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Abstract

This paper is concerned with a Monge—Kantorovich mass transport problem in which in the transport cost
we replace the Euclidean distance with a discrete distance. We fix the length of a step and the distance that
measures the cost of the transport depends of the number of steps that is needed to transport the involved
mass from its origin to its destination. For this problem we construct special Kantorovich potentials, and
optimal transport plans via a nonlocal version of the PDE formulation given by Evans and Gangbo for
the classical case with the Euclidean distance. We also study how these problems, when rescaling the step
distance, approximate the classical problem. In particular we obtain, taking limits in the rescaled nonlocal
formulation, the PDE formulation given by Evans—Gangbo for the classical problem.
© 2011 Elsevier Inc. All rights reserved.

Keywords: Mass transport; Nonlocal problems; Monge—Kantorovich problems

1. Introduction and preliminaries

The Monge mass transport problem, as proposed by Monge in 1781, deals with the optimal
way of moving points from one mass distribution to another so that the total work done is min-
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imized. In general, the total work is proportional to some cost function. In the classical Monge
problem the cost function is the Euclidean distance, and this problem has been intensively stud-
ied and generalized in different directions that correspond to different classes of cost functions.
We refer to the surveys and books [1,3,10,17,19,20] for further discussion of Monge’s problem,
its history, and applications.

However, even being the case of discontinuous cost functions very interesting for concrete
situations and applications, it seems not to be well covered in the literature, maybe for the lack
of convexity of the associated cost functions, which, nevertheless, enhance the interest of the
problem. For instance, assume that you want to transport an amount of sand located somewhere
to a hole at other place, then you count the number of steps that you have to move each part
of sand to its final destination in the hole and try to move the total amount of sand making as
less as possible steps. This amounts to the classical Monge—Kantorovich problem for the discrete
distance:

0 ifx=y,
1 if0<|x—yl <1,
di(x,y) =12 ifl <|x—y| <2,

that count the number of steps. This transport problem also appears naturally when one considers,
in a simplified way, a transport problem between cities in which the cost is measured by the toll
in the road (that is a discrete function of the number of kilometers). We want to mention that our
first motivation for the study of this problem comes from an interpretation of a nonlocal model
for sandpiles studied in [5] (which is a nonlocal version of the sandpile model of Aronsson—
Evans—Wu [6], see also [14]); in this model the height u of a sandpile evolves following the
equation:

f@ ) —ut,) €dlg, myy(u(,)) ae.te(0,1),
u(x,0) =uo(x),

where Ky, (RV) is the set of 1-Lipschitz L>-functions w.r.t. d; and f is a source. The in-
terpretation reads as follows (it is similar to the one given in [10] for the sandpile model of
Aronsson—Evans—Wu with the Euclidean distance): at each moment of time, the height function
u(t, -) of the sandpile is deemed also to be the potential generating the Monge—Kantorovich real-
location of ™ = f(¢,-)dx to u~ = u,(t, -) dy when the cost distance considered is d;. In other
words, the mass p™ is instantly and optimally transported downhill by the potential u(z, -) into
the mass u™.

The aim of this paper is a detailed study of the mass transport problem for the discrete cost
function d. It is clear that our problem falls into the scope of lower semi-continuous metric cost
functions, so that standard results, like the existence of a solution for the relaxed problem, the
so called Monge—Kantorovich problem, or the Kantorovich duality, stated in terms of the Kan-
torovich potentials, remain true for d;. Nevertheless the above standard results rely on a general
theory and our interest resides in giving concrete characterizations: since d is discrete, the char-
acterization of the potentials, the Evans—Gangbo approach [11], as well as concrete computations
of optimal transport plans and/or maps are not covered in the literature; in particular, the poten-
tials cannot be characterized in a standard way, i.e., by using standard differentiation. It is also
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worth to mention that, adapting an example of [16], it is easy to see that the Monge infimum and
the Monge—Kantorovich minimum does not coincide in general.

