to satisfy the assumption of Proposition 5 or
Corollary 6, it is enough that u0 ∈ Lp(Ω)± for p > 1.

Lemma 3. Let u ∈ C([0, T ], L1(Ω)) such that inf
t∈[0,T ]

∫
Ω

u(t) > 0 and let uε ∈

C([0, T ], L1(Ω)) such that uε → u in C([0, T ], L1(Ω)). If log(uε) ∈ L2(0, T ; H1(Ω),
then there exists a constant C, such that

‖ log(uε(t))‖L2(Ω) ≤ C
(
‖∇ log(uε(t))‖L2(Ω) + ‖uε(t)‖L2(Ω)

)
,

for any ε > 0 and t ∈ [0, T ].

Proof. First, one sees that using the Poincaré inequality, for any K ⊆ Ω and w ∈
H1(Ω), we have

(2.15)
∣∣∣K∣∣∣∣∣∣∫−w

∣∣∣ ≤ C
(
‖∇w‖L2(Ω) + ‖w‖L2(K)

)
,
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where C depends only on N and Ω. Since there exists δ > 0 such that

inf
t∈[0,T ]

∫
Ω

u(t) > δ > 0,

then K(t) = [u(t) > δ] satisfies

(2.16) |K(t)| ≥ inf
t∈[0,T ]

∣∣∣K(t)
∣∣∣ =: M > 0 for any t ∈ [0, T ].

Now denote by Kε(t) = [uε(t) > δ]. Since uε(t) → u(t) in L1(Ω), then from Fatou,
we get

(2.17)
∣∣∣K(t)

∣∣∣ ≤ lim inf
ε→0

∣∣∣Kε(t)
∣∣∣ for any t ∈ [0, T ].

Applying (2.15) with w = log(uε(t)), K = Kε(t) and using (2.16) and (2.17), we
deduce that

(2.18)
∣∣∣∫− log(uε(t))

∣∣∣ ≤ C

M

(
‖∇ log(uε(t))‖L2(Ω) + ‖ log(uε(t))‖L2(Kε(t))

)
for any ε > 0 and t ∈ [0, T ]. On the other hand, since there exists C ′ ∈ R inde-
pendent of ε and t, such that for ε > 0 small enough and t ∈ [0, T ], | log(uε(t))| ≤
C ′|uε(t)| a.e. in Kε(t), then (2.18) implies that∣∣∣∫− log(uε(t))

∣∣∣ ≤ C1

(
‖∇ log(uε(t))‖L2(Ω) + ‖uε(t)‖L2(Ω)

)
and the result of the lemma follows by using the Poincaré inequality again. �

Proof of Proposition 5. First, we show that u satisfies (2.14). By the definition of
S1(u0, f, g), u(t) = L1 − limuε(t) uniformly for t ∈ [0, T ], where for ε > 0, uε is an
ε-approximate solution corresponding to a subdivision t0 = 0 < t1 < ... < tn−1 <
T = tn with ti − ti−1 = ε, f1, ..., fn ∈ L2(Ω) and g1, ..., gn ∈ L2(Γ) with

n∑
i=1

∫ ti

ti−1

(
‖f(t) − fi‖L1(Ω) + ‖g(t) − gi‖L1(Γ)

)
dt ≤ ε.

That is, uε is defined by uε(0) = u0, uε(t) = ui for t ∈ ]ti−1, ti], where ui ∈ L1(Ω)
satisfies

(ui, 0) + ε A1(ui, 0) = ε (fi, gi) + (ui−1, 0).

By definition of A1, we have∫
Ω

ui =
∫

Ω

ui−1 + iε

( ∫
Ω

fi +
∫

Γ

gi

)
,

for any i = 0, ..., n, so that∫
Ω

ui =
∫

Ω

u0 + ε

i∑
j=1

( ∫
Ω

fj +
∫

Γ

gj

)
,

which implies that ∫
Ω

uε(t) =
∫

Ω

u0 +
∫ t

0

( ∫
Ω

fε +
∫

Γ

gε

)

=: µε(t).



