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Abstract

We show the L1 contraction and comparison principle for weak (and,
more generally, renormalized) solutions of the elliptic-parabolic problem

j(v)t − div
(
∇w + F (w)

)
= f(t, x), w = ϕ(v) in (0, T ) × Ω ⊂ IR+ × IRN

with inhomogeneous Dirichlet boundary datum g ∈ L2(0, T ;W 1,2(Ω)) for
w (which is taken in the sense w−g ∈ L2(0, T ;H1

0 (Ω))) and initial datum
jo ∈ L1(Ω) for j(v). Here ϕ, j are nondecreasing, and we assume F just
continuous.

Our proof consists in doubling of variables in the interior of Ω as in-
troduced by J.Carrillo [9] (Arch. Rational Mech. Anal., vol.147, 1999),
and in a careful treatment of the flux term near the boundary of Ω. For
this last argument, the result is restricted to the linear dependence on
∇w of the diffusion term. The proof allows for a wide class of domains
Ω, including e.g. domains of finite perimeter with uniform exterior cone
condition or even domains with cracks.

We obtain the corresponding results for the associated stationary prob-
lem and discuss on generalization of our technique to the case of nonlinear
diffusion operators.
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Introduction

Let T > 0, and Ω ⊂ IRN be a bounded domain. Consider the problem

(Pg(f, jo))





j(v)t − div a(w, ∇w) = f,
w = ϕ(v) in Q = (0, T ) × Ω

w = g on Σ = (0, T ) × ∂Ω
j(v)|t=0 = jo in Ω,

where j, ϕ : IR → IR are continuous nondecreasing functions, and a :
IR× IRN → IRN is continuous and monotone in the second variable. Note
that the Dirichlet problem for the equation ut − div a(w, ∇w) = f , w ∈
β(u), where β is an arbitrary maximal monotone graph on IR, reduces to
(Pg(f, jo)) (cf. e.g. [9] and [4]).

The aim of this paper is to show the uniqueness (of j(v)) and, more
generally, the L1 contraction and comparison result for (Pg(f, jo)) with
respect to the data f ∈ L1(Q) and jo ∈ L1(Ω). The boundary condition
in (Pg(f, jo)) is understood in the sense (w − g) ∈ Lp(0, T ;W 1,p

0 (Ω)); we
assume g ∈ Lp(0, T ;W 1,p(Ω)). For a sufficiently smooth domain Ω, one
can consider g ∈ Lp(0, T,W 1−1/p(∂Ω)) and then take an order-preserving
extension of g in Lp(0, T,W 1,p(Ω)).

In the main part of the paper, we only consider the quasilinear equation
with convection (in this case, p equals 2): it is assumed that

(H0 ) a(w, ∇w) = ∇w + F (w), where F : IR 7→ IRN is continuous.

Results for more general fluxes are discussed in Section 6.2. Since we are
not concerned with the problem of existence of weak solutions, we do not
require explicitly the usual growth assumptions on the convection F .

The uniqueness of weak solutions to (Pg(f, jo)) is well known in case a is
Lipschitz or, more generally, Hölder continuous (of order 1/2, for fluxes
(H0 )) with respect to the first argument (see Alt, Luckhaus [1] and Otto
[22]). Note that if g is independent of t and the existence for the stationary
problem is known, this kind of result can be somewhat easier obtained
using the tools of the nonlinear semigroup theory, as in Bénilan,Wittbold
[6] where the uniqueness of a mild solution is shown as g ≡ 0. Previous
results on mild solutions were obtained by Simondon [25] and Bénilan,
Touré [5].

A uniqueness result for the homogeneous case g ≡ 0 and the flux a of the
form (H0 ) without any assumption on the modulus of continuity of F is
contained in the paper of Kobayasi [17] (see [4] for a simpler and more
general proof). The main tool in this case is the Kruzhkov’s doubling
of variables techniques adapted to parabolic problems, as introduced by
Carrillo [9]. Carrillo proves, for the general elliptic-parabolic-hyperbolic
problem, the uniqueness of entropy solutions. As shown in [17, 4], they
coincide with weak solutions for the case we are interested in. For g ≡ 0
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and a wide class of fluxes a(w, ∇w) including simply continuous con-
vections, the uniqueness of renormalized solutions is shown by Carrillo,
Wittbold [10] (another approach for renormalized solutions, which works
for Lipschitz convections and avoids the doubling of variables in space,
is presented in [8]). In all the works [9, 10, 17, 4], the treatment of the
homogeneous boundary condition is carried out through the Carrillo’s el-
egant choice of test functions. Thus the technical difficulty of considering
boundary traces which existence is not clear is bypassed (compare with
Rouvre, Gagneux [24] for the explicit argument in one case where the
strong trace is well defined). Unfortunately, it does not seem straightfor-
ward to adapt the Carrillo approach to non-constant Dirichlet boundary
condition g. Such an adaptation was recently carried by Ammar, Carrillo,
Wittbold [2], for continuous on ∂Ω boundary data g (more general g are
also treated in [2], but in a quite different way).