We find a special class of Kantorovich potentials and perform a detailed study of the one-
dimensional case with concrete examples that illustrate the obstructions to the existence of
optimal transport maps; we show that the Monge problem is, in fact, ill-posed. In any dimen-
sion, we give an equation for the Kantorovich potentials, in the way of Evans—Gangbo, obtained
as a limit of nonlocal p-Laplacian problems, and, what is quite important, we use it to construct
optimal transport plans. We want to remark that all these developments can be done in the same
way for the discrete distance with steps of size ¢,

0 ifx=y,
e 1f0<|x—y|<e,
de(X,¥) =26 ife < lx —y| < 2¢,

Then, finally, we give the connection between the Monge—Kantorovich problem with the dis-
crete distance d; and the classical Monge—Kantorovich problem with the Euclidean distance,
proving that, when the length of the step tends to zero, these discrete/nonlocal problems give
an approximation to the classical one; in particular, we recover the PDE formulation given by
Evans—Gangbo in [11].

Whenever T is a map from a measure space (X, u) to an arbitrary space Y, we denote by
T # p the pushforward measure of u by T. Explicitly, (T # w)[B] = w[T~1(B)]. When we write
T # f = g, where f and g are non-negative functions, this means that the measure having density
f 1s pushed-forward to the measure having density g.

The general framework in which we will move is in a bounded convex domain £2 in R".

The Monge problem for the cost function d;. Take two non-negative Borel function f*, f~ €
L' (£2) satisfying the mass balance condition

/f+(x>dx _ / £ dy. (L)
22 22

Let A(f*, f7) be the set of transport maps pushing f+ to f~, that is, the set of Borel
maps T : 2 — £2 such that T # f* = f~. The Monge problem consists in finding a map
T* € A(f*, f~) which minimizes the cost functional

Fa, (T) := /d1 (x, T(x)) fT(x)dx

22

in the set A(f™, f7). T* is called an optimal transport map pushing f* to f~.

The original problem studied by Monge corresponds to the cost function d|.|(x, y) := [x — y|
the Euclidean distance. In general, the Monge problem is ill-posed. To overcome the difficulties
of the Monge problem, L.V. Kantorovich (1942) [15] proposed to study a relaxed version of the
Monge problem and, what is more relevant here, introduced a dual variational principle.



N. Igbida et al. / Journal of Functional Analysis 260 (2011) 3494-3534 3497

We will use the usual convention of denoting by 7; : RN x R¥ the projections, 71 (x, y) = x,
m2(x,y) :=y. Given a Radon measure p in §2 x £2, its marginals are defined by proj, (1) :=

71 # 14, proj, (u) = o # .

The Monge-Kantorovich relaxed problem for dy. Fix fT and f~ satisfying (1.1). Let
TT(fT, f7) the set of transport plans between f* and £, that is the set of non-negative Radon
measures 4 in £2 x £2 such that proj, (n) = f*(x)dx and projy(,u) = f~(y)dy. The Monge—
Kantorovich problem is to find a measure u* € 77 (f+, £~) which minimizes the cost functional

ICdl(M) = / dl(x? )’)dﬂ(xs)’),
2x82

in the set 7T (f, 7). A minimizer u* is called an optimal transport plan between f+ and f~.
Remark that we say plans between £+ and f~ since this problem is reversible, which is not true
in general for the Monge problem.

As a consequence of [1, Propostion 2.1], we have
inf{ g (w): pem(f*, 7)) <inf{Fy (T): T e A(f7, f7)}.

On the other hand, since d; is a lower semi-continuous cost function, it is well known the
existence of an optimal transport plan (see [1,16] and the references therein). Therefore we have
the following result.

Proposition 1.1. Ler f+, f~ € L' (£2) be two non-negative Borel functions satisfying the mass
balance condition (1.1). Then, there exists an optimal transport plan u* € 7 (f+, f7) solving

the Monge—Kantorovich problem Kg, (1*) = min{/Cq, (1): w € T(f T, )}

The Kantorovich dual problem for d;. Since the cost function d; is a lower semi-continuous
metric, we have the following result (see for instance [19, Theorem 1.14]).

Theorem 1.2 (Kantorovich-Rubinstein Theorem). Let f+, f~ € L1(2) be two non-negative
Borel functions satisfying the mass balance condition (1.1). Then,

min{Kg, (n): w €T (fT, f7)} =sup{Pr+ - w): u € Kq, (2)}, (1.2)

where

Py, p- @) 1=fu(x)(f+(x)—f‘(x))dx,

2

and Kg4,(82) is the set of 1-Lipschitz functions w.r.t. dj,
Ka (2) = {u e LX(2): [u(x) —u(y)| <di(x,y) forall x,y € 2}.

