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Abstract

The purpose of this paper is to study the limit in L1(�) of solutions of general initial-boundary-
value problems of the form ut =/w−g(x; u) and u∈ 	(w) in a bounded domain � with general
boundary conditions of the form @�w + �(w) � 0, where 	 and � are maximal monotone graphs
and g :� × R → R is a nonincreasing continuous function in r ∈R. We prove that a solution
stabilizes in L1(�) as t → ∞ to a function u∈ L1(�) which satis5es u(x)∈’−1(c)∩g(x; :)−1(0)
a.e. x∈�, with c∈ �−1(0). So, if for instance �−1(0) = ’−1(0) ∩ g(x; :)−1(0) = {0}, then a
solution stabilizes by converging to 0, in L1(�), as t → ∞.
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1. Introduction

Consider the initial-boundary-value problem


ut −/’(u) + �(x)|u|p−1u= 0 in Q := (0;∞)× �;

@
@�
’(u) + a’(u) = 0 on � := (0;∞)× �;

u(0) = u0;

(1.1)
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where � is a bounded domain of RN with a smooth boundary �, @w=@� is the normal
derivative of w, ’ is a nondecreasing continuous function such that ’(0) = 0, p¿ 0,
�∈BV (�), �¿ 0 and a∈ [0;∞] (the case a=∞ corresponds to the Dirichlet boundary
condition). It is known that for any u0 ∈L∞(F), (1.1) has a unique weak solution u
(see for instance [38]). We are interested to the asymptotic behavior of u(t), as t → ∞.

Problems of type (1.1), or some special case of it, arise in many di$erent physical
contexts. With respect to stabilization of solutions, the case where ’ is increasing
(strictly) and continuous is probably the most covered in the literature. For instance,
the linear case, i.e. ’(r) = r for every r ∈R, corresponds to semilinear heat equations
(see for instance [8,18,24,28,32–35]). The evolution equations (1.1) with ’ increasing
and continuous arise in modelling gas Iow in porous media [9], and the spread of
biological populations (cf. [27,39]); for the stabilization of solutions of this type of
problems one can see the works [3,5,21,22,31] (see also [4,13]). Among the results
of [3] it is proved that, if ’ is increasing (strictly) then a solution of problem (1.1)
stabilizes as t → ∞ by converging to a constant function in L1(�). Our main interest
lies in the case where ’ is a nondecreasing function for which the evolution equation
(1.1) arises in the study of various phenomena with changes of states (see [19,41]).
Recently, in [29] we studied the case � ≡ 0 with general nonlinearities (’ is any
maximal monotone graph); we proved that a solution u(t) stabilizes as t → ∞ by
converging to a function z ∈L1(�) such that z(x)∈’−1(0) a.e. x∈�; i.e. the limit z
remains in the plane region [’=0]. Since in general such z is not unique, we also gave
a characterization of the true limit for a large class of initial data (see [29]), but the
problem of such characterization remains open in general. In this work, we generalize
a part of this results to the case � �≡ 0. In particular, we prove that in the presence of
the absorption term �(x)u the solution of (1.1) stabilizes by converging to 0, in L1(�),
as t → ∞, for any u0 ∈L∞(�).

The main application we have in mind concerns evolution problems of Stefan type.
These problems are described by (1.1) with

’(r) =

{
(r − 1)+ if r¿ 0;

r if r ¡ 0:
(1.2)

The function u then represents the enthalpy, ’(u) the temperature and ’(u) = 0
the melting temperature of the material (see for instance [19,41] and the references
therein). The limit of the solution u(t) as t → ∞, is closely connected to a prob-
lem that attracted considerable interest; it concerns the nature and the evolution of the
so-called “Mushy region” the set which separates the two phases, which is the interior
of the set in which ’(u) = 0, i.e. M = [0¡u¡ 1]. In the classical formulation, M is
assumed to be empty. In the case of Dirichlet boundary conditions and starting from a
weak formulation, conditions were obtained by Oleinik [40] and Friedman [23] which
ensure that indeed M = ∅. On the other hand it was shown numerically by Atthey
[6], and analytically by Meirmanov [37] (see also [25,26,42]) that interior heating may
cause M to have nonempty interior. In [12], the authors obtain by means of comparison
methods in one dimension a number of qualitative statements about the existence and
nonexistence of the set M . In [29], we proved that, if � ≡ 0, then the mushy region
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is nonincreasing and may remains nonempty as t → ∞, and a characterization of the
mushy region that will never be reduced by the di$usion was given for a large class of
initial data u0. Actually, in the presence of the absorption term �(x)|u|p−1u, we prove
that the mushy region disappears completely, as t → ∞, for any initial data u0.