Uniqueness of entropy solutions for inhomogeneous Dirichlet problem was
first addressed by Mascia, Porretta, Terracina [20], for the parabolic-
hyperbolic problem. These authors use the approach of Otto [23] (see
also [19]) and Chen, Frid [11, 12] which gives sense to the normal trace of
the flux on the boundary. The main effort in [20] was made to treat the
difficulties due to the possible hyperbolic behavior of the problem, and
the simplifying assumptions that the boundary data are regular and F
is Lipschitz continuous have been introduced. Another technique for the
same problem, which is particularly useful for analysis of convergence of
finite volume schemes, was developed by Michel, Vovelle [21]. Also in this
paper, regularity assumptions on boundary data and on F are required.
Note that for the purely hyperbolic problem, the general uniqueness result
is achieved by Ammar, Carrillo, Wittbold [2].

In the present article, we give a proof of uniqueness of weak solutions
for the inhomogeneous Dirichlet problem for the elliptic-parabolic equa-
tion (Pg(f, jo)) with the flux (H0 ), without the Lipschitz or Hölder as-
sumptions on the convection term, and for a wide class of domains. We
first perform the standard doubling of variables in the interior of Ω (see
[9, 15, 17, 4]). In order to generate the boundary term, we consider test
functions that truncate in a neighborhood of ∂Ω, in the same spirit as
in [24],[20] (see in particular Remark 1.5), [17] and [4]. Under some mild
assumptions on ∂Ω (see (H1 ), (H2 ) in Section 1), we construct the test
functions such that the “boundary” term coming from the comparison
of two solutions has a sign, the fact which was implicit in the Carrillo
argument. Note that our argument requires the flux a(w, ∇w) to be lin-
ear in ∇w, its generalisation to, e.g., diffusions of the p-laplacian type
| ∇w|p−2 ∇w is an open question (see Section 6.2).

The paper is organized as follows. In the Section 1, we give definitions
and state the results for the evolution problem. In Section 2, we deduce
the corresponding results for the associated stationary problem. Section 3
sketches the doubling of variables argument in the interior of Ω (see [4] and
the references therein for a more detailed exposition). The explicit treat-
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ment of the boundary terms is carried out in Section 4. Section 5 contains
the proof of the main result. In Section 6, we prove the L1 contraction
and comparison principle for renormalized solutions of (Pg(f, jo)) (for re-
lated works, see [7, 10, 8, 16, 3] and references therein). Then we discuss
on extensions of Theorems 1.3 and 2.2 to more general elliptic-parabolic
problems.

1 Definitions and results

Definition 1.1 Let p ∈ (1,+∞), p′ = p/(p−1), and g ∈ Lp(0, T ;W 1,p(Ω)).
An a.e. defined measurable function v : Q 7→ IR is called weak solu-
tion of (Pg(f, jo)) if j(v) ∈ L1(Ω), the function w = ϕ(v) satisfies w ∈

g + Lp(0, T ;W 1,p
0 (Ω)) and a(w, ∇w) ∈ Lp′

(Q)N , and the distributional

derivative j(v)t can be identified with χ ∈ Lp′

(0, T ;W−1,p(Ω)) + L1(Q)
such that∫ T

0

< χ, ξ > +

∫ ∫

Q

a(w, ∇w) · ∇ξ =

∫ ∫

Q

fξ (1.1)

for all test function ξ ∈ Lp(0, T ;W 1,p
0 (Ω)) ∩ L∞(Q), and

∫ T

0

< χ, ξ >= −

∫ ∫

Q

j(v)ξt −

∫

Ω

jo(x)ξ(0, x) (1.2)

for all test function ξ ∈ Lp(0, T ;W 1,p
0 (Ω))∩L∞(Q) such that ξt ∈ L∞(Q)

and ξ(T, ·) = 0.

Here and in the sequel, we denote by < ·, · > the duality pairing between
W 1,p

0 (Ω) ∩ L∞(Ω) and its dual. Except in Section 6.2, we will always
asume p = 2 and write H1

0 for W 1,2
0 .

In order to formulate the assumptions on Ω, let us require that Ω ⊃ Ω̃ for
all open Ω̃ ⊂ Ω such that H1

0 (Ω̃) = H1
0 (Ω). Assume that

(H1 ) the (N − 1)-dimensional Hausdorff measure of ∂Ω is finite.

Assume the following Poincaré-Friedrichs property :

(H2 )

∣∣∣∣∣∣∣∣

There exists a constant M, independent of h, such

that for all xo ∈ ∂Ω one has for all W ∈ H1
0 (Ω),∫

Bh(xo)∩Ω

|W |2 ≤ Mh

∫

Bh(xo)∩Ω

| ∇W |2.

Here Bh(xo) denotes the N−dimensional ball of radius h centered at xo.