The maximizers u™ of the right-hand side of (1.2) are called Kantorovich (transport) potentials.
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The Kantorovich dual problem consists in finding this Kantorovich potentials. Although it can
be studied for masses being Borel measures, we will restrict ourselves to Lebesgue integrable
functions in order to avoid more technicalities.

If we denote by Ik, (2) to the indicator function of Ky, (£2),

: [0 ifuekKy ($2),
Ky, @) (u) = +oo ifu ¢ Kg (£2),

we have that the Euler—Lagrange equation associated with the variational problem
sup{P s+ - (u): u € K4, (82)}

is the equation

ff—fe Ak, (2) (). (1.3)

That is, the Kantorovich potentials of (1.2) are solutions of (1.3).

In the particular case of the Euclidean distance d|.|(x, y) and for adequate masses f* and
f~, Evans and Gangbo in [11] find a solution of the related equation (1.3) as a limit, as p — oo,
of solutions to the local p-Laplace equation with Dirichlet boundary conditions in a sufficiently
large ball Br(0):

—Apup=fT—f7, Bg(0),
up:O, aBR(O)

Moreover, they characterize the solutions to the limit equation (1.3) by means of a PDE.

Theorem 1.3 (Evans—Gangbo Theorem). Let £+, f~ € L' (§2) be two non-negative Borel func-
tions satisfying the mass balance condition (1.1). Assume additionally that f+ and f~ are
Lipschitz continuous functions with compact support such that supp(f ) Nsupp(f~) = 0. Then,
there exists u* € Lip; (82, d|.|) such that

/u*(x)(f+(x)—f—(x))dx:max{/u(x)(f+(x) — fT(x))dx: u eLipl(.Q,dH)};

2 2

and there exists 0 < a € L*°(82) (the transport density) such that
[T = f~=—div(aVu*) in D'(R2). (1.4)
Furthermore |Vu*| = 1 a.e. on the set {a > 0}.

The function a that appear in the previous result is the Lagrange multiplier corresponding to
the constraint |Vu™*| < 1, and it is called the transport density. Moreover, what is very important
from the point of view of mass transport, Evans and Gangbo use this PDE to find a proof of the
existence of an optimal transport map for the classical Monge problem, different to the first one
given by Sudakov in 1979 by means of probability methods ([18], see also [1] and [3]).
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One of our main aims will be to perform such program for the discrete distance. Before start-
ing with it, we want to remark that, as it is known (see [16]), the equality between Monge’s
infimum and Kantorovich’s minimum is not true in general if the cost function is not continuous.
The example given by Pratelli in [16] can be adapted to get a counterexample also for the case
of the cost function given by the metric d.

Example 1.4. Consider R, S and T the parallel segments in R? given by R := {(—1,y): y €
[—1,1]}, S:={(0,y): ye[—1,1]} and Q :={(1,y): y € [-1,1]}. Let fT:=2H!L S and
f~:=H'L R+H'L Q.1tis not difficult to see that min{/Cq, (u): 1 € T(fT, f7)} =2 and

the minimum is achieved by the transport plan splitting the central segment S in two parts and
translating them on the left and on the right. On the other hand, we claim that

inf{ F4 (T): Te A(fT. f7)} >4 (1.5)

To prove (1.5), fix T € A(f™, f7) and consider I(T) := {x € S: di(x, T(x)) = 1}. If we see
that

(1) =0, (1.6)

then

Fo (T) = f dy(x. T()) df () =2 f aH (x) = 4,

S S\I(T)
and (1.5) follows. Finally, let us see that (1.6) holds. If we define
I(T)r:={x€I(T): T(x)€R} and I(T)g:={xel(T): T(x)e Q},

we have I(T) =1(T)g UI(T)g and I(T)g N I(T)p =¥, and by the definition of I(T), if
E =T(I(T)), itis easy to see that

HYE)=HYENR) +H (ENQ)=H'(I(T)g) +H' (I(T)r) =H'(I(T)).

Therefore, fT(I(T)) =2f(E).Butsince T € A(f*, f7) one has f~(E) = fH (T~ (E)) >
fYU(T))=2f(E), that implies f*(I(T)) =0 and (1.6) is proved.