In fact, we will consider the general evolution equation of the form

(P)




ut −/w + g(x; u) = 0; u∈ 	(w) in Q = (0;∞)× �;

@w
@�

=−z; z ∈ �(w) on �= (0;∞)× @�;

u(0) = u0 in �;

where 	 and � are maximal monotone graphs in R (see [14]) such that D(�)∩D(	) �=
∅ and g :� × R → R such that g(x; r) is nonincreasing continuous function in r and
integrable in x. In particular, � may be multivalued and this allows the boundary
condition to include the Dirichlet (taking � = {0} × R) and the Neumann condition
(taking �=R× {0}) as well as many other possibilities. Also, 	 may be multivalued,
so that (P) is a mathematical model of various phenomena with changes of states. On
the other hand, 	 may be a continuous function in R, then (P) is the 5ltration equation
which includes the Iow of liquids or gazes through porous media, the heat propagation
in plasmas, population dynamics, spread of thin viscous 5lms and others. In [11], the
authors treat (P) in the case g ≡ 0 in the contest of nonlinear semigroups theory
and proved that problem of type (P) has a unique generalized solution. Assuming that
g �≡ 0, we will prove that (P) still has a unique generalized solution u, which is also
a solution in a usual weak sense if u0 ∈L∞(�). Moreover, u(t) = S(t)u0 where S(t)
is a continuous nonlinear semigroup of order preserving contractions in L1(�). We are
interested in the limit of S(t)u0, as t → ∞. In order to prove stabilization result, we
need the orbits of the semigroup S(t), i.e. {S(t)u0; t¿ 0}, to be relatively compact
in L1(�). For this aim, we will prove that the resolvent of S(t) are relatively compact
from L∞(�) into L1(�), so that using the same arguments of [3] (see also [29,36])
the relative compactness in L1(�) of the orbits follows. On the other hand, we will
use estimates of energy type to describe the limit function u(t), as t → ∞.

The paper is organized as follows. The main results (cf. Theorem 1 and Corollary 1)
concerning the stabilization of the solution of (P) is stated and proved in Section 3.
In Section 2, we state assumptions on the data that will hold throughout the paper
and prove that problem of type (P) is well posed and governed by an order preserving
contraction in L1(�). We also prove energy estimates that are useful for the description
of the limit function.

2. Preliminaries

In the sequel, � is a bounded domain of RN with smooth boundary �, ’ and � are
maximal monotone graphs in R such that

(H1) D(’) = R;
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(H2) either D(�) = R or D(�) = {0};
(H3) 0∈’(0) ∩ �(0)

and g :� × R→ R is such that

(H4)
for almost all x∈�; r → g(x; r) is continuous; nondecreasing

and for every r ∈R; x → g(x; r) is in L1(�) with g(:; 0) ≡ 0:

We consider the following evolution problem

(E)




ut = /w − g(x; u); w∈’(u) in Q = (0;∞)× �;

@w
@�

=−z; z ∈ �(w) on �= (0;∞)× @�;

u(0) = u0 in �

with u0 ∈L1(�). In order to study the problem in the context of nonlinear semigroup
theory, we de5ne the operator (possibly multivalued) Ag’�, in L1(�) by

Ag’� =

{
(v; f)∈L1(�)× L1(�); g(:; v(:))∈L1(�); ∃ w∈W 1;1(�);

∃ z ∈L1(�) s:t: w∈’(v) a:e: in �; z ∈ �(w) a:e: on � and∫
�
DwD$+

∫
�
g(:; v)$+

∫
�
z$=

∫
�
f$ for any $∈W 1;∞(�)

}
:

Proposition 1.