FROM FAST TO VERY FAST DIFFUSION IN NONLINEAR HEAT EQUATION 5101

Since uε converges to u in C([0, τ ], L1(Ω)) and inf
t∈[0,τ ]

µ(t) > 0, then for each ε small

enough we have

(2.19) inf
t∈[0,τ ]

µε(t) > 0

and
∫

Ω

ui = µε(ti) > 0 for any i = 0, 1, ..., n. So, by definition of A1, this implies

that ui ∈ L1(Ω), wi := log(ui) ∈ H1(Ω) and

(2.20)
∫

Ω

∇wi · ∇ξ =
∫

Ω

fiξ +
∫

Γ

giξ −
∫

ui − ui−1

ε
ξ, ∀ ξ ∈ C1(Ω).

Replacing ξ by wi in (2.20), we get

(2.21)

∫
Ω

j(ui) + ε

∫
Ω

|∇wi|2 ≤ ε

( ∫
Ω

fiwi +
∫

Γ

giwi

)
+

∫
Ω

j(ui−1)

≤ ε

(
‖fi‖L2(Ω) + ‖gi‖L2(Γ)

)
‖wi‖H1(Ω)

+
∫

Ω

j(ui−1).

Adding (2.21) for i = 0, ..., n, we deduce that wε := log(uε) satisfies

(2.22)

∫
Ω

j(uε) +
∫ T

0

∫
Ω

|∇wε|2 ≤
∫ τ

0

(
‖fε‖L2(Ω) + ‖gε‖L2(Γ)

)
‖wε‖H1(Ω)

+
∫

Ω

j(u0).

In addition, remember that

‖uε(t)‖L1(Ω) ≤ ‖u0‖L1(Ω) +
∫ T

0

(
‖fε‖L1(Ω) + ‖gε‖L1(Γ)

)
for any 0 ≤ t ≤ τ, so that, using Lemma 3 and (2.19), we have

(2.23) ‖wε(t)‖H1(Ω) ≤ C
(
1 + ‖∇wε(t)‖L2(Ω)

)
with C independent of ε and t, and (2.22) implies∫

Ω

j(uε) +
∫ T

0

∫
Ω

|∇wε|2 ≤ C

∫ τ

0

(‖fε‖L2(Ω) + ‖gε‖L2(Γ))(1 + ‖∇wε‖L2(Ω))

+
∫

Ω

j(u0)

≤ C(1 + ‖∇wε‖L2(Q))
∫ τ

0

(‖fε‖L2(Ω) + ‖gε‖L2(Γ))

+
∫

Ω

j(u0).

Using for instance Young, we deduce that ∇wε is bounded in L2(Q) and, by (2.23),
wε is bounded in L2(0, T ; H1(Ω)). So, there exists a subsequence that we denote
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again by ε such that

wε → w weakly in L2(0, T ; H1(Ω)) as ε → 0.

Using a classical monotonic argument we deduce that u > 0 and w = log(u) a.e.
in Q. At last, let ũε be the function from [0, tn] into L1(Ω) defined by ũε(ti) = ui,
where ũε is linear in [ti−1, ti]; for ξ ∈ C1Q) with ξ(T, .) ≡ 0,

(2.24)
∫ T

0

∫
Ω

ũεξt +
∫

Ω

u0ξ(0, .) =
∫ T

0

∫
Ω

∇wε · ∇ξ +
∫ T

0

∫
Ω

fεξ +
∫ T

0

∫
Γ

gεξ.

Passing to the limit in (2.24) we get that u is a solution of (2.14). To complete
the proof, we have to show the uniqueness of the solution to (2.14). If (u1, w1) and
(u2, w2) satisfy (2.14), then, by density, we have∫ T

0

∫
Ω

(u1 − u2)ξt + ∇(w1 − w2) · ∇ξ = 0

for all ξ ∈ C1(Q) with ξ(T, .) ≡ 0 with w1 = ϕ1(u1) and w2 = ϕ1(u2) a.e. in
Q. So, applying Lemma A in the Appendix of [7] with H = L2(Ω), V = H1(Ω),

a(u, v) =
∫

∇u · ∇v, u = u1 − u2 and v = w1 − w2, the uniqueness follows. �

Proof of Theorem 1. First, we prove the uniqueness of a solution u of (1.6). By
definition, a solution u(t) of (1.6) is perfectly defined in I, and by Proposition
5 and Corollary 6, u is also perfectly defined in [0, inf I) if inf I �= 0. Now, if
a < ã < b̃ < b, with a, b ∈ I and (ã, b̃) ⊆ I+ (resp. (ã, b̃) ⊆ I−), then it is clear that
µ(t) > 0 (resp. µ(t) < 0), for any t ∈ [ã, b̃], so that applying Proposition 5 (resp.
Corollary 6), we find u = S1(u(ã), f, g) on (ã, b̃) × Ω. Then, using the contraction
property of S1, if u1, u2 are two solutions of (1.6), then

