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Abstract. We consider a class of nonlinear degenerate problems of Stefan
type:

ut −∆w − ∇F (u, w) = g(·, u), w ∈ β(u)

where β is a maximal monotone graph in R2, with homogenous Dirichlet
conditions and initial conditions. Under rather general assumptions on
F and g, we prove existence and uniqueness of renormalized solutions.
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1. Introduction

Let Ω be a bounded open domain of RN with smooth boundary, T > 0. For
given function g, and u0 ∈ L1(Ω) we consider the evolution problem






ut −∆w − ∇F (u,w) = g(t, x, u), w ∈ β(u) in Q := (0, T ) × Ω
w = 0 on Σ := (0, T ) × ∂Ω
u(0, .) = u0(.) in Ω,

(Eu0,g)
under the assumptions:

β is a maximal monotone graph such that 0 ∈ β(0), (H1)

F (r1, r2) = F1(r2) + r1 F2(r2) for any r1, r2 ∈ R

with Fi ∈ C(R; R) and F2(0) = 0, (H2)




i) g(t, x, r) is continuous in r and measurable in (t, x)

ii)
∂g

∂r
(t, x, r) ≤ C in D′(R), C ∈ R+

iii) |g(t, x, r)| ≤ C1(t, x)|r| + C2(t, x)

(H3)
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with C1, C2 ∈ L1(Q), There is an extensive literature on this type of problems,
since it serves as a mathematical model for a large class of physical problems
(see [1,20] and the references therein). A large field of applications corresponds
to the case of maximal montone graph β (not continuous) such that β−1 is
continuous. for which there exists a large number of references. In particular,
E(u0, g) models in this case free boundary problems involving a solid-liquid
phase change of Stefan type for which there exists a large number of refer-
ences. Among them, let us mention the earlier works [1,17,19]. A complete
bibliography may be found in [30]. The structure condition (H2) includes in
particular the Stefan problem with a temperature dependent convective term
(see for instance [31,32]).

The problem of establishing uniqueness of solutions of E(u0, g) seems to
be complicated in general. The equation in E(u0, g) has a hyperbolic character
in the set where w = 0, and we say that E(u0, g) is of parabolic-hyperbolic
type; in general, uniqueness of a weak solution as well as uniqueness of renor-
malized solution do not hold. In [15], Carrillo proves that problems of type
E(u0, g) are well posed using the concept of “entropy solutions”, which are
weak solutions that satisfy some additional conditions called entropy condi-
tions. However, under the additional structure condition (H2), it is well known
by now (see [4,15,21,22]) that Problem E(u0, g) is expected to admit at most
one weak solution which, by definition, is a function u ∈ L1(Q) such that
w ∈ L2(0, T ;H1

0 (Ω)) and satisfies the equation in D′(Q). As to the existence
of a weak solution, this requires additional assumptions on the data u0 and
g, for instance u0 ∈ L∞(Ω) and g ∈ L∞(Q). In this paper, we consider the
case where all the right hand side data belongs to L1. This means that all the
sources should have finite energy, which is a physically reasonable requirement.

In order to solve E(u0, g) for general L1-data one needs a more general
notion of solution. The framework of renormalized solution, which was orig-
inally introduced in [18] for study the Boltzmann equation, has proved to be
a powerful approach to study a large of class of problems, see, among others,
[3,6,11–14,25,27,29].

In the case where β−1 is a nondecreasing continuous function, problem
E(u0, g) is a particular case of the so-called elliptic-parabolic problem, and
has been studied extensively in the literature (see [1,3,10,23,26], and the ref-
erences therein). For instance, if F is continuous, it is proved among the
results of [16], that, for any u0 ∈ L1(Ω) and g ∈ L1(Q), E(u0, g) has at most
one renormalized solution. Existence of this type of solution has been shown
in [3] (see also [13] where the case of a strictly increasing regular function β
is treated). The case where β−1 is a nondecreasing multivalued function has
been studied in [28,29] where the authors established existence and uniqueness
of renormalized solutions.
In this paper, we are interested in the case where β is a maximal monotone
graph in R2 with 0 ∈ β(0), where the convection term satisfies the structure
condition (H2) and where the data g satisfies Assumption (H3). We prove that,
for any u0 ∈ L1(Ω), the problem E(u0, g) is well posed in the renormalized
sense. We first consider the case where g is an integrable function f, then
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we deduce existence of renormalized solution for any g satisfying Assumption
(H3) by using the results of [9].

The proof of existence of renormalized solution consists of two steps: in a
first step, for bounded data, we study the non-degenerate problem: (Ek) ut −
∆w − ∇F (u,w) = f, w ∈ βk(u) on Q (+ homogenous Dirichlet boundary
conditions and initial conditions), and then we pass to the limit with k. Here
βk is an approximation of the graph β. Existence of weak solutions of this
non-degenerate problem is ensured by the work of [15], thanks to the nonlin-
ear semigroups theory (see [7,8]). In order to pass to the limit with k, we
need L∞-estimates and strong convergence in L1 of the sequence (wk)k (see
the proof of Proposition 4.2), which are not easy to obtain. To overcome this
difficulty we add to Problem (Ek) a monotone function ψm,n(w). Recall that
this type of arguments was already used in [2,3] for elliptic-parabolic prob-
lem, and in [5] for parabolic problem of absorption type. Due to the strongly
monotone perturbation term, one can prove an L1-estimate and, in particu-
lar, the strong compactness of the sequence of solutions w and also its strong
convergence in L1 to a measurable function. This allows to pass to the limit
with k in Problem (Ek) with a fixed perturbation ψm,n.

In the second step, using a bi-monotone approximation u0
m,n, fm,n of the

data u0, f, in the same way of [3], we obtain a monotone sequence
of weak solutions um,n of Problem E(u0

m,n, fm,n, ψm,n). For the convergence
of wm,n, wm,n ∈ β(um,n) (see the proof of Theorem 5.1) we use the monoto-
nicity with respect to m and n, and for the identification of the limit equation
essential tool is the regularization method of Landes (see [24]).

The main difficulty when dealing with hyperbolic-parabolic problem is
the uniqueness. In [15] the uniqueness of weak solutions was established under
the additional assumption that β−1(0) = 0. In [21], the authors assumed that
Fi is Lipschitz continuous, and in [22], it is assumed that Fi is continuous and
satisfies ‖F (u,w)‖ ≤ C‖w‖2. Recently, [4] have proved uniqueness of weak
solutions under only the structure condition (H2). In this paper, the unique-
ness of renormalized solution is proved by using the result of [4], and the proof
goes essentially as follows: we prove that, if u is a renormalized solution of
Problem E(u0, g), then u is a weak solution of some degenerate parabolic prob-
lem (see the proof of Proposition 3.1), then, by using the comparison result of
[4] of weak solutions, we deduce a comparison result of renormalized solutions,
and also uniqueness.

Let us briefly summarize the contents of the paper: In Sect. 2 we fix the
notations, give the concept of renormalized solution of Problem E(u0, g), and
state the existence and uniqueness result for renormalized solution of Problem
E(u0, g). In Sect. 3 we prove uniqueness of renormalized solutions by using
the results of [4]. Section 4 is devoted to the study of a perturbed problem
obtained by adding a monotone term. Existence of weak solution is proved for
L∞-data. In Sect. 5 we give the proof of existence of a renormalized solution
for Problem E(u0, g). It was shown that a weak solution of the perturbed prob-
lem E(u0, f, ψm,n) converges to a renormalized solution. Finally, in Sect. 6 we
deduce the corresponding results for the associated stationary problem.
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2. Preliminaries and main result

In this section, after some notations, we introduce the concept of renormalized
solution for Problem E(u0, g) and state the existence and uniqueness result
for this type of solutions.