Remark 1.2 It is easy to see that (H2 ) is verified in case Ω is weakly
Lipschitz (that is, each point x ∈ ∂Ω possesses a neighborhood Ux such
that Ω ∩ Ux can be mapped on a half-ball of IRn by a bilipschitz homeo-
morphism).
More generally, assume that , for d = N , one has

(H2′(d)) infh>0,xo∈∂Ω
1

hd
|Bh(xo) \ Ω| > 0,
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where | · | denotes the N−dimensional Lebesgue measure. Then (H2 )
holds (cf. e.g. [26, Theorem 3.11.1]). Note that, for instance, the uniform
exterior cone condition implies the condition (H2′(N)), and thus (H2 ).
In both aforementioned cases, the inequality in (H2 ) actually holds with
h replaced by h2. A sharper sufficient condition for (H2 ) to hold can be
formulated in terms of the Bessel capacity B1,2 (cf. e.g. [26]):

∣∣∣∣∣∣

inf
h>0,xo∈∂Ω

1

h
B1,2(Nh(xo)) > 0,

where Nh(xo) = {
1

h
(x− xo) |x ∈ Bh(xo) \ Ω}.

(1.3)

This condition permits, in particular, to include domains with cracks. For
the proof, it is sufficient to map Bh(xo) on the unit ball of IRN and apply
[26, Corollary 4.5.3].
For N ≥ 3, B1,2(Nh(xo)) in (1.3) can be replaced by the Newtonian

capacity of Nh(xo) in IRN (cf. [26, ex.2.8]) and then by |Nh(xo)|
N−2

N =
1

hN−2
|Bh(xo) \ Ω|

N−2

N (cf. e.g. [13, Theorem 4.7.2]). Thus, (H2 ) still
holds, if N ≥ 3 and the aforementioned condition (H2′(d)) is fulfilled
with d = N (N − 1)/(N − 2).

Let us state the main result of this paper. Denote by sign+(·) the maximal

monotone extension of the function sign+
0 : r ∈ IR 7→

{
0, r ≤ 0
1, r > 0

.

Theorem 1.3 Assume (H1 ) and (H2 ). Let v, v̂ be weak solutions of

(Pg(f, jo)), (P
ĝ
(f̂ , ĵo)), respectively, with the flux given by (H0 ) and p =

2. Assume g ≤ ĝ. Then there exists η : Q → IR, η ∈ sign+(j(v) − j(v̂))
a.e. on Q, such that for a.a. t ∈ (0, T ), one has

∫

Ω

(
j(v) − j(v̂)

)+
(t) ≤

∫

Ω

(
jo − ĵo

)+
+

∫ t

0

∫

Ω

η
(
f − f̂

)
. (1.4)

In particular, if ĝ ≥ g, f̂ ≥ f a.e. on Q and ĵo ≥ jo a.e. on Ω, then
j(v̂) ≥ j(v) a.e. on Q.

The uniqueness result for j(v) follows readily:

Corollary 1.4 Assume (H0), (H1), (H2). For all g ∈ L2(0, T,W 1,2(Ω)),
f ∈ L1(Q) and jo ∈ L1(Ω), there exists at most one function j(v) ∈ L1(Q)
such that v is a weak solution to (Pg(f, jo)). In particular, if j is injective,
there exists at most one weak solution v to (Pg(f, jo)).

2 The stationary problem

We also consider weak solutions to the associated “stationary” elliptic
problem with f ∈ L1(Ω):

(Sg(f))

{
j(v) − div a(w, ∇w) = f, w = ϕ(v) in Ω
w = g on ∂Ω

in the sense of the following definition :
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Definition 2.1 Let p ∈ (1,+∞), p′ = p/(p − 1), and g ∈ W 1,p(Ω).
An a.e. defined measurable function v : Ω 7→ IR is called weak solution
of (Sg(f)) if j(v) ∈ L1(Ω), the function w = ϕ(v) is such that w ∈

g +W 1,p
0 (Ω) and a(w, ∇w) ∈ Lp′

(Ω)N , and
∫

Ω

j(v)ξ +

∫ ∫

Q

a(w, ∇w) · ∇ξ =

∫ ∫

Q

fξ (2.1)

for all test function ξ ∈W 1,p
0 (Ω) ∩ L∞(Ω).

Theorem 2.2 Assume (H1 ) and (H2 ). Let v, v̂ be weak solutions of

(Sg(f)),(S
ĝ
(f̂)), respectively, with the flux given by (H0 ) and p = 2.

Assume g ≤ ĝ. Then there exists η : Ω → IR, η ∈ sign+(j(v) − j(v̂)) a.e.
on Ω, such that∫

Ω

(
j(v) − j(v̂)

)+
≤

∫

Ω

η
(
f − f̂

)
. (2.2)

In particular, if ĝ ≥ g and f̂ ≥ f a.e. on Ω, then j(v̂) ≥ j(v) a.e. on Ω.

Proof : Let v be a weak solution of (Sg(f)). Set ṽ(t) ≡ v; then ṽ is

a weak solution of (Pg(f̃ , j̃o)) corresponding to the data j̃o = j(v) and
f̃ = f − v. Hence the result follows readily by Theorem 1.3. 2

The corresponding uniqueness result for j(v) follows:

Corollary 2.3 Assume (H0), (H1), (H2). For all g ∈ W 1,2(Ω) and f ∈
L1(Ω), there exists at most one function j(v) ∈ L1(Ω) such that v is a
weak solution to (Sg(f)). In particular, if j is injective, there exists at
most one weak solution v to (Sg(f)).