(1) Ag’� is m-accretif in L1(�), i.e. Ag’� has a nonexpansive resolvent J% = (I +
%Ag’�)−1 everywhere de9ned in L1(�), for every %¿ 0.

(2) For any f∈Lp(�), with 16p6∞, we have

‖(I + %Ag’�)−1f‖Lp 6 ‖f‖Lp :

(3) D(Ag’�)
L1

= L1(�).

Proof.

(1) Thanks to [11], if g ≡ 0, we know that the corresponding operator A0’� is
m-accretive in L1(�) and for any (u; v)∈A0’�∫

�
p(u)v¿ 0 for any p∈P0; (2.1)
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where

P0 = {p∈Lip(�); p nondecreasing; p(0) = 0 and supp(p′)compact}:
Now, let Bg be the single-valued operator in L1(�) de5ned by Bgu(x)= g(x; u(x))
a.e. x∈� with D(B’) = {u∈L1(�); g(:; u(:))∈L1(�)}. Since Bg is continuous,
accretif in L1(�) and

Ag’� = A0’� + Bg; (2.2)

then Ag’� is accretif in L1(�). On the other hand, using Corollary 3.1 of [3] and
the fact that A0’� satis5es (2.1), we deduce that Ag’� is m-accretif in L1(�).

(2) Since g(:; 0) ≡ 0, then Ag’� also satis5es (2.1), i.e. for any (u; f)∈Ag’�, we have∫
�
p(u)f¿ 0 for any p∈P0: (2.3)

Indeed, if (u; f)∈Ag’� then (u; f − g(:; u))∈A0’� so that, (2.1) implies that∫
�
p(u)f −

∫
�
p(u)g(:; u)¿ 0

and (2.3) follows by using the fact that p(u)g(:; u)¿ 0 a.e. in �. Then, Part 2 of
the proposition is an immediate consequence of Corollaries 2.1 and 2.2 of [10].

(3) For Part 3 of the proposition, it is enough to prove that

L∞(�) ⊆ D(Ag’�): (2.4)

For u∈L∞(�), set u)=(I+)Ag’�)−1u for any )¿ 0, then u)=(I+)A0’�)−1(u−)g(:; u))).
Since ‖u)‖L∞(�)6 ‖u‖L∞(�) (cf. Part 2 of the proposition) then u − )g(:; u)) → u in
L1(�), as ) → 0, so that using Theorem B of [11] and using the fact that )A0’�=A0’)�) ,
with ’) := ) ’ and �) := ) �(:=)), we deduce that u) → u in L1(�), as ) → 0.

Using the general theory of nonlinear semigroups of evolution equations, Ag’� gener-
ates a continuous nonlinear semigroup of order preserving contractions S(t), in L1(�).
Moreover, for any u0 ∈L1(�), S(t)u0 is the unique generalized solution of (E) (cf.
Theorem I of [11]). By de5nition of S(t),

S(t)u0 = L1 − lim
)→0

u)(t) (2.5)

uniformly for t ∈ [0; +], where for )¿ 0, u) is an )-approximate solution corresponding
to a subdivision t0 = 0¡t1¡ · · ·¡tn−1¡+6 tn, with ti − ti−1 = ) and de5ned by
u)(0) = u0, u)(t) = ui for t ∈ ]ti−1; ti] where ui ∈L1(�) satis5es

ui − ui−1

)
+ Ag’�ui � 0: (2.6)

In other words, the generalized solution u of (E) is given by the exponential formula

u(t) = S(t)u0
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= e−tAg’�u0

= lim
n→∞

(
I +

t
n
Ag’�

)−n
u0: (2.7)

Proposition 2. If u0 ∈L∞(�), then the generalized solution u of (E) satis9es


u∈L∞(Q); ∃ w∈L2
loc([0;∞); H 1(�)); ∃ z ∈L2

loc([0;∞); L2(�));

w∈’(u) a:e: in Q; z ∈ �(w) a:e: in �;∫ +

0

∫
�
DwD$+

∫ +

0

∫
�
$z +

∫ +

0

∫
�
g(x; u)$

=
∫ +

0

∫
�
$tu+

∫
�
$(0)u0; ∀ $∈C1([0; +]× N�); +¿ 0 and $(+) ≡ 0:

(2.8)

Moreover, for any +¿ 0,

‖u(+)‖∞6 ‖u0‖∞; (2.9)

∫
�
j(u(+)) +

∫ +

0

∫
�
|Dw|2 +

∫ +

0

∫
�
zw

+
∫ +

0

∫
�
g(:; u)w6

∫
�
j(u0); (2.10)

where j :R→ [0;∞] is a proper convex s.c.i. function such that ’= @j, and∫
�
|u(+)|+

∫ +

0

∫
�
|g(:; u)|6

∫
�
|u0|: (2.11)

Before proving this proposition, we give some consequences of Proposition 1 and
results of [11] that will be useful for the sequel. For any f∈L1(�), there exists a
unique (u; w; z) solution of

S(f; g; ’; �)



v−/w + g(:; v) = f; w∈’(v) in �;

@w
@�

+ z = 0; z ∈ �(w) on �

in the sense


v∈L1(�); g(:; v)∈L1(�); w∈W 1;1(�); z ∈L1(�);

w∈’(v) a:e: in �; z ∈ �(w) a:e: on � and∫
�
DwD$+

∫
�
g(:; v)$+

∫
�
z$=

∫
�
(f − v)$

for any $∈W 1;∞(�):

(2.12)
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In addition, applying Proposition E of [11], for any f1; f2 ∈L1(�), if (vi; wi; zi) is the
solution of S(fi; g; ’; �) for i = 1; 2, then∫

�
(v1 − v2)+ +

∫
�
(g(:; v1)− g(:; v2))+ +

∫
�
(z1 − z2)+6

∫
�
(f1 − f2)+

and ∫
�
|v1 − v2|+

∫
�
|g(:; v1)− g(:; v2)|+

∫
�
|z1 − z2|6

∫
�
|f1 − f2|: (2.13)

Moreover, if f∈L∞(�) then the solution (v; w; z)∈L∞(�)×H 2(�)× L2(�) and one
has the following estimates:

‖v‖∞6 ‖f‖∞; (2.14)

and

‖w‖H 1(�)6C‖f‖∞; (2.15)

where C is a constant which depends only on � and ‖f‖1.

Proof of Proposition 2. Using (2.5) and (2.6), let u) be the )-approximate solution
with )= +=n, and, for i = 1; : : : ; n, let (wi; zi)∈H 2(�)× L2(�) such that


ui + )g(:; ui)− )/wi = ui−1; wi ∈’(ui) in �;

@wi
@�

+ zi = 0; zi ∈ �(wi) on �:
(2.16)

Thanks to (2.14), it follows that ui ∈L∞(�) and ‖ui‖∞6 ‖u0‖∞, so that

‖u)‖∞6 ‖u0‖∞ (2.17)

and, thanks to (2.13), we have∫
�
|ui|+ )

∫
�
|g(:; ui)|+ )

∫
�
|zi|6

∫
�
|ui−1|: (2.18)

On the other hand, multiplying (2.16) by wi and using the fact that∫
�
(ui−1 − ui)wi6

∫
�
j(ui−1)−

∫
�
j(ui)

we deduce that∫
�
j(ui) + )

∫
�
|Dwi|2 + )

∫
�
g(:; ui)wi + )

∫
�
ziwi6

∫
�
j(ui−1): (2.19)
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Adding (2.18) and (2.19) for i = 1; : : : ; n, we get∫
�
|u)|+

∫ +

0

∫
�
|g(:; u))|+

∫ +

0
|z)|6

∫
�
|u0| (2.20)

and ∫
�
j(u)(+)) +

∫ +

0

∫
�
|Dw)|2 +

∫ +

0

∫
�
g(:; u))w) +

∫ +

0

∫
�
w)z)6

∫
�
j(u0); (2.21)

where w) : [0; +] → H 1(�) and z) : [0; +] → L2(�) with w)(t)=wi and z)(t)= zi, for any
t ∈ ]ti−1; ti]; i= 1; : : : ; n. Thanks to (H1) and (2.17), w) is bounded in L∞((0; +)×�),
and, thanks to (H2), z) is bounded in L∞((0; +)×�). On the other hand, using the fact
that j¿ 0, g(:; u))w)¿ 0 a.e. in [0; +]× � and z)w)¿ 0, a.e. in [0; +]× �, we deduce
from (2.21) that w) is bounded in L2(0; +;H 1(�)).