We denote by |A| the Lebesgue measure of a set A ⊂ RN and by χA the char-
acteristic function of A. For k ≥ 0, we denote by Tk the truncation function
at the level k, defined by

Tk(u) =
{

ksign0(u) if |u| > k
u if |u| ≤ k,

(2.1)

where sign0(·) denotes the single-valued function defined by sign0(r) = −1 if
r < 0, sign0(r) = 1 if r > 0, sign0(r) = 0 if r = 0. We denote by sign+

0 (·) and
sign−

0 (·) the functions defined by sign+
0 (r) = 1 if r > 0,= 0 otherwise, and

sign−
0 (r) = −1 if r < 0,= 0 otherwise.
For n ∈ N we denote

hn(r) = inf((n + 1 − |r|)+, 1) and Hn(r) =
∫ r

0
hn(s) ds.

Throughout the paper, for the sake of simplicity, for u a function of (t, x)
and for k a real number, we denote, for example, {|u| ≤ k} the set {(t, x) ∈
Q; |u(t, x)| ≤ k}. We also write

∫
Q u for

∫
Q u(t, x)dtdx, etc... In the sequel C

denotes a constant that may change from line to line.
For a maximal monotone graph β in R × R; its main section β0 is defined by

β0(r) =






inf β(r) if r > 0
0 if r = 0
supβ(r) if r < 0,

with the usual convention inf ∅ = +∞ and sup ∅ = −∞.
An essential tool to prove existence of weak (renormalized) solutions is the
following energy estimate similar to the one set of [1].

Let j, ϕ : R → R be a continuous, nondecreasing functions such that
j(0) = ϕ(0) = 0. For any continuous and monotone function h we define the
function

Bh(s) =






∫ s

0
h(ϕ ◦ (j−1)0(r))dr for s ∈ (h ◦ ϕ) ◦ j−1

+∞ otherwise.
(2.2)

Lemma 2.1. [15, Lemma 4] Let j, ϕ : R → R be a continuous and nondecreas-
ing function with j(0) = ϕ(0) = 0. Let v be a measurable function such that
j(v) ∈ L1(Q), j(v)t ∈ L2(0, T ;H−1(Ω)) and j(v)(0) = j(v0), where v0 : Ω → R
is measurable with j(v0) ∈ L1(Ω). Then

Bh(j(v)) ∈ L∞(0, T ;L1(Ω))

and for a.e. t ∈ [0, T ]
∫

Ω
Bh(j(v(t))ξ(t)−

∫

Ω
Bh(j(v0))ξ(0)=

∫ t

0
〈j(v)t, h(ϕ(v))ξ〉+

∫ t

0

∫

Ω
Bh(j(v))ξt
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for any ξ ∈ C([0, T ] × Ω) such that h(ϕ(v)) ∈ L2(0, T ;H1
0 (Ω)), where 〈·, ·〉

represents the duality product between H−1(Ω) and H1
0 (Ω).

We now give the concept of renormalized solution for Problem E(u0, g).

Definition 2.1. Given u0 ∈ L1(Ω) and g : Q × R → R satisfying (H3), a
renormalized solution of E(u0, g) is a function u such that
(i) u ∈ L1(Q)
(ii) there exists a measurable function w such that w ∈ β(u) a.e. on Q and

Tkw ∈ L2
(
0, T ;H1

0 (Ω)
)

for any k > 0

(iii) for all ξ ∈ D([0, T ) × Ω) and h ∈ C1
c (R)

−
∫

Q
ξt

∫ u

u0

h(β0(r))dr +
∫

Q
(∇w + F (u,w)) · ∇(h(w)ξ) =

∫

Q
g(·, u) h(w) ξ

(2.3)

and moreover∫

Q∩{n≤|w|≤n+1}
|∇w|2 → 0 as n → ∞. (2.4)

Remark 2.1. Note that all integrals are well-defined. Indeed, the first one is
defined as |

∫ u
u0

h ◦ β0(r)dr| ≤ ‖h‖∞|u − u0| and u ∈ L1(Q), u0 ∈ L1(Ω). The
second integral must be understood as

∫

{|w|<k}
(∇Tkw + F (u, Tkw)) · ∇(h(Tk(w))ξ)

for k > 0 such that Supp h ⊂ [−k, k]. Indeed, if Supp h ⊂ [−k, k], then
h(w) = h(Tkw) and h(w) = 0 a.e. on {|w| ≥ k}; since Tkw ∈ L2(0, T ;H1

0 (Ω))
it is the same for h(w)ξ, and ∇(h(w)ξ) = 0 a.e. on {|w| ≥ k}. Similarly the
integral (2.4) has to be understood as

∫

Q∩{n≤|w|≤n+1}
|∇Tn+1w|2.

The main theorem of this paper is

Theorem 2.1. For any u0 ∈ L1(Ω) and g : Q × R → R satisfying (H3),
there exists a unique renormalized solution u of E(u0, g). Moreover, u ∈
C([0, T );L1(Ω)), u(0) = u0, and if u0i ∈ L1(Ω), gi : Q × R → R satis-
fies (H3) and ui is a renormalized solution of E(u0i, gi), for i = 1, 2, then, for
all 0 ≤ t ≤ T

∫

Ω
(u1(t) − u2(t))

+ ≤
∫

Ω
(u01 − u02)+ +

∫ t

0

∫

Ω
η (g1(., u1) − g2(., u2)) (2.5)

for some η ∈ sign+(u1 − u2), where sign+ denotes the usual non-negative sign
graph:

sign+ (s) =






1 if s > 0

[0, 1] if s = 0

0 if s < 0.
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3. Uniqueness of renormalized solutions

The proof of Theorem 2.1 will follow as a consequence of Proposition 3.1 below.
In fact, we will focus our attention on the problem

(E′)(v0, f)






∂tj(v) −∆ϕ(v) − ∇F (j(v), ϕ(v)) = f in Q
ϕ(v) = 0 on Σ
j(v)(0, ·) = v0 in Ω,

(3.1)

where f ∈ L1(Q), j, ϕ : R → R are nondecreasing continuous functions such
that j(0) = ϕ(0) = 0, and v0 is measurable function such that u0 = j(v0) a.e.
on Ω. Indeed, by taking ϕ = (I + β−1)−1, j = (I + β)−1 and v := u + w, one
sees that E(u0, f) and E′(u0, f) are equivalent.

Remark that

D((j + ϕ))−1 = R. (3.2)

Next, let us recall the definition of renormalized solution of E′(v0, f).

Definition 3.1. Given u0 ∈ L1(Ω) and f ∈ L1(Q), a renormalized solution of
E′(v0, f) is a measurable function v such that u is a renormalized solution of
E(u0, f), where u = j(v) and w = ϕ(v).

The main tool we use for the proof of uniqueness of renormalized solution is
the following proposition, for which the proof is given at the end of this section.

Proposition 3.1. For any f1, f2 ∈ L1(Q) and u01, u02 ∈ L1(Ω), if vi is a
renormalized solution of E′(v0i, fi) for i = 1, 2, then, for a.e. 0 < t < T

∫

Ω

(∫ v1(t)

v2(t)
hn(ϕ(r))dj(r)

)+

≤
∫

Ω

(∫ v01

v02

hn(ϕ(r))dj(r))
)+

+
∫ t

0

∫

Ω
η (f1hn(ϕ(v1)) − f2hn(ϕ(v2)))

+
∫ t

0

∫

Ω
η ((∇ϕ(v1) + F (j(v1), ϕ(v1))) · ∇hn(ϕ(v1)) − (∇ϕ(v2)

+F (j(v2), ϕ(v2))) · ∇hn(ϕ(v2))) , (3.3)

with η ∈ Sign+(v1 − v2) a.e. in Q.