Note that for the stationary problem, we are able to extend Theorem 2.2
to nonlinear fluxes of the form a(w, ∇w) = b(∇w) + F (w), in case p = 2
and under an additional structure assumption on b : IRN → IRN (see
Section 6.2).

3 The doubling of variables

Let v, v̂ be two weak solutions of (Pg(f, jo)) and (P
ĝ
(f̂ , ĵo)), respectively.

We have the following comparison principle in the interior of Ω.

Lemma 3.1 Let v, v̂ be the two weak solutions in Theorem 1.3; let w =
ϕ(v), ŵ = ϕ(v̂). There exists η : Q → IR, η ∈ sign+(j(v) − j(v̂)) a.e. on
Q, such that for all ξ ∈ H1

0 (Ω), one has for a.a. t ∈ (0, T ),
∫

Ω

(
j(v)(t) − j(v̂)(t)

)+
ξ −

∫

Ω

(
jo − ĵo

)+
ξ

−

∫ t

0

∫

Ω

η (f − f̂) ξ ≤ −

∫ t

0

∫

Ω

∇(w − ŵ)+ · ∇ξ

−

∫ t

0

∫

Ω

sign+
0 (w − ŵ)(F (w) − F (ŵ)) · ∇ξ.

(3.1)
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In order to prove Lemma 3.1, one needs the “entropy inequalities” (3.2)
below:

Lemma 3.2 Let ξ ∈ H1
0 (Ω). Let v be a weak solution of Pg(f, jo); then

∫ ∫

Q

−(j(v) − j(k))+ ξ ψ t

−

∫

Ω

ξ ψ(0)(jo − j(k))+ −

∫ ∫

Q

f ξ ψ sign+
0 (v − k)

≤ −

∫ ∫

Q

(
∇ϕ(v) + F (ϕ(v)) − F (ϕ(k))

)
· ∇ξ ψ sign+

0 (v − k)

(3.2)

for all k ∈ IR and all ψ ∈ D(−∞, T ).

The outline of the proof of Lemma 3.2 is given in [4, Lemmas 1,2]. The
original proofs can be found in [9, 15, 17]. We omit the details in order
to avoid the unnecessary duplication of arguments.
Proof of Lemma 3.1 First fix ξ ∈ D(Ω). Take any Lipschitz domain
B of IRN such that supp ξ ⊂ B ⊂ Ω (one can always choose B polygo-
nal). Using the entropy inequalities (3.2) applied on B and the Carrillo’s
adaptation of the Kruzhkov’s doubling of variables method (cf. [9, The-
orem 9] and [18], respectively), one deduces (3.1). The result for general
ξ ∈ H1

0 (Ω) follows by the density argument. 2

4 An approach for the boundary flux

Note that heuristically, the limit, as ξ converges to 1 on Ω, of the right-
hand side of (3.1) should be the boundary term

∫ t

0

∫

∂Ω

∂

∂n
(w − ŵ)+ +

∫ t

0

∫

∂Ω

sign+
0 (w − ŵ)(F (w) − F (ŵ)) · n, (4.1)

where n denotes the exterior unit normal to ∂Ω. Moreover, if (4.1) can be
understood in the pointwise sense (e.g., for Ω and w, ŵ regular enough),
then it is non-positive since (w− ŵ)+ ≥ 0 in Ω and (w− ŵ)+ = 0 on ∂Ω,
within the assumptions of Theorem 1.3.

In this section, we search for test functions ξh, h > 0, such that ξh → 1 as
h→ 0 a.e. on Ω, and that would permit to pass to the limit in the right-
hand side of (3.1), generating non-positive “boundary” terms. In the rest
of the paper, we denote by M a generic constant that may depend on
w, ŵ,Ω, T , on coefficients and the data of the problem, but is independent
of h.

4.1 Assumptions on Ω

Denote by Ωh the h-neigbourhood of ∂Ω in Ω: Ωh = {x ∈ Ω | dist (x, ∂Ω) <
h}. Denote by |Ωh| its N -dimensional Lebesgue measure. We need the
following assumptions on Ω.
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(HΩ )

∣∣∣∣∣∣∣∣∣∣∣

There exists a constant M, independent of h, such that

(i) |Ωh| ≤ Mh for all h sufficiently small;

(ii) the following Poincaré-Friedrichs inequality in Ωh holds :∫

Ωh

|W |2 ≤ Mh

∫

Ω4h

| ∇W |2, for all W ∈ H1
0 (Ω).

Note that introducing Ω4h in (HΩ )(ii) is only due to the convenience of
stating (H2 ) for balls Bh(xo), rather then for general convex neighbour-
hoods of xo .

The assumptions (H1), (H2) given in the Introduction are sufficient for
(HΩ )(i), (ii) to hold. More exactly, we have

Lemma 4.1 (i) Assume (H1 ). Then (HΩ )(i) holds true.
(ii) Assume (H2 ). Then (HΩ )(ii) holds true.