2. Kantorovich potentials
The aim of this section is the study of the Kantorovich potentials that maximize
sup{P s+ r-(u): u € Ky},
where K := Kg4,(§2) for shortness.
Following ideas from [11], we first show that it is possible to construct Kantorovich potentials

for the cost function d; taking limit, as p goes to oo, in some p-Laplacian problems but of non-
local nature. Afterwards, we prove the existence of Kantorovich potentials with a finite number
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of jumps of size one (a specially interesting result for searching/constructing optimal transport
maps and plans).

Let
J :RY — R be a non-negative continuous radial function with
supp(J) = B1(0), J(0) > 0 and / J(x)dx =1. (2.1)
RN

We will use the following Poincaré type inequality from [4].

Proposition 2.1. (See [4].) Given p > 1, J and $2, there exists B, = B(J, §2, p) > 0 such that

5’9” |s2|

Proposition 2.2. Let f € L?(£2) and p > 2. Then the functional

%//J(x—y)!u(y)—u(x)!pdydx YueLP(2). (22)
2 2

1
Fp(u) = — Jx —W|u@) —u@)|"dydx — | fx)u(x)dx
2p
2 2 2

has a unique minimizer u, in Sy :={u € LP(£2): fg u(x)dx =0}.

Proof. Let u, be a minimizing sequence. Hence, F),(u,) < C, that is

1
fof(x—y)\un(y)—un(X)\pdydx—/f(X)un(x)dx<C
2 2 22
Then,
1
2p

//J(x—y>}un<y>—un<x>\”dydx /f(x)un<x>dx+c
2 2

From the Poincaré inequality (2.2) and Holder’s inequality, we get
1 p
2 J(x = Y |un(y) — un(x)|” dy dx
2 Q
S fllp2ylunlli 2@y + €

1
1 )
< ||f||L2(Q)(TIBZ//J(x—)’)‘M()’)—M(x)‘zdydx) +C
2 2

1/p 2—”
<c<f>(f/J<x—y>}un<y>—un<x>\”dydx) (//J(x—y)) L
2 2 22
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Therefore, we have that

/ff(x () — un()|” dydx < C.
2 2

Then, applying again Poincaré’s inequality (2.2), we have {u,: n € N} is bounded in L?(52).
Hence, we can extract a subsequence that converges weakly in L?(£2) to some u (that clearly
has to verify [, u = 0) and we obtain

liminfi/fj(x —y){un(y) —un(x)|pdydx > L'//J(x—y)|u(y) —u(x)|pdydx
n—-+oo 2p 2p
2 2 2 2

and

lim f(X)un(X)dx=/f(X)u(X)dX-
Q

2

Therefore, u is a minimizer of F),. Uniqueness is a direct consequence of the fact that F), is
strictly convex. O

Lemma 2.3. Given u € L' (£2) such that
E:={(x,y) €2 x2: [ux)—u®)|>dx,y)]}
is a null set of 2 x §2, there exists u € K| such that
u=1u a.e.inS2. (2.3)

Proof. We can assume that u is defined everywhere in £2 and bounded. Indeed, let A be the null
set in 2 such that forall x e 2\ A, E, ={y € £2: (x,y) € E} is null and u(x) is finite. Take
x € 2\ A, then, forall y € 2\ Ej,

u(x) —di(x,y) <u(y) <ulx)+di(x,y),

and therefore u(y) is a.e. bounded by M := |u(x)| + sup,c o di(x, z). Take now B the null set in
£2 where |u| > M and define u(x) :=u(x) in £2 \ B, u(x) :=01in B. Then &t = u a.e. and

li(x) —a(y)| <di(x,y) Vx,y) €2 x2\[EU(Bx 2)U (2 x B)].

Let us consider

1
us(x)=m / u(z)dz,

Be(x)
where u is extended by 0 to RY \ £2. Then, for any x € £2, we define

i(x) :=limsupu.(x).
e—>0

Itis clear that # = u a.e. in £2.
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Let x, y € £2 be such that |[x — y| #i forany i =0, 1,2, .... Then, there exists i € N such
thati — 1 < |x — y| <1 and there exists gy > 0 such that B, (x), Bg,(y) C §2 and

i —1<|z1 —z2| <i, forany (z1,22) € Bgy(x) X Bgy(y).