Let w∈L2(0; +;H 1(�)), z ∈L2((0; +)× �) and )k → 0, such that z)k → z weakly in
L2((0; +) × �), w)k → w weakly in L2(0; +;H 1(�)) and in L2((0; +) × �). Since, for
any t ¿ 0, w)k (t)∈’(u)k (t)) a.e. in �, then by monotonicity argument we deduce that
w(t)∈’(u(t)) a.e. in �. Now, let ũ ) be the function from [0; +] into L1(�), de5ned
by ũ )(ti) = ui, ũ ) is linear in [ti−1; ti], then (2.16) implies that∫ +

0

∫
�
Dw) D$+

∫ +

0

∫
�
g(:; u))$+

∫ ∞

0

∫
�
$z)

=
∫ +

0

∫
�
ũ )$t +

∫
�
$(0)u0 (2.22)

for any $∈C1([0; +] × N�). Letting ) → 0 in (2.17), (2.20) and (2.22), we get (2.9),
(2.11) and

−
∫ +

0

∫
�
u$t −

∫
�
$(0)u0 +

∫ +

0

∫
�
DwD$+

∫ +

0

∫
�
g(:; u)$+

∫ +

0

∫
�
$z = 0 (2.23)

for any $∈C1([0; +]× N�). It remains to prove that

z ∈ �(w) a:e: in �: (2.24)

To this aim, let us consider the operator (possibly multivalued) G de5ned in L2(�) by

G�= {z ∈L2(�); z ∈ �(�) a:e: in �}:

It is clear that G is a maximal monotone graph in L2(�)×L2(�) and (2.24) is equivalent
to z ∈G(w). Since, z) ∈G w), z) → z weakly in L2(�) and w) → w weakly in L2(�),
then, thanks to Proposition 2.5 of [14], it is enough to prove that

lim inf
)→0

∫∫
�
z) w)6

∫∫
�
zw: (2.25)
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Firstly, one sees that letting ) → 0 in (2.21), we have

lim inf
)→0

∫∫
�
w) z)6

∫
�
j(u0)−

∫∫
Q
|Dw|2 −

∫
�
j(u(+))−

∫∫
�
g(:; u)w:

On the other hand, since w satis5es (2.23), then, one proves exactly in the same way
of Lemma 4.6 of [16] (see also Lemma 1.5 of [2]), that∫

�
j(u(+)) +

∫∫
Q
|Dw|2 +

∫∫
Q
g(x; u)w +

∫∫
�
zw =

∫
�
j(u0);

which implies that (2.25) is ful5lled.

Remark 1.

(1) If u0 ∈L∞(�), then Proposition 1 implies that S(t)u0 is also a solution of (E)
in the usual weak sense. But, we do not know if weak solutions are unique in
general. However, this is true in the case of linear boundary conditions and also
in the case where � and ’ are locally Lipschitz continuous functions (see for
instance [38]).

(2) If u0 ∈L1(�), we do not know in which sense S(t)u0 satis5es (E) in general.
However, in the case of Dirichlet boundary condition we know that, if either ’ or
’−1 is a nondecreasing continuous function, then S(t)u0 is the unique solution of
(E) in the renormalized solution (cf. [17,30] and the references therein).

(3) In the case D(�) = {0}, i.e. Dirichlet boundary condition, assumption (H1) is not
necessary, and all the results of Proposition 1 remains true even if D(’) �= R.
Indeed, with Dirichlet boundary condition on �, the PoincarPe inequality gives
directly a control of the H 1-norm of w)(t) with the L2-norm of Dw)(t). With the
compactness of u), this is enough to pass to the limit in the equation and the
inequalities satis5ed by u) and w).