Proof (i) Take a countable covering C of ∂Ω by balls Bi of radii ri,
ri < h; the balls of the same centers and of radii 2ri cover Ωh. Hence
|Ωh| ≤

∑
Bi∈C

cN (2ri)
N , where cN is the measure of the unit ball of

IRN . By definition, lim
h→0

inf
C
cN

∑
Bi∈C

rN−1
i is equal to HN−1(∂Ω), up to

a normalizing factor. We deduce that |Ωh| ≤ Mh.

(ii) Take a finite covering {B2h(xi)} of ∂Ω by balls of radius 2h centered
at points xi ∈ ∂Ω. The balls of the same centers and of radius 4h cover Ωh;
moreover, if dist (xi, xj) < h, we can omit one of the balls B4h(xi), B4h(xj)
in this covering. This implies that each point of Ω4h belongs to at most
L different balls B4h(xi), with L that only depends on the dimension N .
Applying (H2 ) to each of B4h(xi), we get (HΩ )(ii) with M replaced by
LM. 2

4.2 Construction of ξh

Lemma 4.2 Assume (HΩ ). Let w, ŵ ∈ L2(0, T ;W 1,2(Ω)) such that (w−
ŵ)+ ∈ L2(0, T,H1

0 (Ω)). Assume in addition that w, ŵ ∈ L∞(Q). Then
there exists a sequence (ξhm

)m∈IN ⊂ H1
0 (Ω) such that 0 ≤ ξhm

≤ 1 and
ξhm

→ 1 as m→ ∞ a.e. on Ω, and

lim
m→∞

∫ t

0

∫

Ω

∇(w − ŵ)+ · ∇ξhm
≥ 0 for all t ∈ (0, T ), (4.2)

lim
m→∞

∫∫

Q

sign+
0 (w − ŵ)|F (w) − F (ŵ)| | ∇ξhm

| = 0. (4.3)

Lemma 4.2 is a direct consequence of Lemmas 4.4,4.5 below. In Lemma 4.4,
we give a construction ensuring (4.2) together with the additional prop-
erties (4.4), which are needed for the proof of (4.3) given in Lemma 4.5.

Remark 4.3 Note that as a straightforward choice, one could take for
ξh the distance-to-the-boundary functions ξo

h = 1
h

min{h, dist (x, ∂Ω)}.
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Proving Lemma 4.2 with ξo
h seems to require more smoothness on ∂Ω.

See Remark 6.5 in Section 6.2 for a further discussion of this issue.

Lemma 4.4 There exists a family (ξh)h>0 ∈ H1
0 (Ω) and a constant M >

0 such that

(i) 0 ≤ ξh ≤ 1, and ξh → 1 a.e. in Ω as h→ 0;

(ii) for all positive W ∈ H1
0 (Ω),

∫

Ω

∇W · ∇ξh ≥ 0;

(iii) under the assumption (HΩ )(i), one has
∣∣∣∣∣∣

1/M ≤

∫

Ω

| ∇ξh| ≤ M,

∫

Ω

| ∇ξh|
2 ≤ M/h,

and supp ∇ξh is included in Ωh.

(4.4)

Proof For h small enough, for x ∈ Ωh, set uo
h(x) = dist (x, ∂Ω). Denote

by u∗
h the variational solution u ∈ uo

h +H1
0 (Ω) of the problem{

∆u = 0 in Ωh

u = uo
h on ∂Ωh.

(4.5)

Set ξh = 2
h

min{u∗
h, h/2}. Extending ξh by the value 1 on Ω \ Ωh, we see

that (i) holds.
Let us show (iii). By construction, supp ∇ξh ⊂ Ωh. For h sufficiently

small, the Friedrichs inequality yields the lower bound on

∫

Ω

| ∇ξh| :

∫

Ω

| ∇ξh| ≥
1

M

∫

Ω

|ξh| ≥
|Ω|

2M
.

Finally, we have | ∇uo
h| ≤ 1 in Ωh, because uo

h is Lipschitz continuous with
the Lipschitz constant equal to 1. Using the variational interpretation of
(4.5), the Hölder inequality and (HΩ )(i), we deduce∫

Ω

| ∇ξh|
2 ≤

4

h2

∫

Ωh

| ∇u∗
h|

2 ≤
4

h2

∫

Ωh

| ∇uo
h|

2 ≤
4|Ωh|

h2
≤

M

h
,

∫

Ω

| ∇ξh| ≤

∫

Ωh

| ∇ξh| ≤
(
|Ωh|

∫

Ωh

| ∇ξh|
2
)1/2

≤ M.