Corollary 3.1. For any u0 ∈ L1(Ω) and g satisfying Assumption (H3) there
exists at most one renormalized solution u of E(u0, g). Moreover, if u0i ∈
L1(Ω), gi : Q × R → R satisfies (H3) and ui is the renormalized solution of
E(u0i, gi), for i = 1, 2, then (2.5) is fulfilled.

Proof of Theorem 2.1: Uniqueness part.
First, notice that uniqueness of a renormalized solution follows from (2.5).
Indeed, if u01 = u02 and g1 = g2, then (2.5) and Assumption (H3) imply that

∫

Ω
(u1(t) − u2(t))+ ≤

∫ t

0

∫

{u1≥u2}
(g(·, u1) − g(·, u2))

≤ C

∫ t

0

∫

Ω
(u1 − u2)+,
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which, by Gronwall’s Lemma, implies that u1 ≤ u2. In the same way, one can
prove that u2 ≤ u1.

Now, let us prove (2.5). It is clear that if u is a renormalized solution of
Problem E(u0, g) with g satisfying Assumption (H3), then u is a renormalized
solution of Problem E(u0, f) with f(t, x) = g(t, x, u(t, x)) a.e. (t, x) ∈ Q. So,
it is enough to prove that if u0i ∈ L1(Ω), fi ∈ L1(Q) and ui is a renormalized
solution of E(u0i, fi) for i = 1, 2, then, for a.e. 0 < t < T

∫

Ω
(u1(t) − u2(t))

+ ≤
∫

Ω
(u01 − u02)+ +

∫ t

0

∫

Ω
(f1 − f2)+,

or, equivalently, for a.e. 0 < t < T
∫

Ω
(j(v1)(t) − j(v2)(t))

+ ≤
∫

Ω
(j(v01) − j(v02))

+ +
∫ t

0

∫

Ω
(f1 − f2)+, (3.4)

with u = j(v) and w = ϕ(v), where v is a renormalized solution of E′(v0, f).
To prove the above inequality, we pass to the limit in (3.3) as n → ∞.

So, it is clear that
∫

Ω

(∫ v1(t)

v2(t)
hn(ϕ(s))dj(s)

)+

→
∫

Ω
(j(v1)(t) − j(v2)(t))

+ ,

∫

Ω

(∫ v01

v02

hn(ϕ(s)dj(s)
)+

→
∫

Ω
(j(v01) − j(v02))

+

and
∫ t

0

∫

Ω
η (f1hn(ϕ(v1)) − f2hn(ϕ(v2))) →

∫ t

0

∫

Ω
η(f1 − f2)+.

The term
∫ t

0

∫

Ω
η∇ϕ(v1) · ∇hn(ϕ(v1)) −

∫ t

0

∫

Ω
η∇ϕ(v2) · ∇hn(ϕ(v2))

converges to 0 as n → ∞ since ϕ(v) satisfies (2.4). Next, let us prove that
∫ t

0

∫

Ω
η (F (j(v1), ϕ(v1)) · ∇hn(ϕ(v1)) − F (j(v2), ϕ(v2)) · ∇hn(ϕ(v2))) = 0.

(3.5)

Define the set

E = {r ∈ R; ϕ−1
0 is discontinuous at r}.

Since ϕ−1
0 is a monotone function, E is a countable subset of RN ; hence we

have

∇ϕ(v) = 0 a.e. on {(t, x) ∈ Q; ϕ(v(t, x)) ∈ E}. (3.6)

From Assumption (H2), the term F (j(v1), ϕ(v1)) · ∇hn(ϕ(v1)) can be
decomposed as

F1(ϕ(v1)) · ∇hn(ϕ(v1)) + j(v1)F2(ϕ(v1)) · ∇hn(ϕ(v1)) =: I1 + I2.
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We have

I1 =
∫

Q
div

∫ ϕ(v1)

0
h′

n(r)F1(r)dr = 0

and

I2 =
∫

E∩{n<|ϕ(v1)|<n+1}
h′

n(ϕ(v1))j(v1)F2(ϕ(v1)) · ∇ϕ(v1)

+
∫

E∩{n<|ϕ(v1)|<n+1}
h′

n(ϕ(v1))j(v1)F2(ϕ(v1)) · ∇ϕ(v1)

=: I1
2 + I2

2 ,

where E stands of the complementary of E in Q.
From (3.6), I1

2 = 0. Since ϕ−1 is a continuous function on the set E, then

I2
2 =

∫

E∩{n<|ϕ(v1)|<n+1}
div

∫ ϕ(v1)

0
h′

n(r)j ◦ ϕ−1(r)F2(r)dr = 0. (3.7)

Arguing as above to prove that
∫

Q ηF (j(v2), ϕ(v2)) · ∇hn(ϕ(v2)) = 0.
Finally, collecting all limits, (3.4) follows. !

Proof of Proposition 3.1. For any n ∈ N, let bn(r)=
∫ r
0 hn(ϕ(s))dj(s). Remark

that, if |ϕ(v)| ≥ n+1, then bn(v) = 0, and if |ϕ(v)| < n+1, then the following
structure condition holds: if v < z

bn(v) = bn(z) ⇒ j(v) = j(z).

By [10], this condition is equivalent to the existence of a continuous function
j̃ such that

j(v) = j̃(bn(v)).

Let u0 ∈ L1(Ω), f ∈ L1(Q) and v a renormalized solution of E′(v0, f) with
v0 a measurable function such that u0 = j(v0). Hence v satisfies for all ξ ∈
D((0, T ) × Ω)

−
∫

Q
ξtbn(v) +

∫

Q
(∇ϕ(v) + F (j(v), ϕ(v))) · ∇(hn(ϕ(v))ξ) =

∫

Q
fhn(v)ξ.

(3.8)

Now, let us consider the second integral in (3.8), which can be written as
∫

Q
(∇ϕ(v) + F (j(v), ϕ(v))) · ∇ξhn(ϕ(v))

+
∫

Q
(∇ϕ(v) + F (j(v), ϕ(v))) · ∇hn(ϕ(v))ξ =: K1 + K2.
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From Assumption (H2) the term K1 can be decomposed into three terms
(K1

1 + K2
1 + K3

1 )
∫

Q
∇ϕ(v) · ∇ξhn(ϕ(v)) +

∫

Q
F1(ϕ(v)) · ∇ξhn(ϕ(v))

+
∫

Q
j(v)F2(ϕ(v)) · ∇ξhn(ϕ(v))

Note that

K1
1 =

∫

Q
∇Hn(ϕ(v)) · ∇ξ

and

K2
1 =

∫

Q
F̃1(Hn(ϕ(v))) · ∇ξ,

where F̃1 is a continuous function defined by

F̃1(r) = hn ◦ H−1
n (r)F1(H−1

n (r)).

Since j(v) = j̃(bn(v)) on the set where |ϕ(v)| < n + 1, then

K3
1 =

∫

Q
j̃(bn(v))hn(ϕ(v))F2(ϕ(v)) · ∇ξ =

∫

Q
j̃(bn(v))F̃2(Hn(ϕ(v)) · ∇ξ,

where F̃2 is a continuous function defined by,

F̃2(r) = hn ◦ H−1
n (r)F2(H−1

n (r)).