3. Stabilization results

Throughout this section, we assume that g satis5es

(H′
4) g(:; r)∈BV (�) uniformly for r ∈ [r1; r2]

for any −∞¡r1¡r2¡+∞. We also introduce the set K, de5ned by

K= {z ∈L1(�); ∃ c∈ �−1(0); z(x)∈’−1(c) ∩ g(x; :)−1(0) a:e: x∈�}:
It is not diQcult to see that K is a nonempty closed subset of L1(�) and, moreover, K
is contained in the set of stationary solutions of (E), i.e. for any z ∈K, S(t)z=z, for any
t¿ 0. Indeed, thanks to (H3) and (H4), we see that 0∈K, which implies that K �= ∅.
On the other hand, for any z ∈K, it is not diQcult to verify that (I + % Ag’�)−1z= z,
for any %¿ 0, so that

S(t)z = L1 − lim
n→∞

(
I +

t
n
Ag’�

)−n
z = z:
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Theorem 1. For any u0 ∈L1(�), there exists a unique u∈K, such that

S(t)u0 → u in L1(�); as t → ∞:

In particular we have

Corollary 1. If, �−1(0) = ’−1(0) ∩ g(x; :)−1(0) = {0}, then
S(t)u0 → 0 in L1(�); as t → ∞:

The proof of Theorem 1 will follows as a corollary of a sequence of lemmas that
we next present. First, we need the orbits of the semigroup S(t), i.e. {S(t)u0; t¿ 0},
to be relatively compact in L1(�). Now, it is not possible to obtain this result from
the compactness of the semigroup because it is known for the Dirichlet boundary
condition case, that if g ≡ 0 and 	(r) = |r|(1=m)−1r, then S(t) :L1(�) → L1(�) is
compact if m¿ ((N − 2)=N ) (N¿ 3) (see [7]) but for 0¡m6 (N − 2)=N , even
the resolvents are not compact (see [15]). For general boundary condition and 	 an
increasing (strictly) continuous function everywhere de5ned, Mazon and Toledo proved
in [36] (see also [3]) that S(t)u0 is relatively compact in L1(�), for any u0 ∈L1(�)
(one can see also [1,20] for Dirichlet and Neumann boundary conditions, respectively).
In [29], we proved that this result remains true if ’ and � are maximal monotone graphs
satisfying (H1)–(H3). Next (cf. Lemma 2), we will generalize this result to (P), with
an absorption g satisfying (H′

4).

Lemma 1. Let f∈L∞(�), %¿ 0 and v=J%f. For any y∈RN and $∈C2(�) sup-
ported in {x∈�; distance(x; �)¡ |y|}, we have∫

�
$(x)|v(x + y)− v(x)| dx + %

∫
�
$(x)|g(x + y; v(x + y))− g(x + y; v(x))| dx

6C|y‖|/$‖∞ ‖f‖∞ +
∫
�
$(x)|f(x + y)− f(x)| dx

+%
∫
�
$(x)|g(x + y; v(x))− g(x; v(x))| dx;

where C is a constant depending only on � and ‖f‖1.

Proof. Let $ as above and (w; z)∈H 1(�)×L2(�) such that (v; w; z) is the solution of
S(f; %g; %’; %�). First, let us prove that∫

�
$(x)|v(x + y)− v(x)| dx + %

∫
�
$(x)|g(x + y; v(x + y))− g(x + y; v(x))| dx

6
∫
�
|/$‖w(x + y)− w(x)| dx +

∫
�
$(x)|f(x + y)− f(x)|dx

+%
∫
�
$(x)|g(x + y; v(x))− g(x; v(x))|: (3.1)
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Setting V =v(x+y)−v(x), W =w(x+y)−w(x), G=g(x+y; v(x+y))−g(x+y; v(x))
and F = f(x + y)− f(x) + %(g(x + y; v(x))− g(x; v(x))), we observe that

−%/W = F − U − %G in D′(�):