Let us show that (ii) holds. Denote Ω∗
h = {x ∈ Ωh |u∗

h < 1/2}, and
∂intΩ∗

h = ∂Ω∗
h \ ∂Ω; ∂intΩ∗

h is the 1/2-level set of u∗
h. Let n denote the

exterior unit normal vector to ∂intΩ∗
h. By the interior regularity result for

the problem (4.5), it follows that ∇u∗
h · n|∂intΩ∗

h

exists in the pointwise

sense; moreover, it is nonnegative, by definition of Ω∗
h. Thus ξh solves

the Laplace equation in Ω∗
h with the zero Dirichlet condition on ∂Ω and a

nonnegative Neumann condition on ∂intΩ∗
h. Taking W as a test function,

we get

0 ≤

∫

∂intΩ∗

h

W ∇ξh · n =

∫

Ω∗

h

∇W · ∇ξh =

∫

Ω

∇W · ∇ξh.
2

Lemma 4.5 Assume (HΩ )(ii). Let (ξh)h>0 ⊂ H1
0 (Ω) be a family of

functions satisfying (4.4), and hm = 1
m

. Then (4.3) holds.
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Proof Set M = max{‖w‖∞, ‖ŵ‖∞}. There exists a continuous concave
function Ψ : [0, 2M ] → IR+, Ψ(0) = 0, such that

|F (z)−F (ẑ)| ≤Ψ(r) for all z, ẑ ∈ IR with |z−ẑ| ≤ r and |z|, |ẑ| ≤M.(4.6)

Using (4.6) and applying the Jensen inequality for Ψ with respect to the
measure on Q given by | ∇ξh| dxdt, we get
∫∫

Q

sign+
0 (w−ŵ)|F (w)−F (ŵ)| | ∇ξhm

| ≤

∫∫

Q

Ψ
(
(w−ŵ)+

)
| ∇ξhm

|

≤
(∫∫

Q

| ∇ξh|
)

Ψ
(

1∫∫
Q
| ∇ξh|

∫∫

Q

(w−ŵ)+| ∇ξh|
)
.

(4.7)

Denote the left-hand side of (4.7) by Ih. Using the Cauchy-Schwartz
inequality and the properties (4.4), we deduce

Ih ≤ MΨ
(
M

(
1

h

∫∫

(0,T )×Ωh

|(w−ŵ)+|2
)1/2)

.

Finally, note that since g ≤ ĝ and w−g, ŵ− ĝ ∈ L2(0, T,H1
0 (Ω)), we have

(w− ŵ)+(t) ∈ H1
0 (Ω) for a.a. t ∈ (0, T ). Hence the Poincaré-Friedrichs

inequality (HΩ )(ii) yields

Ih ≤ MΨ
(
M3/2

(∫∫

(0,T )×Ω4h

| ∇(w−ŵ)|2
)1/2)

.

Thus Ih converges to zero as h→ 0, which ends the proof. 2

5 Proof of Theorem 1.3

L∞ case: assume that w, ŵ are bounded on Q. Then the claim of the theo-
rem follows readily by Lemmas 3.1,4.1,4.2 and the dominated convergence
theorem.
General case: let us reduce the general case to the L∞ one. We proceed as
in [16], taking advantage of the homogeneity of the (linear) diffusion term
div ∇w. Let (SM )M∈IN be a sequence of C1(IR, IR) functions such that
SM (z) = 1 for |z| ≤M − 1, SM (z) = 0 for |z| ≥M , and max IR |S′

M | ≤ 2.
Let v be a weak solution to (Pg(f, jo)), w = ϕ(v). Let vo : Ω → IR be a
measurable function such that j(vo) = jo. Let us define the functions

jM (r) =

∫ r

0

SM (ϕ(z))dj(z), jM,o = jM (vo), ϕM (r) =

∫ ϕ(r)

0

SM (z)dz,

gM =

∫ g

0

SM (z)dz, fM = fSM (w) − ((∇w + F (w)) · ∇w)S′
M (w),

FM = (FSM ) ◦H, where H(r) =

{
min{s |

∫ s

0
SM (z) dz = r}, r ≥ 0

max{s |
∫ s

0
SM (z) dz = r}, r ≤ 0.

Remark that we actually have FM (wM ) = F (w)SM (w), and FM is a cor-
rectly defined continuous function. Further, gM ∈ L2(0, T ;W 1,2(Ω)) and
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|wM − gM | =
∣∣
∫ w

g

SM (z) dz
∣∣ ≤ |w− g|, so that wM − gM ∈ L2(0, T ;H1

0 ).

Note that ĝ ≥ g implies ĝM ≥ gM . Finally, fM → f in L1(Q) and
jM,o → jo in L1(Ω) as M → ∞, by the dominated convergence theorem.

Take an admissible test function ξ in Definition 1.1. Then ξ 1
h

∫ t+h

t
SM (w)

is still an admissible test function. Passing to the limit as h → 0, by the
chain rule lemma (see [1, 22] and [10], for the version we use), we find
that v is also a weak solution to the auxiliary problem

(PM
gM

(fM , jM,o))





jM (v)t − div (∇wM + FM (wM )) = fM (t, x),
wM = ϕM (v) in Q = (0, T ) × Ω

wM = gM on Σ = (0, T ) × ∂Ω
jM (v)|t=0 = jM,o in Ω.