‖u1(t) − u2(t)‖L1 ≤ ‖u1(ã) − u2(ã)‖L1 , ∀ a < ã ≤ t < b.

Since ui ∈ C([0, T ); L1(Ω)) and ui(ã) → ui(a) = 0 as ã → a, for i = 1, 2, then
u1(ã) − u2(ã) → 0 in L1(Ω) as ã → a and we conclude that u1 = u2 on (a, b) × Ω.
This ends the proof of uniqueness. For the existence of a solution to (1.6), let
u = S1(u0, f, g). Being a mild solution and thanks to Corollary 4, we have u ∈
C([0, T ); L1(Ω)±), u(0) = u0 and

∫
−u(t) = µ(t). Then, it is clear that u(t) ≡ 0 for

any t ∈ I. What’s more, applying Proposition 5 and Corollary 6 in the interval
(t1, t2) such that (t1, t2) ⊂ I±, the proof of the theorem is complete. �

3.. The singular limit, as α ↑ 1

In section 2, we proved that, as α → 1, the semigroup Sα is defined in L1(Ω)
and, as α → 1, Sα converges to the semigroup S1, which is defined only on L1(Ω)±.
So (cf. Corollary 5), if the initial data u0 is in the domain of definition of S1, i.e.
u0 ∈ L1(Ω)±, then a solution of Eα(u0, f, g) converges to a solution of E1(u0, f, g).
Now, since E1(u0, f, g) has no solution if u0 changes signs on Ω, we wonder what
is the limit of a solution of Eα(u0, f, g), as α → 1 in this case. This is the aim
of this section. Based on an idea of [18] (see also [6]), in order to study the limit
of Eα(u0, f, g) as α → 1, we first study the limit of the homogeneous evolution
problem associated with Eα(u0, f, g). So, we assume that f ≡ 0, g ≡ 0 and we
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study the limit of Sα(u0, 0, 0). In other words, we consider the homogeneous initial-
boundary-value problem

(3.1)

⎧⎪⎨
⎪⎩

ut = ∇ · (u−α ∇u) in Q = (0,∞) × Ω,

u−α ∇u · −→n = 0 on Σ = (0,∞) × Γ,

u(0, .) = u0(.) in Ω.

Throughout this section, we denote by uα the solution of (3.1) that is equal to
Sα(u0, 0, 0), which we denote by Sα(u0) to simplify the notation. We are interested
in the limit of uα as α → 1, without assuming any sign conditions on u0.

Theorem 3. Assume that u0 ∈ Lp(Ω), for p > 1.

(1) If
∫

Ω

u0 = 0, then uα → 0 in C((0,∞), L1(Ω)), as α → 1.

(2) If
∫

Ω

u0 �= 0 and s = Sign(
∫

Ω

u0), then there exists u0 such that s u0 ∈

L2(Ω)+, −u−
0 ≤ u0 ≤ u+

0 a.e. in Ω, u0 = 0 a.e. in
{

x ∈ Ω ; s u0(x) ≥ 0
}

,

and, by taking a subsequence if necessary, we have

(3.2) uα → u in C
(
(0,∞)L1(Ω)

)
, as α → 1,

where u is the solution of E1(u0, 0, 0).

In order to prove Theorem 3, we begin by the following results concerning the
existence of a limit of a solution of Eα(u0, 0, 0).

Lemma 4.
(
uα

)
0<α<1

is relatively compact in L1(Q).