Finally, the term K2
1 + K3

1 is equal to
∫

Q
F̃ (bn(v),Hn(ϕ(v))) · ∇ξ,

where

F̃ (r1, r2) = F̃1(r2) + r1F̃2(r2) = hn ◦ H−1
n (r2)F (j̃(r1),H−1

n (r2)).

Taking account these decompositions, Eq. (3.8) is rewritten as

−
∫

Q
ξtbn(v) +

∫

Q

(
∇Hn(ϕ(v)) + F̃ (bn(v),Hn(ϕ(v)))

)
· ∇ξ

=
∫

Q
fhn(ϕ(v))ξ −

∫

Q
(∇ϕ(v) + F (j(v), ϕ(v)) · ∇hn(ϕ(v))) ξ,

which means that v is a weak solution of




∂

∂t
bn(v) − ∇ ·

(
∇Hn(ϕ(v)) + F̃ (bn(v),Hn(ϕ(v))

)

= fhn(ϕ(v)) − ∇ϕ(v) − F (j(v), ϕ(v)) · ∇hn(ϕ(v)) in Q

Hn(ϕ(v)) = 0 on Σ

bn(v(0)) = bn(v0) in Ω.

(E′
n)

!
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Next, let ui, i = 1, 2 be a renormalized solution of E(u0i, fi), then vi, i = 1, 2
is a renormalized solution of E′(v0i, fi). By the preceding computation, vi, i =
1, 2 is also a weak solution of Problem E′

n(v0i, fi), and thanks to [4, Theorem 1],
the result of Proposition 3.1 follows.

4. Existence of weak solutions

To prove existence of renormalized solutions of Problem E(u0, f), we will
proceed by approximation. We need first to prove, for bounded data f ∈
L∞(Q) and u0 ∈ L∞(Ω), existence of a weak solution of the parabolic prob-
lem with additional strongly monotone perturbation ψm,n, where ψm,n(r) =
1
m tan(r)+ − 1

n tan(r)−,m, n ∈ N :

E′(u0, f, ψm,n)






∂tj(v)−∆ϕ(v)−∇F (j(v), ϕ(v)) + ψm,n(v)=f in Q
ϕ(v) = 0 on Σ
j(v)(0, ·) = v0 in Ω.

(4.9)

This is done via approximation by a sequence of non-degenerate parabolic
problems

E′
k(v0, f, ψm,n)






∂tjk(v)−∆ϕk(v)−∇F (jk(v), ϕk(v))+ψm,n(v)=f in Q
ϕk(v) = 0 on Σ
jk(v)(0, ·) = v0 in Ω,

(4.10)

where jk(r) = j(r) + kr, ϕk(r) = ϕ(r) + kr (then j−1
k , ϕ−1

k ∈ C0(R)).
For these non-degenerate problems we obtain existence of weak solutions

with appropriate estimates and monotonicity properties, which allow us to
pass to the limit.
So, let us define the operator Am,n, in L1(Ω), by

Am,n(z) = −∆ϕ(z) − ∇F (j(z), ϕ(z)) + ψm,n(ϕ(z)) in D′(Ω)

and

D(Am,n) = {z ∈ L∞(Ω); ϕ(z) ∈ H1
0 (Ω), Am,n(z) ∈ L1(Ω)}.

Thanks to the results of [15], we know that Am,n is T -accretive in L1(Ω),
and Am,n, the closure of Am,n in L1, is m-accretive in L1(Ω), and moreover
D(Am,n) = L1(Ω).

Moreover, if (jk)k, (ϕk)k are continuous and nondecreasing functions with
jk(0) = ϕk(0) = 0 such that jk → j and ϕk → ϕ uniformly, then Am,n ⊆
lim inf

k→0
Ak

m,n, where the operator Ak
m,n is defined as Am,n, by replacing j and

ϕ by jk and ϕk respectively.
According to these results, by nonlinear semigroups theory, for any k,m,

n ∈ N, for all v0 ∈ L1(Ω), for all f ∈ L1(Q), there exits a unique mild solution
vk

m,n ∈ C([0, T ];L1(Ω)) of the abstract Cauchy problem in L1(Ω)

dv

dt
+ Ak

m,nv 1 f, v(0) = v0. (4.11)
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Moreover, for any vk
0 ∈ L1(Ω) with vk

0 → v0 in L1(Ω) and for all f ∈ L1(Q), the
mild solution vk

m,n of (4.11) with initial data vk
0 converges in C([0, T ];L1(Ω))

as k → 0 to the mild solution vm,n of the Cauchy problem

dv

dt
+ Am,nv 1 f, v(0) = v0. (4.12)

For bounded data, we can prove that the mild solution of the Cauchy problem
(4.12) is a “weak solution”.

Definition 4.1. A weak solution of E(u0, f) is a couple of functions (u,w) such
that u ∈ L∞(Q), w ∈ L2(0, T ;H1

0 (Ω)), w ∈ β(u), F (u,w) ∈ (L2(Q))N , and
∫

Q
[(∇w + F (u,w)) · ∇ξ − uξt] =

∫

Q
fξ −

∫

Ω
ξ(0)u0

for all ξ ∈ D((−∞, T ) × Ω).

Next, let us recall the definition of weak solution of E′(v0, f).

Definition 4.2. Given u0 ∈ L∞(Ω) and f ∈ L∞(Q), a weak solution of E′(v0, f)
is a measurable function v such that the couple (u,w) is a weak solution of
E(u0, f), where u = j(v) and w = ϕ(v).

It is proved by Carrillo [15] the following result:

Proposition 4.1. [15] Let m,n, k ∈ N, for f ∈ L∞(Q) and u0 ∈ L∞(Ω) let vk
m,n

be the mild solution of (4.11). Then vk
m,n is a weak solution of E′

k(v0, f, ψm,n).

Proposition 4.2. Given u0 ∈ L∞(Ω) and f ∈ L∞(Q) there exists a weak
solution of Problem E′(v0, f, ψm,n).

Proof of Proposition 4.2. From now on and until Sect. 5, we omit the index
m,n to lighten the notations. !

Recall that vk is the mild solution of dvk
dt + Ak

m,nvk 1 f, vk(0) = vk
0 , thus,

by [15]

‖jk(vk)‖∞ ≤ C(f, v0,m, n).

Let Bk(s) =
∫ s
0 ϕk ◦ j−1

k (r)dr. By taking ξ = ϕk(vk) as a test function in the
weak formulation of the solution vk, and by using Lemma 2.1, yields

∫

Ω
Bk(vk) +

∫

Q
(∇ϕk(vk) + F (jk(vk), ϕk(vk))) · ∇ϕk(vk)

+
∫

Q
ψm,n(ϕk(vk))ϕk(vk)

=
∫

Q
fϕk(vk) +

∫

Ω
Bk(v0

k). (4.13)

By monotonicity of ψm,n,
∫

Q ψm,n(ϕk(vk))ϕk(vk) ≥ 0. The term in the second
integral on the right hand side F (jk(vk), ϕk(vk))) ·∇ϕk(vk); from Assumption
(H2) we have
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F (jk(vk), ϕk(vk)) · ∇ϕk(vk) = F1(ϕk(vk)) · ∇ϕk(vk)
+jk(vk)F2(ϕk(vk)) · ∇ϕk(vk),

whence
∫

Q
F1(ϕk(vk)) · ∇ϕk(vk) =

∫

Q
div

∫ ϕk(vk)

0
F1(r)dr = 0;

and, since ϕ−1
k is a continuous function almost everywhere in Ω, we get

∫

Q
jk(vk)F2(ϕk(vk)) · ∇ϕk(vk) =

∫

Q
jk ◦ ϕ−1

k (ϕk(vk))F2(ϕk(vk)) · ∇ϕk(vk)

=
∫

Q
div

∫ ϕk(vk)

0
jk ◦ ϕ−1

k (r)F2(r)dr = 0.