(formally, this point of view corresponds to multiplying the equation in
(Pg(f, jo)) by SM (w)).
Now we have |wM | ≤M . Applying the same construction to the solution
v̂, we find ourselves in the L∞ case for the problems (PM

gM
(fM , jM,o)),

(PM

ĝM

(f̂M , ĵM,o)). Thus (1.4) holds with f, f̂ and j, jo, ĵo replaced by

fM , f̂M and jM , jM,o, ĵM,o, respectively. As M → ∞, by the dominated
convergence theorem we deduce the claim of the theorem. 2

6 Generalizations

Let us give different extensions of our results and discuss the limitations
of our techniques.

6.1 Extension to renormalized solutions

The reduction to the case w ∈ L∞(Q) used in the proof of Theorem 1.3
is inspired by the technique of Igbida, Wittbold [16] developed for renor-
malized solutions. In this section, we further use it in order to extend the
result of Theorem 1.3 to renormalized solutions of (Pg(f, jo)). Note that
the result of Theorem 2.2 adapts to the case of renormalized solutions of
the stationary problem (Sg(f)) in the same way.

Let us first recall the notion of renormalized solutions of elliptic-parabolic
problems (see e.g. [7, 10, 8] for the motivation). For k > 0 we denote by
Tk the truncation function defined by Tk : r ∈ IR 7→ sign r min{k, |r|}.

Definition 6.1 Let p ∈ (1,+∞), p′ = p/(p − 1). Assume (f, g, jo) ∈
L1(Q)×L1(Q)×L1(Ω), and Tk(g) ∈ L2(0, T ;W 1,p(Ω)) for all k > 0. An
a.e. defined measurable function v : Q 7→ IR is called renormalized solution
of (Pg(f, jo)) if j(v) ∈ L1(Ω), the function w = ϕ(v) is such that Tk(w) ∈
Lp(0, T ;W 1,p(Ω)) with Tk(w − g) ∈ Lp(0, T ;W 1,p

0 (Ω)), a(w, ∇Tk(w)) ∈

Lp′

(Q)N , and
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(i) for any compactly supported S ∈ C1(IR; IR) the distributional deriva-

tive
(∫ j(v)

0

S(z) dz
)

t
can be identified with χS ∈Lp′

(0, T ;W−1,p′

(Ω))+

L1(Q) such that
∫ T

0

< χS , ξ > +

∫ ∫

Q

a(w, ∇w) · ∇(S(w)ξ) =

∫ ∫

Q

fS(w)ξ

for all test function ξ ∈ Lp(0, T ;W 1,p
0 (Ω)) ∩ L∞(Q), and

∫ T

0

< χS , ξ >= −

∫∫

Q

(∫ j(v)

0

S(z) dz
)
ξt −

∫

Ω

(∫ jo(x)

0

S(z) dz
)
ξ(0, x)

for all test function ξ ∈ Lp(0, T ;W 1,p
0 (Ω)) ∩ L∞(Q) such that

ξt ∈ L∞(Q) and ξ(T, ·) = 0.

(ii)

∫ ∫

{(t,x)∈Q | M−1≤|w(t,x)|≤M}

a(w,∇w) · ∇w → 0 as M → ∞.

For the homogeneous Dirichlet problem and under various restrictions on
the flux a, the existence of renormalized solutions is known (see [7, 8,
16, 3] and references therein). Uniqueness for the homogeneous Dirichlet
problem is shown in [7, 10, 8]. The theorem below extends these last
results to the inhomogeneous case, for fluxes of the form (H0).

Theorem 6.2 The statement of Theorem 1.3 remains true if we assume
that v, v̂ are renormalized solutions of (Pg(f, jo)).

Theorem 6.2 follows from the fact that a renormalized solution of (Pg(f, jo))
is also a weak solution of the problem (PM

gM
(fM , jM,o)) with the corre-

sponding functions SM ,jM ,jM,o,ϕM , gM , FM and fM (see Section 5).
Using (ii) of Definition 6.1, we deduce that fM → f in L1(Q) as M → ∞,
and then conclude the proof as in Section 5.

6.2 On more general fluxes

Remark 6.3 One can allow for a quite general dependency of a on (t, x)
when a is Hölder continuous in w of order 1/2 (cf. [1, 22]) or Lipschitz
continuous in w (cf. [8]). For less regular convections, the method of
doubling of variables remains essential. This method imposes important
restrictions on the dependence of a on x, especially for the case of non
Lipschitz convection. However, one can extend the result of Lemma 3.1
and then the ones of Theorems 1.3,2.2 to the fluxes of the form

a(t, x, w, ∇w) = ∇w + F (w) +G(w)q(t, x)

with G : IR → IR continuous and q : Q → IRN such that divxq = 0 and
q ∈ L∞(Q) (cf. [14]).

Remark 6.4 The same kind of idea gives an approach to the uniqueness
for the stationary problem (Sg(f)) in the case of nonlinear diffusion of the
form

(H0′)

∣∣∣∣
a(w, ∇w) = b(∇w) + F (w)
with monotone continuous b : IRN → IRN.
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In this case, one still can obtain the stationary analogue of Lemma 3.1
(cf. e.g. [10]).