Proof. It is not difficult to see that uα is bounded in L∞(Ω) and (uα)1−α/(1−α) is
bounded in L2(0, T ; H1(Ω)). Then, (uα)0<α<1 is also bounded in L2(0, T ; H1(Ω))

and lim
h→0

∫ T

0

∫
ω

|uα(t, x + h)− uα(t, x)| = 0, for each ω� Ω. So, thanks to Theorem

2 of [23], the result of the lemma follows. �

Lemma 5. Assume that u0 ∈ Lp(Ω), for p > 1, and
∫

Ω

u0 ≥ 0. Then, there exists

a subsequence αk → 1, such that

uαk
→ u in C((0,∞), L1(Ω)),

u ∈ C((0,∞); L1(Ω)), u ≥ 0 a.e. (0,∞) × Ω, log(u) ∈ L2(0, τ ; H1(Ω)) and

(3.3)
d

dt

∫
Ω

ξu +
∫

Ω

∇ log(u) · ∇ξ = 0

in D′(0, τ ) and for any ξ ∈ C1(Ω).

Proof. Thanks to Lemma 4, let τ > 0, αk → 1 and uτ ∈ L1(Ω), such that uαk
(τ ) →

uτ . Let us first prove that uτ ≥ 0 a.e. in Q. Thanks to [22], we know that zα =

uα −
∫
−u0, is also a solution of⎧⎨

⎩
zt + ∂Gα(z) � 0 in (0, T ),

z(0) = u0 −
∫
−u0 =: z0
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in X∗, the dual space of X =
{

z ∈ H1(Ω) ;
∫

Ω

z = 0
}

and Gα is the functional

defined on X∗ by

Gα(z) =

⎧⎨
⎩

∫
Ω

jα(z +
∫
−u0) if jα(z +

∫
−u0) ∈ L1(Ω),

+∞ otherwise,

where

jα(r) =
|r|2−α

(1 − α)(2 − α)
− r

1 − α
+

1
2 − α

,

for any r ∈ R. Thanks to [10] (Lemma 3.3, page 73), we have

τGα(zα(τ )) ≤
∫ τ

0

Gα(zα(s))ds

≤
∫ τ

0

(
zα(s),−z′α(s)

)
X∗

ds + τ Gα(0),

which implies that

τ

∫
Ω

jα(uα((τ )) ≤ 1
2
|u0|X∗ + τ

∫
Ω

jα(
∫
−u0)

≤ 1
2
|u0|X∗ + τ |Ω|jα(

∫
−u0).

It is not difficult to see that, as α → 1, then jα converges in the graph sense to j1,
given by

j1(r) =

⎧⎪⎨
⎪⎩

+∞ if r < 0,

0 if r = 0,

r log r − r if r > 0.

Since
∫
−u0 ≥ 0, then

lim inf
α→1

∫
Ω

jα(uα(τ )) < ∞,

and since uαk
(τ ) → uτ , then using Fatou we deduce that uτ ≥ 0 a.e. in Ω. Now,

since uτ ≥ 0 and uαk
(τ ) → uτ , then applying Corollary 5 in (τ,∞), we deduce

that uαk
(t) → S1(uτ )(t − τ ) in L1(Ω) uniformly for bounded t ≥ τ, and that

v(.) := S1(uτ )(. − τ ) satisfies (3.3) in D′(τ, T ) for any ξ ∈ C1(Ω). By a diagonal
process we deduce that uαk

is relatively compact in C((0,∞), L1(Ω)) and there
exists u ∈ C((0,∞), L1(Ω)+) such that uαk

converges, through a subsequence, to u
in C((0,∞), L1(Ω)) and u satisfies (3.3) in D′(τ, T ) for any ξ ∈ C1(Ω). �

Lemma 6. Let u0 ∈ Lp(Ω), for p > 1,

∫
u0 ≥ 0 and u be given as in Lemma 5.