This implies that, for any 0 < ¢ < gg, we have

1 1
& — Ug = 5 O dz — d
e ) = e () = 5] /”(Z) 1B / u(z)dz

B¢ (x) B¢ (y)
o
= u(z1) —u(z2))dzidzs
| B¢ (0)]? ( )
Be(x)xBe(y)
or 1/
< di(z1,22)dz1dz2
| B¢ (0)]?
Be(x)x Be(y)
=d(x,y).
Then, letting ¢ — 0, we deduce that
u(x) <di(x,y)+u(y) forany (x,y)e 2 x 2, |[x—y|#i,i=1,2,.... (2.4)

Now, assume that x,y € 2, |x — y| =i, for some i € N. And let gy be such that
Bg,(x), Bag,(y) C £2. Let y, € §2 be such that y, — y, Bg,(y,) C 2 andi — 1 < |[x — y,| <.
Using the continuity of u, and (2.4) we see that, for any 0 < ¢ < gy,

. 1 . 1 R
”S(X)_ug(y):nlggo(|38<x)|3f @A = o] / ”(Z)dz)

e (X) Be(yn)

/ (A(x +2) —it(yn +2))dz

B.(0)

= lim
n—00 | B¢ (0)]
< lim di(x,y,) =i =d;(x, ).
n— oo
Letting ¢ — 0, we obtain that
u(x) <dy(x,y)+a(y).
The proof is finished. O

Now we show that the limit as p goes to oo of the sequence u;, of minimizers of F), in S,
gives a Kantorovich potential.

Theorem 2.4. Let f+, f~ € L?>(2) be two non-negative Borel functions satisfying the mass
balance condition (1.1). Let uj, be the minimizer in Proposition 2.2 for [ = ff—7f",p>2
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Then, there exists a subsequence {up, }neN having as weak limit a Kantorovich potential u for
f + and the metric cost function dy, that is,

f u()(f () = 7)) dx = max / v (fT ) = f7 () dx.

£ 2

Proof. For 1 < ¢, we set

lull, == (f/f(x —|uy) —u(x)}qudy)q.
2 2

By Holder’s inequality, for r > g:

|||u|||q<(f/](x—y)|u(y)—u(x)|rdxdy>r(//J(x—y)dxdy)
2 2 2 2

that is, for (r, q¢), r > q,

e, < |||u|||r< f f J(x—y)dxdy) " 2.5)
2 2

Since F),(u,) < F,(0) =0 and Poincaré’s inequality (2.2),

2pllfli2

el < 2p/f(X)up(X)dx <2plfll2llupllz < Wllluplllz-
2

Then, for 2 < g < p, using (2.5) twice (for (p, g) and for (g, 2)),

P—q

|||up|||§<|||up|||§( /] J(x—y)dxdy) q
2 2
2plifil2
<P |||up|||z<f/J<x—y>dxdy)
2 2

291 f 12
<A |||up|||q( ! ! J(x—y)dxdy)

S

—-q

< ‘

]

- -2
q+qq

= ‘

Consequently,

1 1 1

2 = b =y
gl < (ZHL) ([ [oa-maxay)” 26)
2 2
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Then, {|luplly: p > g} is bounded. Hence, by Poincaré’s inequality (2.2), we have that
{up: p > q} is bounded in L9(§2). Therefore, we can assume that u, — u weakly in L9(£2).
By a diagonal process, we have that there is a sequence p, — oo, such that u,, — u weakly
in L™ (£2), as n — +o0, for all m € N. Thus, u € L°°(£2). Since the functional v — |[[v][4 is
weakly lower semi-continuous, having in mind (2.6), we have

1
lull, < (//J(x _y)dxdy)q
2 2

Therefore, limy_, 1o [|ufl; < 1, from where it follows that [u(x) — u(y)| < di(x,y) ae.
in £2 x £2. Now, thanks to Lemma 2.3 we can suppose, that u € K. Let us see that u is a
Kantorovich potential associated with the metric d;. Fix v € K. Then,

1
[ rup sy [ [ 1= 0lep0) = upol drdy = [ £yt ds
2 p.Q 2 2

1
=Fy(up) < Fp(v— ﬁ/v>

—f/J(x—y>\v<y>—v<x>}”dxdy /f(X)v(x)dx

—//J(x—y)dxdy /f(x)v(x)dx

where we have used |, o J =0 for the second equality and the fact that v € K for the last
inequality. Hence, taking limit as p — oo, we obtain that

/ () (FF (o) — f () dx / v (fF @) - f-@))dr. O

2 2

Let us now study a special class of Kantorovich potentials. We begin with the following
lemma.