Then, we get from (4.13) that ϕk(vk) is bounded in L2(0, T ;H1
0 (Ω)), hence,

there exists a subsequence, still denoted by k, such that

ϕk(vk)⇀ w weakly in L2(0, T ;H1
0 (Ω)).

One can prove exactly as [3,10] that ϕk(vk) is uniformly bounded in L∞(Q).
It remains to prove the strong convergence of ϕk(vk) in L1(Q).
The proof is based on Kruzhkov’s method of doubling of variables. Let

t, s ∈ [0, T ], k, l ∈ N, and consider the weak solution vk(t, x) as a function of
(t, x) and vl(s, x) as a function of (s, x). Choose in each weak formulation the
test function φ = 1

h

∫ t+h
t ηδ(ϕk(vk) − ϕl(vl) + δζ)ξ, where ξ ∈ C∞

c ([0, T )2 ×
Ω), ξ ≥ 0, ζ ∈ C∞

c (Ω), 0 ≤ ζ ≤ 1 and ηδ(r) = Tδ(r)
δ , and integrate in t. Using

Lemma 2.1 in each inequality, taking their difference, passing to the limit with
h → 0 exactly as in [28, Proposition 4.2.2] (see also [12, Proposition 4.2]) yields

−
∫ T

0

∫

Q
ξt[|jk(vk) − jl(vl)| − |v0

k − jl(vl)|]

−
∫ T

0

∫

Q
ξs[|jk(vk) − jl(vl)| − |v0

l − jk(vk)|]

+
∫ T

0

∫

Q
(χ{ϕk(vk)>ϕl(vl)} − χ{ϕk(vk)<ϕl(vl)})(∇(ϕk(vk) − ϕl(vl))) · ∇ξ

+
∫ T

0

∫

Q
(χ{ϕk(vk)>ϕl(vl)} − χ{ϕk(vk)<ϕl(vl)})(F (jk(vk), ϕk(vk))

−F (jl(vk), ϕl(vl))) · ∇ξ

+
∫ T

0

∫

Q
(ψm,n(ϕk(vk)) − ψm,n(ϕl(vl)))(χ{ϕk(vk)>ϕl(vl)}

−χ{ϕk(vk)<ϕl(vl)})ξ

≤
∫ T

0

∫

Q
(f(t, x) − f(s, x))(χ{ϕk(vk)>ϕl(vl)} − χ{ϕk(vk)<ϕl(vl)}

+χ{ϕk(vk)=ϕl(vl)})ξ (4.14)
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The proof of the above inequality is given in [28,29]. The original proof can
be found in [12]. We omit here the details in order to avoid the unnecessary
duplication of arguments.

Take ξ = φ(t)ρp(t − s), with φ ∈ C∞
c ([0, T )), φ ≥ 0 and (ρp)p be a classi-

cal sequence of mollifiers in R with Supp(ρp) ⊂ [− 2
p , 0]. Pass to the limit with

p → 0, yields

lim
p→0

lim
k,l→0

∫ T

0

∫

Q
φρp|ψm,n(ϕk(vk(t, x))) − ψm,n(ϕl(vl(s, x)))| ≤ 0.

In the particular case k = l, the preceding arguments lead to the estimate

lim
p→0

lim
l→0

∫ T

0

∫

Q
|ψm,n(ϕl(vl(t, x))) − ψm,n(ϕl(vl(s, x)))|φρp ≤ 0.

By choosing φ such that φ = 1 on [τ, θ], where 0 < τ < θ < T , we get

lim
k,l→0

∫ θ

τ

∫

Ω
|ψm,n(ϕk(vk(t, x))) − ψm,n(ϕ(vl(t, x)))|

≤ lim
p→∞

lim
k,l→0

∫ T

0

∫

Q
|ψm,n(ϕk(vk(t, x))) − ψm,n(ϕl(vl(t, x)))|φρp

≤ lim
p→∞

lim
k,l→0

(∫ T

0

∫

Q
|ψm,n(ϕk(vk(t, x))) − ψm,n(ϕl(vl(s, x)))|φρp

+
∫ T

0

∫

Q
|ψm,n(ϕl(vl(s, x))) − ψm,n(ϕl(vl(t, x)))|φρp

)

≤ 0.

As ψm,n is strictly nondecreasing, it follows that

lim
k,l→0

∫ θ

τ

∫

Ω
|ϕk(vk) − ϕl(vl)| = 0 ∀0 < τ < θ < T.

Since (ϕk(vk))k is bounded in L∞(Q) and ϕk(vk)⇀w weakly in L2(0, T ;H1
0

(Ω)), we conclude that

ϕk(vk) → w strongly in L1(Q), and a.e. on Q.

By nonlinear semigroup theory, jk(vk) → u in L∞(0, T ;L1(Ω)), we deduce
existence of subsequence of k, still denoted by k, such that

jk(vk) → u a.e. on Q.

The task now is to prove that

u = j(v) and w = ϕ(v).

Since ϕ = ϕk − kI, j = jk − kI, and ϕk(vk), jk(vk) are uniformly bounded in
L∞(Q), then, almost everywhere on Q, we have

|j(vk) + ϕ(vk)| ≤ |jk(vk) + ϕk(vk)| ≤ C.

From (3.2) we deduce the existence of a constant C such that

‖vk‖L∞(Q) ≤ C.
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Moreover, vk converges to v *-weakly in L∞(Q), still converges in L2(Q), and
kvk converges to 0 in L∞(Q).

We deduce also that ϕ(vk) = ϕk(vk) − kvk still converges to w in L2(Q),
whence we deduce that w = ϕ(v). Also we have u = j(v).

Therefore, since jk(vk), ϕk(vk) are uniformly bounded in L∞(Q), we have
F (jk(vk), ϕk(vk)) is uniformly bounded in (L∞(Q))N since F1, F2 are contin-
uous. Hence, from Lebesgue Theorem, we deduce that

F (jk(vk), ϕk(vk)) → F (j(v), ϕ(v)) in L1(Q).

Now, let ξ ∈ C∞
c ([0, T ) × Ω), then

∫

Q
−jk(vk)ξt +

∫

Q
(∇ϕk(vk) + F (jk(vk), ϕk(vk))) · ∇ξ +

∫

Q
ψm,n(ϕk(vk))ξ

=
∫

Q
fξ −

∫

Ω
v0

kξ(0),

and by letting k → 0 we get
∫

Q
−j(v)ξt +

∫

Q
(∇ϕ(v) + F (j(v), ϕ(v))) · ∇ξ +

∫

Q
ψm,n(ϕ(v))ξ

=
∫

Q
fξ −

∫

Ω
v0ξ(0).

Hence v is a weak solution of E′(v0, f, ψm,n). Consequently u is a weak solution
of E(u0, f, ψm,n) with u = j(v) and w = ϕ(v).

5. Existence of renormalized solutions

The main result of this section is

Theorem 5.1. For all u0 ∈ L1(Ω) and f ∈ L1(Q) Problem E(u0, f) admits a
renormalized solution.