Applying Lemma F of [11], we get∫
[w¿0]

{(F − U − %G)$+W/$}¿
∫
[W=0]

(F − U − %G)−$;

so that using the fact that (F−U −%G)−¿ (U +%G)+−F+, (U +%G)+=U++%G+,∫
� U

+ =
∫
[W¿0] U +

∫
[W=0] U

+ and
∫
� G

+ =
∫
[W¿0]G +

∫
[W=0] G

+, we conclude that∫
$U+ + %

∫
$G+6

∫
[W¿0]

$F +
∫
[W=0]

$F+

6
∫
$F+: (3.2)

In a similar way, one proves that∫
$U− + %

∫
$G−6

∫
$F−: (3.3)

Adding (3.2) and (3.3) one gets (3.1). At last, since∫
�
|/$‖W | dx6 |y‖|/$‖∞|�|1=2‖∇w‖2;

then (3.1) implies the result of the lemma.

Lemma 2. Under the assumptions (H1), (H2), (H3), and (H′
4), for any u0 ∈L∞(�)∩

D(Ag’�), S(t)u0 is relatively compact in L1(�).

Proof. First, using Lemma 1, we see that for any %¿ 0 5xed and B a bounded subset
of L∞(�), J%B is a relatively compact subset of L1(�). Indeed, for any {fn} ⊆ B,
with an appropriate choice of $ and using (H′

4), we have

lim
|y|→0

sup
t¿0

∫
�′
|J%fn(x + y)−J%fn(x)|= 0

for any �′ ⊂⊂ �, which implies, with (2.9), that {J%fn} is relatively compact in
L1(�). Now, since u0 ∈L∞(�), then thanks to (2.9) and the 5rst part of the proof,
we deduce that, for any 5xed %¿ 0, J%S(t)u0 is relatively compact in L1(�). On the
other hand, since u0 ∈D(Ag’�), then

‖S(t)u0 −J%S(t)u0‖16 %inf{‖v‖1; v∈Ag’�u0} (3.4)

and the relative compactness of S(t)u0 in L1(�) follows. Indeed, we know that, for
any 5xed %¿ 0, there exists a subsequence tn → ∞ such that, J%S(tn)u0 converges
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in L1(�), as t → ∞, and, by using (3.4), one proves easily that S(tn)u0 is a Cauchy
sequence in L1(�).

Now, for any u0 ∈L1(�), we de5ne the !-limit set of (E) by

!(u0) =
{
u∈L1(�); u= L1 − lim

tn→∞ S(tn)u0 for some sequence tn

}
:

As a corollary of the preceeding lemma, we have

Corollary 2. For any u0 ∈L∞(�) ∩D(Ag’�), !(u0) �= ∅.

Lemma 3. Assuming u0 ∈L∞(�), we have

!(u0) ⊆ {z ∈L1(�); g(x; z(x)) = 0 a:e: x∈�}:

Proof. Let u∈!(u0) and let tk → ∞, such that u(tk) → u in L1(�). It is clear that
u(t + tn) = S(t)u(tn), so that by using the continuity of the semigroup S(t) on L1(�),
we get

u(t + tn) → S(t)u in L1(�) as tn → ∞; (3.5)

uniformly in t ∈ [0; +], for any +¿ 0. On the other hand, using (2.11), we have∫ +

0

∫
�
|g(x; u(t + tn; x))| dx dt =

∫ tn++

tn

∫
�
|g(x; u(t; x))| dx dt → 0

as tn → ∞; so that (3.5) and (2.9) implies that∫ +

0

∫
�
|g(x; S(t)u)| dx dt = 0 for any +¿ 0

and then g(x; u(x)) = 0 a.e. x∈�. This ends up the proof of the lemma.