Then u0 := L1(Ω) − lim
t→0

u(t) is well defined and we have

(1) if
∫

Ω

u0 > 0, then 0 ≤ u0 ≤ u+
0 a.e. in Ω and u0 = 0 a.e. in [u0 ≤ 0],

(2) if
∫

Ω

u0 = 0, then u ≡ 0 in [0,∞) × Ω.
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Proof. First one sees that since u ∈ C((0,∞), L1(Ω)), u > 0 a.e. in (0, T ) × Ω
and satisfies (3.3) in D′(τ, T ) for any ξ ∈ C1(Ω), then u is a classical solution
and u0 := L1(Ω) − lim

t→0
u(t) ≥ 0 is well defined. In addition, since u0 ≤ u+

0 , then

uα(t) ≤ Sα(u+
0 )(t), for each t ≥ 0 and, letting α → 1, we deduce, by using Corollary

5, that u(t) ≤ S1(u+
0 )(t), for any t ≥ 0. Letting t → 0, we get 0 ≤ u(0) ≤ u+

0 , and
the first part of the lemma follows. The second part of the lemma easily follows

from the additional fact that
∫

Ω

u =
∫

Ω

uα(t) =
∫

Ω

u0, for any t ≥ 0. �

Proof of Theorem 3. Now, it is clear that the first part of the proof follows by 2)
of Lemma 6. As for the second part, this is a direct consequence of Lemma 5 and

1) of Lemma 6. Finally, one sees that the case
∫

Ω

u0 < 0 follows simply by using

the symmetry u → −u. �

At last, since the solution of Eα(u0, f, g) is given by Sα(u0, f, g), then the proof
of Theorem 2 is given by the following lemma.

Lemma 7. Let u0 ∈ L∞(Ω), u0 ≥ 0, u0 be given as in Lemma 6, f ∈ L2(Q) and
g ∈ L2(Γ). Then, there exists a subsequence αk → 1, such that we have

(3.4) Sαk
(u0, f, g) → S1(u0, f, g) in C

(
(0, T ); L1(Ω)

)
as αk → 1.

Proof. Let 0 < δ ≤ t1 < t2 < ∞ and denote by fδ and gδ the functions fδ(s) =
f(s + δ) and gδ(s) = g(s + δ), for a.e. s ∈ [0, T − δ). For all t ∈ [t1, t2], we have

‖Sα

(
u0,f, g

)
(t) − S1

(
u0, fδ, gδ

)
(t)‖1

≤ ‖Sα

(
u0, f, g

)
(t) − Sα

(
Sα(u0)(δ), f, g

)
(t − δ)‖1

+ ‖Sα

(
Sα(u0)(δ), fδ, gδ

)
(t − δ) − S1

(
S1(u)(δ), fδ, gδ

)
(t − δ)‖1

+ ‖S1

(
S1(u0)(δ), fδ, gδ

)
(t − δ) − S1

(
u0, f, g

)
(t)‖1.

Keeping in mind the semigroup property of Sα, we get

Sα

(
u0, f, g

)
(t) = Sα

(
Sα((u0, f, g)(δ), f, g), fδ, gδ

)
(t − δ)

for any t ≥ δ, so that using the L1 contraction property of Sα, for 0 ≤ m ≤ 1, we
have

‖Sα

(
u0, f, g

)
(t) − S1

(
u0, f, g

)
(t)‖1 ≤ ‖Sα

(
u0, f, g

)
(δ) − Sα(u0)(δ)‖1

+‖Sα

(
Sα(u0)(δ), fδ, gδ

)
(t − δ) − S1

(
S1(u0)(δ), fδ, gδ

)
(t − δ)‖1

+‖S1(u0)(δ) − S1

(
u0, f, g

)
(δ)‖1.

Thanks to Corollary 3 and Corollary 1, we have

‖Sα

(
u0, f, g

)
(δ) − Sα(u0)(δ)‖1 ≤

∫ δ

0

( ∫
Ω

|f | +
∫

Γ

|g|
)
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and

‖S1

(
u0, f, g

)
(δ) − S1(u0)(δ)‖1 ≤

∫ δ

0

( ∫
Ω

|f | +
∫

Γ

|g|
)
,

so that

‖Sα

(
u0, f, g

)
(t) − S1

(
u0, f, g

)
(t)‖1 ≤ 2

∫ δ

0

(∫
Ω

|f | +
∫

Γ

|g|
)

(3.5)

+‖Sα

(
Sα(u0)(δ), fδ, gδ

)
(t − δ) − S1

(
S1(u0)(δ), fδ, gδ

)
(t − δ)‖1.