Proof. Following a standard approach, we obtain the existence of a solution as
limit of approximating problems. To this purpose let u0

m,n = sup{inf{m,u0},
−n} ∈ L∞(Ω), and fm,n = sup{inf{m, f},−n} ∈ L∞(Q) be a bi-monotone
approximation of u0 and f in L1. Then, by Proposition 4.2, there exists a weak
solution um,n of Problem E(u0

m,n, fm,n, ψm,n), i.e.

um,nt −∆wm,n − ∇F (um,n, wm,n) + ψm,n(wm,n) = fm,n,

wm,n ∈ β(um,n) in D′(Q),

which is equivalent to

j(vm,n)t −∆ϕ(vm,n) − ∇F (j(vm,n), ϕ(vm,n)) + ψm,n(ϕ(vm,n))
= fm,n in D′(Q) (5.15)

with um,n = j(vm,n) and wm,n = ϕ(um,n).
We are going to prove that the limit a.e. of um,n, respectively of j(vm,n), is a
renormalized solution of E(u0, f), respectively of E′(v0, f).



Renormalized solution for Stefan type problems

By choosing in (5.15) the test function Tk(ϕ(vm,n)) and using Lemma
2.1, yields

∫

Q
|∇Tk(ϕ(um,n))|2 +

∫

{|ϕ(um,n)|≤k}
F (j(vm,n), ϕ(vm,n)) · ∇ϕ(vm,n)

+
∫

Q
ψm,n(ϕ(vm,n))Tk(ϕ(um,n))

≤ k

(∫

Q
|fm,n| +

∫

Ω
|j(v0

m,n)|
)

. (5.16)

As in (3.5), it follows that
∫

{|ϕ(um,n|≤k} F (j(vm,n), ϕ(vm,n)) · ∇ϕ(vm,n) = 0.
By monotonicity of the function ψm,n we deduce from inequality (5.16)

∫

Q
|∇Tkϕ(um,n)|2 ≤ kC,

where C is a constant independent of m,n. Thus Tkϕ(um,n) is bounded in
L2(0, T ;H1

0 (Ω)). Hence, up to a subsequence,

Tkϕ(um,n)⇀ g weakly in L2(0, T ;H1
0 (Ω)) as m,n → ∞.

Now let us prove, up to a subsequence, the strong convergence of the sequence
(ϕ(vm,n))m,n. For this we will use the following comparison result !

Lemma 5.1. Let v0, ṽ0 ∈ L∞(Ω), f, f̃ ∈ L∞(Q), ψ, ψ̃ : R → R continuous,
strictly increasing functions with ψ(0) = ψ̃(0) = 0, and let v, ṽ be weak
solutions of E′(v0, f, ψ), E′(ṽ0, f̃ , ψ̃) respectively. Then
∫

Ω
(j(v)(t) − j(ṽ))++

∫

Q

(
ψ(ϕ(v))−ψ̃(ϕ(ṽ))

)+
≤

∫

Q
(f − f̃)+ −

∫

Ω
(v0−ṽ0)+.

Proof. The proof is adapted exactly from the proof of inequality (4.14). It
suffices to take in the equations corresponding to the weak solutions v and ṽ

the test functions 1
h

∫ t+h
t η+

δ (ϕ(v) − ϕ(ṽ) + δζ), where η+
δ (r) = T+

δ (r)
δ .

From Lemma 5.1, we obtain, for vm,n weak solution of E′(v0
m,n, fm,n, ψm,n),

∫

Q
(ψm,n(ϕ(vm,n)) − ψm+1,n(ϕ(vm+1,n)))+ ≤ 0.

Since ψm+1,n(r) ≤ ψm,n(r) and ψm+1,n is strictly increasing, then for all
m,n > 0

ϕ(vm,n) ≤ ϕ(vm+1,n) a.e. on Q.

The same reasoning implies that for all m,n > 0 ϕ(vm,n) ≥ ϕ(vm,n+1) a.e.
on Q. Therefore, thanks to the monotone convergence theorem

ϕ(vm,n) ↑m wn ↓n w in L1(Q),

where wn, w : Q → R are measurable functions, finite a.e. on Q. Here and in
the sequel, we use the notation ↑m respectively ↓m, to denote convergence of
a sequence which is monotone increasing, respectively decreasing, in m.

Applying the diagonal procedure, we may assume that, for some sequence
m(n), ϕ(vn) := ϕ(vm(n),n) → w in L1(Q).
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Extracting a subsequence if necessary, we may therefore assume that

Tkϕ(vn)⇀ Tkw weakly in L2(0, T ;H1
0 (Ω)) for all k > 0 (5.17)

and

ϕ(vn) → w a.e. on Q.

As vn is a mild solution of dv
dt + Am(n),nv 1 f, v(0) = v0

un := j(vn) → u in L∞(0, T ;L1(Ω)).

Since ϕ(vn) converges weakly in L2(Q), and since ϕ ◦ j−1 is a maximal
monotone operator (in L2(Q)), we deduce that

w ∈ ϕ ◦ j−1(u),

whence there exits ũ ∈ j−1(u) such that w = ϕ(ũ). Then we set

v = ((ϕ+ j)−1)0(u + w) = ((ϕ+ j)−1)0(ϕ(ũ) + j(ũ)).

Obviously, v is a measurable function and we have u = j(v) and w = ϕ(v).
We may assume that for some sequence (m(n))n, we have (with fn = fm(n),n,
v0

n = v0
m(n),n, ψn = ψm(n),n)

fn → f in L1(Q),
j(v0

n) → u0 in L1(Ω)

and the weak solution vn of E′(v0
n, fn, ψn) satisfies

ϕ(vn) → ϕ(v) a.e. on Q

and

j(vn) → u in L∞(0, T ;L1(Ω)), a.e. on Q.

The task now is to prove that

|∇Tkϕ(vn)|2 → |∇Tkϕ(v)|2 in L1(Q) as n → ∞. (5.18)

For this we need to recall the following definition of a time regularization of
Tk(u), which was first introduced in [24], and used in several papers afterward
(see e.g. [2,3,5,6,12]). Let ν > 0 and (w0

ν)ν be a sequence of functions such
that






w0
ν ∈ H1

0 (Ω) ∩ L∞(Ω)
‖w0

ν‖L∞(Ω) ≤ k

w0
ν → Tkϕ(v(0)) a.e. on Ω as ν → ∞

1
ν

‖w0
ν‖H1

0 (Ω) → 0 as ν → ∞.

(5.19)

Then, for all k, ν > 0, we denote by (Tkϕ(v))ν the unique solution of the
problem

{
∂(Tkϕ(v))ν

∂t
= ν (Tkϕ(v) − (Tkϕ(v))ν) on Q

(Tkϕ(v))ν(0, ·) = w0
ν on Ω.

(5.20)
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Then (Tkϕ(v))ν ∈ L2(0, T ;H1
0 (Ω)) ∩ L∞(Q), ∂(Tkϕ(v))ν

∂t ∈ L2(0, T ;H1
0 (Ω)) ∩

L∞(Q), and up to a subsequence, we can assume that

(Tkϕ(v))ν → Tkϕ(v) strongly in L2(0, T ;H1
0 (Ω)),

(Tkϕ(v))ν(t) → Tkϕ(v)(t) a.e. on Ω for a.e. t

and

‖(Tkϕ(v))ν‖L∞(Q) ≤ k ∀ν > 0.

Let σ ∈ D+(0, T ) and hl(r) = (l + 1 − |r|)+ ∧ 1, l ∈ N, l > k. We prove that,
for any fixed k > 0,

lim inf
l→∞

lim inf
ν→∞

lim
n→∞

∫

Q
σ ∇ϕ(vn) · ∇ (hl(ϕ(un))(Tkϕ(vn) − (Tkϕ(v))ν)) ≤ 0.