Lemma 2.5. Assume that v € K| takes a finite number of values. Then, there exists u € K| that
also takes a finite number of values but with jumps of length 1, the number of points in its image
is less or equal than the number of points in the image of v and improves in the maximization
problem, that is,

f ) (f () = £~ () dx f V() () — £~ () dx

$2 $2

Proof. The proof runs by induction in the number of nonempty level sets of v. Take f := fT —
f~ and suppose that v € K is given by, without loss of generality, v(x) =apX a, + a1 X a, +
A arXa,a0=0,]4;1>0, A; ﬂAj =@ foranyi # j.
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Set s := Sign(f}, f), where

, 1 ifr>0,
S%m”:{—l ifr <0

and consider fo = max{r > 0: u; := (ap +st)Xa, +a1Xa, +---+arXa, € K1}. So, 1y is such
that 3i £ 0, dist(A;, Ag) < 1 and |ag + st9 — a;| =1 and

/f(x)v(X)dXSff(x)ut(x)dx.
Q 2

Hence, replacing v by u;,, we can assume that A; are disjoint sets, dist(Ap, A1) < 1 and
lug —ur| =1.
Now, we set s := Sign(fAOUAI f) and we consider

to =max{t > 0; u; := (a0 + )X ay + (a1 + )X 4, +@2X A, + -+ axXa, € K1}.

So, 1y is such that 3i € {0, 1} and 3j; ¢ {0, 1} such that dist(A;, A;;) <1, |a; +st9p —aj;| =1 and

/f(X)U(X)dx<ff(x)u,(x)dx.
2 2

Hence, replacing v by u,,, we can assume that A; are disjoint sets and |u; — u ;| € {0, 1,2}, for
any 7, j € {0, 1, 2}.
Now, by induction assume that we have u = aogX o, + -+ +a;X 4, + -+ + ar X a,, where A;

are disjoint sets, and |a; —aj| € N, forany i, j =0, 1,...,/, and let us prove that we can assume
that A; are disjoint compact sets, and |a; —a;| € N, forany i, j € {0, 1,...,1 + 1}. We set
s = Sign( / f),
AgU---UA;

and we consider
to=max{r >0; u; 1= (ao+s)Xay + -+ (@ +sOXa, + a1X ar, +- - +axXa, €Ki}

So, fgissuch that 3i € {0, 1,...,/} and 3j; ¢ {0, 1, ..., [} for which

dist(A;, Aj) <1, luj +sto—uj|=1 and /f(x)u(x) dx < / S ()us(x)dx.
$2 $2

Hence, replacing u by u;,, we can assume that the sets A; are disjoint and |a; —a;| € N, for any
i,je{0,1,....,01+1}.

Finally, by induction, we deduce that we can assume that A; are disjoint compact sets, and
laj —aj| €N, forany i, j €{0,1,...,k}. O

Now we find the special Kantorovich potentials.
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Theorem 2.6. Let £+, f~ € L>®°(82) be two non-negative Borel functions satisfying the mass
balance condition (1.1) and such that supp(f+) Nsupp(f ™) is a null set. Then there exists a
Kantorovich potential u* for f*, associated with the metric d, such that u*(82) C 7 and takes
a finite number of values.

Proof. Take f := fT — f~. By density, we have that there exists a maximizing sequence
v, € K1 such that v, takes a finite number of values and

/vnfaurga}é/wf.

£ 2

Thanks to the previous lemma, there exists u, € K1,

un:OXCg+1XCi1++anC]’gny kn ENU{O}’

iCl| >0, CINnCi=0, ifi#],

a new maximizing sequence, that is,

/unf—> max/wf. 2.7)
weky
Q

2

Notice now that the sequence {k,} is uniformly bounded by a constant that only depends on £2.
Indeed, if u € K is of the form u(x) =0Xx ¢, +1X¢c, +---+kXc,, with |C;| > 0,C;NC; =¥ for
i # j,then |[x —y| > 1 forevery (x, y) € (Ci_1 x Cij41) for all i, otherwise u ¢ K. Therefore,
since §2 has finite diameter, this provides a bound m( € N for the number of possible sets k, and
consequently, 0 < k,, < mg for all n € N.