Lemma 4. Assuming u0 ∈L∞(�) ∩D(Ag’�), we have

!(u0) ∩K �= ∅:

Proof. Using Proposition 2, let us consider (w; z)∈H 1(�)× L2(�), such that (u; w; z)
satisfy (2.12) with u(t)= S(t)u0. Thanks to (2.10) and since j¿ 0 and, for any t¿ 0,
w(t)z(t)¿ 0 and g(:; u(t))w(t)¿ 0, a.e. in �, there exists tn → ∞, such that

lim
tn→∞

(∫
�
|Dw(tn)|2 +

∫
�
z(tn)w(tn)

)
= 0: (3.6)

So, using (H1), (H2), (3.6) and PoincarRe inequality, we deduce that w(tn) is bounded
in H 1(�) and z(tn) is bounded in L∞(�), as tn → ∞. Thanks to Lemma 2, let
tnk → ∞ such that u(tnk) → u in L1(�), z(tnk) → z weakly in L2(�) and w(tnk) → w
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weakly in H 1(�) and strongly in L2(�). As in the proof of Proposition 1, by using
standard compactness and monotony arguments, we get w(x)∈’(u(x)) a.e. in x∈�
and z(x)∈ �(w(x)), a.e. x∈�. Passing to the limit in (3.6), through the subsequence
tnk , we get∫

�
|Dw|2 +

∫
�
z w = 0;

so that, by using the fact that z w¿ 0 a.e. in �, we have

w ≡ c in � and z c ≡ 0 on �: (3.7)

Since z c ≡ 0 on �, then c∈ �−1(0) and we deduce, by using Lemma 3, that u∈K.
This ends up the proof of the lemma.

Proof of Theorem 1. First, we see that the result of the theorem is true under the
assumption of Lemma 4. Indeed, assuming that u0 ∈L∞(�) ∩D(Ag’�), we know (by
Lemma 4) that there exists a subsequence tn → ∞ and u∈K, such that S(tn)u0 → u,
in L1(�). On the other hand, since S(t) is a contraction in L1(�) and S(t)u = u, for
any t¿ tn, then

‖S(t)u0 − u‖1 = ‖S(t − tn)S(tn)u0 − u‖1
= ‖S(t − tn)S(tn)u0 − S(t − tn)u‖1
6 ‖S(tn)u0 − u‖1;

so that, by letting tn → ∞, we deduce that S(t)u0 → u, in L1(�) as t → ∞. Now,
if u0 ∈L1(�), then thanks to Propositions 1–3, we consider a sequence (u0n)n∈N of
L∞(�) ∩D(Ag’�) such that u0n → u0 in L1(�). Using the 5rst part of the proof, we
know that there exists u 0n ∈K, such that, for any n∈N, S(t)u0n → u 0n in L1(�), as
t → ∞. Now, using the contraction property of S(t), it is not diQcult to see that u 0n

is a Cauchy sequence in L1(�), so that if u 0 is the L1-limit of u 0n, as n → ∞, then
u 0 ∈K and by using, again, the contraction of S(t), one sees that S(t) → u 0 in L1(�),
as t → ∞.

Remark 2.

(1) Notice that Corollary 1 corresponds to the case where K = {0}. In general, we
do not know the true value of the limit of S(t)u0, as t → ∞, among the elements
of K. In the case g ≡ 0, we gave in [29] a characterization of this limit for a
large class of initial data u0. It would be interesting to generalize this results to
the case g �≡ 0.

(2) In a similar way of Remark 1, one sees that in the case of Dirichlet boundary
condition, results of Theorem 1 and Corollary 1 remain true without the assump-
tion (H1). In this direction, notice that an interesting application of Corollary 1
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is the porous medium equation of quasilinear elliptic-parabolic type:

b(v)t −/v+ g(x; b(v)) = 0 in Q := (0;∞)× �;

v= 0 on �= (0;∞)× @�;

u(0) = u0 in �;

(3.8)

where b :R→ R is nondecreasing and continuous such that ’(0)= g(x; 0)=0 a.e.
x∈�. This equation appears in the study of one saturated-unsaturated of water
through a porous medium, where the gravity force is neglected. Then u = b(v)
represents the concentration of the water, v the pressure and g(x; u) the absorp-
tion term. The function b is given by experiments and usually is a continuous
nondecreasing function such that Im(b) �= R, so that b= ’−1 may be a maximal
monotone graph not de5ne in all R.
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