(5.21)

To this end, consider σhl(um,n)(Tkϕ(vn)) − (Tkϕ(v))ν) as a test function in
(5.15) and pass to the limit with n → ∞ in each term. We use the same
techniques as in [3, Proof of Theorem 2.4] to prove that

lim inf
ν→∞

lim
n→∞

〈j(vn)t, σhl(ϕ(vn))(Tkϕ(vn) − (Tkϕ(v))ν)〉 ≥ 0,

where 〈·, ·〉 denotes the paring between L2(0, T ;H1
0 (Ω)) and L2(0, T ;H−1(Ω)).

As in (3.5), we show that

lim
ν→∞

lim
n→∞

∫

Q
σF (j(vn), ϕ(vn)) · ∇ (hl(ϕ(vn))(Tkϕ(vn) − (Tkϕ(v))ν)) = 0.

It is clear that

lim
ν→∞

lim
n→∞

∫

Q
ψn(ϕ(vn))σhl(ϕ(vn))(Tkϕ(vn) − (Tkϕ(v))ν) = 0

and

lim
ν→∞

lim
n→∞

∫

Q
fnσhl(ϕ(vn))(Tk(ϕ(vn)) − (Tkϕ(v))ν) = 0. (5.22)

An equivalent formulation of (5.21) is

lim sup
ν→∞

lim sup
n→∞

(∫

Q
σhl(ϕ(vn))∇ϕ(vn) · ∇ (Tkϕ(vn) − (Tkϕ(v))ν)

+
∫

{l<|ϕ(vn)|<l+1}
σh′

l(ϕ(vn))(Tkϕ(vn) − (Tkϕ(v))ν)∇ϕ(vn) · ∇ϕ(vn)

)

≤ 0. (5.23)

The choice of hl and l > k implies
∫

{l<|ϕ(vn)|<l+1}
σh′

l(ϕ(vn))(Tkϕ(vn) − (Tkϕ(v))ν)∇ϕ(vn) · ∇ϕ(vn)

≥ −2k

∫

{l<|ϕ(vn)|<l+1}
σ|∇ϕ(vn)|2.
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Choose the test function σφ(ϕ(vn)), where φl(r) = sign0(r)(|r| − l)+ ∧ 1, we
get

lim
l→∞

sup
n

∫

{l<|ϕ(vn)|<l+1}
|∇ϕ(vn)|2 ≤ 0.

Further
∫

{ϕ(vn)≥k}
σhl(ϕ(vn))∇ϕ(vn) · ∇Tkϕ(vn) = 0,

lim sup
ν→∞

lim sup
n→∞

∫

{ϕ(vn)≥k}
σhl(ϕ(vn))∇ϕ(vn) · ∇(Tkϕ(v))ν

≤
∫

{|w|≥k}
σhl(w)∇Tk+1w · ∇Tkw = 0.

Hence, as l → ∞, it results from (5.23) that

lim sup
ν→∞

lim sup
n→∞

∫

Q
σ∇Tkϕ(vn) · ∇(Tkϕ(vn) − (Tkϕ(v))ν) ≤ 0.

As a further consequence,

lim sup
ν→∞

lim sup
n→∞

∫

Q
σ(∇Tkϕ(vn) − ∇(Tkϕ(v))ν) · ∇(Tkϕ(vn) − (Tkϕ(v))ν) = 0.

By a diagonal principle, there exists a sequence n(ν) such that the function
σ|∇Tkϕ(vn) − ∇(Tkϕ(v))ν |2 converges to zero strongly in L1(Q) as ν → ∞.
We deduce that

∇Tkϕ(vn(ν)) · ∇(Tϕ(vn(ν)) − (Tkϕ(v))ν) → 0 weakly in L1(Q)

and then, by using the fact that ∇Tkϕ(vn(ν))⇀ ∇Tkϕ(v) weakly in L1(Q) as
ν → ∞, that

σ|∇Tkϕ(vn(ν))|2 → σ|∇Tkϕ(v)|2 weakly in L1(Q) as ν → ∞.

Estimate (5.18) then follows.
Now, let us pass to the limit in (4.13) with n → ∞. Take h(ϕ(vn))ξ, where
h ∈ C1

c (R), ξ ∈ C∞
c ([0, T )×Ω) as a test function in inequality (4.13), and pass

to the limit with n in each term. By means of the dominated convergence
theorem, we conclude that

lim
n→∞

∫

Q
fnh(ϕ(vn))ξ =

∫

Q
fh(w)ξ (5.24)

and

lim
n→∞

∫

Q
ψn(ϕ(vn))h(ϕ(vn))ξ = 0. (5.25)

Lemma 2.1 implies
∫

Q
j(vn)th(ϕ(vn))ξ = −

∫

Q
ξt

∫ j(vn)

j(v0
n)

h(ϕ ◦ j−1
0 )(r)dr,
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and by means of the dominated convergence theorem again, we have

lim
n→∞

∫

Q
ξt

∫ j(vn)

j(v0
n)

h(ϕ ◦ j−1
0 )(r)dr = −

∫

Q
ξt

∫ u

u0

h(ϕ ◦ j−1
0 )(r)dr. (5.26)

From (5.18), and the fact that j(vn) → u a.e. on Q and ϕ(vn) → w a.e. on Q
we deduce that

lim
n→∞

∫

Q
(∇ϕ(vn) + F (j(vn), ϕ(vn))) · ∇(h(ϕ(vn))ξ)

=
∫

Q
(∇w + F (u,w)) · ∇(h(w)ξ). (5.27)

Remains to prove that u satisfies (2.4). For this aim, take Tl+1(ϕ(vn)) −
Tl(ϕ(vn)) as a test function in (5.15). Thanks again to Lemma 2.1 and the
monotonicity of the function ψn, we have

∫

Q∩{l≤|ϕ(vn)|≤l+1}

{
|∇ϕ(vn)|2 + F (j(vn), ϕ(vn)) · ∇ϕ(vn)

}

≤
∫

Q∩{|ϕ(vn)|≥l}
|fn| +

∫

{|v0
n|≥l}

|v0
n|.

Passing to the limit as n → ∞ and arguing as for (3.5) to prove that∫
{l<|ϕ(vn)|<l+1} F (j(vn), ϕ(vn)) · ∇ϕ(vn) = 0, we get

lim sup
n→∞

∫

Q∩{l≤|ϕ(vn)|≤l+1}
|∇ϕ(vn)|2 ≤

∫

Q∩{|w|≥l}
|f | +

∫

Ω∩{|v0|≥l}
|v0|.

So, since |∇ϕ(vn)|2 χ{l<|ϕ(vn)|<l+1} = |∇(Tl+1ϕ(vn) − Tlϕ(vn))|2 and Tl+1

ϕ(vn) − Tlϕ(vn)⇀ Tl+1w − Tlw weakly in L2(0, T ;H1
0 (Ω)), then

∫

Q∩{l≤|w|≤l+1}
|∇w|2 ≤

∫

Q∩{|w|≥l}
|f | +

∫

Ω∩{|v0|≥l}
|v0|

and, letting l → ∞, we obtain
∫ ∫

{l≤|w|≤l+1}
|∇w|2 → 0 as l → ∞. (5.28)

Finally, collecting together all limits (5.24)–(5.28) we conclude on existence
of a renormalized solution of Problem E(u0, f) for all f ∈ L1(Q) and u0 ∈
L1(Ω). !