In order to avoid the unnecessary complications, let us assume that ei-
ther the functions w, ŵ are bounded, or b is homogeneous (i.e., b(λ ξ) =
|λ|p−1λ b(ξ); this includes linear elliptic problems and the p-laplacian).
As in Lemma 4.2 and Theorem 1.3, the L1 contraction and comparison
property (2.2) would follow, if instead of (4.2) we show that

lim sup
h→0

∫

Ω

sign+
0 (w − ŵ)(b(∇w) − b(∇ŵ))+ · ∇ξh ≥ 0 (6.1)

for an appropriate choice of ξh satisfying (4.4). To this end, it suffices to
assume

(H0′′)

∣∣∣∣∣
b = ∇Φ for Φ ∈ C2(IR, IR)

with the Hessian matrix D2Φ satisfying 1/M ≤ D2Φ ≤ M,

and replace the auxiliary problem (4.5) in the proof of Lemma 4.4 by the
appropriate adjoint problem:
{

div (P (·)∇u) = 0 in Ωh,
u = uo

h on ∂Ωh,
P =

∫ 1

0

D2Φ (θ∇w+(1−θ)∇ŵ) dθ. (6.2)

Indeed, with the notation of the proof of Lemma 4.4, the left-hand side
of (6.1) can be rewritten as

∫

Ω

∇(w − ŵ)+ · P (x)∇ξh =

∫

∂intΩ∗

h

(w − ŵ)+ P (x)∇ξh · n,

which is nonnegative, because ∇ξh = | ∇ξh|n a.e. on ∂intΩ∗
h.

This extends the results of Theorem 2.2 to solutions of (Sg(f)) with flux
a satisfying (H0′), (H0′′). In the same way we easily obtain the extension
of both Theorems 1.3 and 2.2 to the case of linear elliptic problems (i.e.,
for b(ξ) = Aξ with a positive definite matrix A).

Note that this kind of proof would not work for the evolution problem
(Pg(f, jo)) with nonlinear diffusion, since ξh would depend on t through
w, ŵ. It should be pointed out that for the homogeneous Dirichlet problem
(P0(f, jo)) with flux a of the form (H0′), using the approach of [9] one
can prove the L1 contraction and comparison principle, provided that ∂Ω
can be locally represented by a graph of a continuous function (see [4]).

Remark 6.5 As mentioned in Remark 4.3, the choice of the distance-to-
the-boundary functions ξo

h = 1
h

min{h, dist (x, ∂Ω)} readily yields (4.4);
then (4.3) follows, by Lemma 4.5. Moreover, (4.2) can also be shown, for
a sufficiently regular (say, piecewise C2) domain Ω. For instance, in the
case of a flat portion of the boundary {0} × U , U ⊂ IRN−1, (4.2) with
ξh = ξo

h reduces to the inequality

1

h

∫ h

0

(∫

U

∂

∂xN
(w − ŵ)+ dx1 . . . dxN−1

)
dxN ≥ 0, for a.a. t ∈ (0, T ).
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This inequality holds true, thanks to the Newton-Leibnitz formula.

In the same spirit, proving (6.1) for ξh = ξo
h would permit to generalize

Lemma 4.2. Note that in the assumptions (H2),(HΩ)(ii), we only have
to replace H1

0 (Ω) by W 1,p
0 (Ω) and substitute the power p for 2 in the

corresponding integrands.

Thus the results of Theorems 1.3,2.2 can be extended to general nonlinear
fluxes of the form (H0′) if the following question is answered positively.
For simplicity, we state it in the case of localized flat boundary and the
p-laplacian operator.

Let w, ŵ ∈W 1,p(IR+×IRN−1) with coinciding traces on {0}×IRN−1

and compact support. Denote by e1 the unit vector (1, 0, ..., 0).
Is it true that

lim
h→0

1

h

∫ h

0

∫

IRN−1

sign+
0 (w−ŵ)

(
| ∇w|p−2 ∇w − |∇ŵ|p−2 ∇ŵ

)
· e1 ≥ 0 ?

It should be pointed out that, thanks to the results of [12], one can as-
sume that a trace of sign+

0 (w−ŵ)
(
b(∇w)− b(∇ŵ)

)
· e1 on the boundary

exists in the weak sense. Indeed, entropy inequalities and an analogue of
Lemma 3.1 can be obtained with fluxes (H0′). They imply in particular
that the distribution div (t,x)

(
(j(v) − j(v̂))+ , F

)
with

F = sign+
0 (w−ŵ)

(
b(∇w) − b(∇ŵ)

)
+ sign+

0 (w−ŵ)
(
F (w) − F (ŵ)

)

is a Radon measure; furthermore, the two terms in the right-hand side of
the above formula can be dissociated, thanks to the appropriate version
of (4.4) and Lemma 4.5. For the stationary problem in case N = 1, this
reasoning eventually leads to the positive answer to the question. Indeed,
sign+

0 (w−ŵ)
(
b(wx) − b(ŵx)

)
is a function of bounded variation in this

case, therefore its strong limit exists, as x → 0+. It is easily seen that
this limit cannot be negative, because b(·) is monotone.
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Analyse non linéaire, 1983.
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