(3.6)

From Lemma 5, there exists αk → 1, such that

Sαk
(u0)(δ) → S1(u0)(δ) in L1(Ω)

and since S1(u0)(δ) ≥ 0, then by Corollary 5,

Sαk

(
Sαk

(u0)(δ), f, g
)
(t − δ) → S1

(
S1(u0)(δ), f, g

)
(t − δ) in L1(Ω).

So, (3.5) implies that

(3.7) lim
αk→∞

sup
t∈[t1,t2]

‖Sαk

(
u0, f, g

)
(t) − S1

(
u0, f, g

)
(t)‖1 ≤ 2

∫ δ

0

( ∫
Ω

|f | +
∫

Γ

|g|)

and, since δ is arbitrary in (3.7), then the result of the lemma follows, by letting δ
go to 0. �
Proof of Theorem 2. Now, the theorem is a simple consequence of Lemma 7 and
Theorem 3. �

4.. Appendix

Lemma 8. There exists C = C(N, Ω) such that for any 1 ≤ p < ∞ and z ∈ L1(Ω)
such that |z|q−2z =: zp ∈ H1(Ω), we have

(4.1) ‖zp‖L2(Ω) ≤
2p

|Ω|q−2/2
‖z‖p

L1(Ω) + C‖∇ zp‖L2(Ω).

Proof. Set w = zp. Then using the Poincaré inequality, we have∣∣∣∫−w
∣∣∣ ≤ 1

|K|1/2

(
C‖∇ w‖L2(Ω) + ‖w‖L2(K)

)
,

for any k ⊆ Ω with |K| �= 0, where
∫
−w =

1
|Ω|

∫
Ω

w, and we have

‖w‖L2(Ω) ≤ C‖∇ w‖L2(Ω) + |Ω|1/2
∣∣∣∫−w

∣∣∣
≤ C

(
1 +

( |Ω|
|K|

)1/2

‖∇ w‖L2(Ω) +
(
|Ω|
|K|

)1/2

‖w‖L2(K).

Taking K = [|z| < λ], and using the fact that

|K| = |Ω| − |[|z| ≥ λ]|

≥ |Ω| − 1
λ
‖z‖L1(Ω),
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we get

‖zp‖L2(Ω) ≤ λp|Ω| 12 + C

{(
λ|Ω|

λ|Ω| − ‖z‖L1(Ω)

) 1
2

+ 1

}
‖∇ zp‖L2(Ω)

for all λ >
1
|Ω| ‖z‖L1(Ω). Then, taking for instance λ =

2
|Ω| ‖z‖L1(Ω), the result

follows. �

Some comments:

- Recall that in R
N , nonnegative maximal solutions of (1.1) with f ≡ 0

and α = 1 were constructed in [16] as limits, as R → ∞, of solutions in
a ball B(R), of radius R > 0, with nonhomogeneous Neumann boundary

condition g = 4π. These solutions exist up to the maximal time
1

4 π

∫
Ω

u0,

given by (1.7). So, in the case where f �≡ 0, one can construct by using

Corollary 1 nonnegative maximal solutions up to τ =
∫

Ω

u0

/(
4 π +

∫
Ω

f
)
.

- There is a wide literature concerning the nonlinear evolution problem of
type (1.1), i.e. ut − ∆ϕ(u) = f, with maximal monotone graph ϕ. But
there are only a few results combining the range of ϕ not equal to R and
nonhomogeneous Neumann boundary conditions. The case ϕ(r) = log(r)
is one typical example that we have studied in this paper. In a forthcoming
paper [1], we will study this kind of question for a large class of maximal
monotone graphs ϕ and general operators of the Leray-Lions type instead
of the Laplacian.

- Assume that f ≡ 0 and g ≡ 0. If
∫

Ω

u0 > 0 (resp.
∫

Ω

u0 < 0), it is known

that a solution of Eα(u0, f, g) may be a sign-changing function, at least
for small t. In the present paper, Theorem 2 implies that when α reaches
the limit 1, the negative (resp. positive) part of uα should disappear and
a boundary layer appears at time t = 0. Note also that in Theorem 2, the

initial boundary layer is not characterized in the case where
∫

Ω

u0 �= 0.

However, the properties given for it enable one to characterize it in some
particular cases, for instance if u0 is radial and symmetric (one can see for
instance [28] for N = 1). We did not get into this question in this paper.
It may be treated in forthcoming papers.
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