Proof of Theorem 2.1: Existence part.
Let G be the map from [0, T ) × L1(Ω) into L1(Ω) defined by

G(t, u) = g(t, ·, u),

and A be the operator in L1(Ω), defined by

Az = −∆ϕ(z) − ∇F (z, w), w ∈ β(z) in D′(Ω)

and

D(A) = {z ∈ L∞(Ω); w ∈ H1
0 (Ω), Az ∈ L1(Ω)}.
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Thanks to [15], we know that A is T -accretive in L1(Ω) and A is m-accre-
tive in L1(Ω), and, moreover, D(A) = L1(Ω).
Thanks to i) and ii) of Assumption (H3), G is integrable in t ∈ (0, T ) for any
u ∈ L1(Ω) and continuous in u ∈ L1(Ω) for a.e. t ∈ (0, T ). Moreover, using ii)
of Assumption (H3) we see that CI − G(t, .) is accretive in L1(Ω). Then (see
for instance [9], Lemma 1) there exists a unique mild solution of

du

dt
+ Au = G(·, u) on (0, T ), u(0) = u0,

which is also a mild solution of
du

dt
+ Au 1 f, u(0) = u0

with f = g(·, u). By Proposition 4.2, u is a renormalized solution of E(u0, f)
and thus u is a renormalized solution of E(u0, g). !

6. The elliptic problem

At the end of this paper, let us give some consequences of the previous results
for the stationary problem






u −∆w − ∇F (u,w) = f, w ∈ β(u) in Ω

w = 0 on ∂Ω,
(S(f))

by assuming that Assumptions (H1)–(H2) are fulfilled.

Proposition 6.1. Let f ∈ L1(Ω). Then, there exists a unique renormalized
solution u of S(f) in the sense that
(i) u ∈ L1(Ω)
(ii) Tkw ∈ H1

0 (Ω) for any k > 0
(iii) for all ξ ∈ D(Ω) and h ∈ C1

c (R)
∫

Ω
(u − f)h(w)ξ +

∫

Ω
(∇w + F (u,w)) · ∇(h(w)ξ) = 0,

and moreover
∫

Ω∩{n≤|w|≤n+1}
|∇w|2 → 0 as n → ∞.

Moreover, for any fi ∈ L1(Ω) and ui a renormalized solution of S(fi), i = 1, 2,
we have

∥∥(u1 − u2)+
∥∥

1
≤

∥∥(f1 − f2)+
∥∥

1
.

Proof. The uniqueness follows from the fact that if u is a renormalized solution
of S(f) then ũ(t) ≡ u is a renormalized solution of E(ũ0, g̃) with ũ0 = u and
g̃(·, u) = f(·) − u.
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To prove existence, we consider a sequence fn in L∞(Ω) such that fn

converges to f in L1(Ω) as n → ∞. It follows from [15] that there exists a
unique un solution of






un ∈ L∞(Ω), wn ∈ β(un) ∈ H1
0 (Ω) and

un = ∇ · (∇wn + F (un, wn)) + fn in D′(Ω);

moreover, we have

‖un − um‖L1(Ω) ≤ ‖fn − fm‖L1(Ω) for any n,m ∈ N.

This implies that (un)n∈N is a Cauchy sequence in L1(Ω) and there exists
u ∈ L1(Ω) such that un → u in L1(Ω) as n → ∞. To prove that u is a renor-
malized solution of S(f), note that un is also a renormalized solution of the
evolution problem E(un, fn − un) ; therefore, passing to the limit as n → ∞,
the result follows. !

Corollary 6.1. The closure of the operator A in L1(Ω) satisfies

A =
{
(z, h) ∈ L1(Ω) × L1(Ω) ; z is a renormalized solution of S(u + h)

}

=: A.

Proof. Since a weak solution is also a renormalized solution, we have A ⊆ A.
On the other hand, using Theorem 5.1, we deduce that A is m-accretive in
L1(Ω), so that A is closed in L1(Ω), and

A ⊆ A. (6.29)

Thanks to [15], we know that A is accretive and R(I + A) ⊇ L∞(Ω), then A
is m-accretive in L1(Ω), and (6.29) implies that A = A. !

7. Appendix

Lemma 7.1. Let h ∈ W 1,∞(R), h ≥ 0, u0 ∈ L1(Ω), u ∈ L1(Q) such that
Tkw ∈ L2(0, T ;H1

0 (Ω)) for any k > 0 and G ∈ L2(0, T ;H−1(Ω)) + L1(Q).
Suppose that

∫

Q
ξt

∫ u

u0

h(ϕ0(s)) ds =
∫ T

0
〈G,h(w) ξ〉 (7.30)

for any nonnegative ξ ∈ D([0, T ) × Ω). Then,
∫∫

Q
ξt

{∫ u

u0

Hε (Tkϕ0(s)−ϕ(z)) h(ϕ0(s))ds

}
≤

∫ T

0
〈G, Hε(Tkw−ϕ(z)) h(w)ξ〉 .

(7.31)

for all ξ ∈ L2(0, T ;H1(Ω)) ∩ W 1,1(0, T ;L∞(Ω)) ∩ L∞(Q) such that ξ ≥ 0,
ξ(T, .) = 0 a.e. in Ω, and for any z ∈ L1(Q) such that ϕ(z)ξ ∈ L2(0, T ;H1

0 (Ω)).
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Proof. We extend u onto R×Ω by 0 if t > T and by u0 if t < 0 and we consider

Φ = Hε (Tkw − ϕ(z)) ξ.

It is clear that Φ ∈ L2
(
0, T ;H1

0 (Ω)
)

and, for any δ > 0, Φδ(t) = 1
δ

∫ t+δ
t Φ(s)ds

is an admissible test function in the problem (7.30) and
∫ ∫

Q
Φδ

t

∫ u

u0

h(ϕ0(s))ds =
∫ T

0

〈
G,Φδ h(w)

〉
. (7.32)

We see that∫ ∫

Q
Φδ

t

∫ u

u0

h(ϕ0(s))ds =
∫ ∫

Q

Φ(t + δ) − Φ(t)
δ

∫ u

u0

h(ϕ0(s))ds

=
∫ ∫

Q
Φ(t)

1
δ

∫ u(t−δ)

u(t)
h(ϕ0(s))ds

and, since for any r, r̂, w ∈ R,

Hε (Tkϕ0(r) − ϕ(w))
∫ r̂

r
h(ϕ0(s))ds ≤ ψεw(r̂) − ψεw(r) ,

where ψεw(r) =
∫ r

w Hε (Tkϕ0(s) − ϕ(w)) h(ϕ0(s))ds, it follows that
∫ ∫

Q
Φδ

t

∫ u

u0

h(ϕ0(s))ds≤
∫ ∫

Q

ψεz(t,x)(u(t−δ, x))−ψεz(t,x)(u(t, x))
δ

ξ(t, x) dt dx

≤
∫ ∫

Q

(
ψεz(t,x)(u(t, x)) − ψεz(t,x)(u0(x))

) ξ(t + δ, x) − ξ(t, x)
δ

dt dx.

Consequently, we have

lim inf
δ→0

∫ ∫

Q
Φδ

t

∫ u

u0

h(ϕ0(s))ds ≤
∫ ∫

Q
(ψεz(u) − ψεz(u0)) ξt

≤
∫ ∫

Q
ξt

{∫ u

u0

Hε (Tkϕ0(s) − ϕ(z)) ds

}
.

Since h(Tkw)Φδ → Hε(Tkw−ϕ(z))h(w)ξ in L2(0, T ;H1
0 (Ω)), then from (7.32)

and the preceding estimate, (7.31) follows. !
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