By Fatou’s Lemma and having in mind (2.7), we get

maxfwféflimsup(unf).

wek n—00
2 2

Now, since supp(f 1) Nsupp(f ™) is a null set and having in mind that u, (x) € {0, 1, ..., mg)}
for all n € N, it is easy to see that

mo mo mo
limsup(uy f) < f T limsupu, — f~liminfu, = ) "ixa, — f7 Y ixg =f) iXe.
n— 00 n—00 n—00 =0 =0 —0

where C; = (A; N{f1(x) > 0}) U(B; N{f~(x) >0}) fori >0and Co =2\ 2, Ci.
Therefore, setting u™* = Z;n:oo iXc,, we have

max/wfé/fu*.
wek
Q Q
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To finish the proof let us see that u* € K. Take x, y € £2. Let us suppose that
x€AiN{fT>0} and yeB;n{f >0}
(the other cases being similar), then we have
u* () —u* )| =i — jI <di(x, y).

If not, that is, if |i — j| > di(x, y), assuming for instance that i < j, we have that there exists
O<e<lsuchthati <i+¢€ < j— € < j and there exists n € N such that u, (x) € [i,i + €], and
u,(y) €lj —e,jl, thatis, u,(x) =i and u,(y) = j, which contradicts that |u, (x) — u,(y)| <
di(x,y). O

Remark 2.7. Let us remark that the results we have obtained are also true if in the definition of
the metric d; we change the Euclidean norm by any norm || - || of R". Especially interesting is
the case in which we consider the || - || norm since in this case it counts the maximum of steps
moving parallel to the coordinate axes. That is, in this case we measure the distance cost as the

number of blocks that the taxi has to cover going from x to y in a city.

Remark 2.8. If we assume that ™ takes only the values {j, j +1,j+2,...,j +k}, j € Z, that
is,u*=jXao+UG+DXxa, +G+2)Xa,+---. 4+ +k)X 4, then,

|Ax Nsupp(f~)|=0 and |AgNsupp(fT)|=0. (2.8)
In fact, if not, just redefine u™ to be

i () = j+k—1 1in A Nsupp(f-),
T ut(x) otherwise,

and we get that u* € K| with

[uwr<[is.
2 2

a contradiction. We also observe that

/f+>/f_- (2.9)
Ag Ag-1

In fact, if not, we define

j+k—2 1inAx_1 Nsupp(f ),

j+k—1 inAg,
ut(x) = {
u*(x) otherwise,
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and we get that #* € K| with
/u*f < /ﬁ*f,
2 2

a contradiction. Properties (2.8) and (2.9) will be of special interest in the next sections.

Let us finish this section by proving, working as in the proof of Lemma 6 in [9], the following
Dual Criteria for Optimality.

Lemma 2.9.
1. Ifu* € Ky and T* € A(f, f7) satisfy
w*(x) —u*(T*(x)) =di(x, T*(x)) foralmost all x € supp(f ™), (2.10)
then:
(i) u™ is a Kantorovich potential for the metric d,,
(i) T* is an optimal map for the Monge problem associated to the metric d,
(iii) inf{Fy4 (T): T € A(fT, f)}= sup{P s+ p-(u): u € K1}.

2. Under (iii), every optimal map T for the Monge problem associated to the metric di and
Kantorovich potential u for the metric dy satisfy (2.10).

Proof. 1. By (2.10)

Fa (T di(x, T*(x)) f*(x)dx

() —u*(T*(x))) fF(x)dx

=
L

Q

:/u*(x)f+(x)dx—/u*(y)f‘(y)dy

Q 2
=P+ - (u*).
Hence
Pro. g (") =Fa (T7)
> inf{Fa (T): T € A(f7, f7))
= sup{Py+, p-(): u € K1}
> Pre - (),

and consequently (iii) holds. Moreover, we also get P(u™) = max{P(u): u € K1}, from where it
follows (i), and Fy, (T*) = min{F,,(T): T € A(f™, f7)}, from where (ii) follows.
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2. Assume (ii1) holds. Let T be an optimal map for the Monge problem associated to the
metric dj and # a Kantorovich potential for the metric d;. Then Fy, (T) =P (&), that is,

/dl (x, T () fT(x)dx =f(ﬁ(x) —a(T(x))) fH(x)dx.

2 2

Consequently, since d) (x, T'(x)) > ii(x) — i(T (x)) and f* >0, we have that i (x) — (T (x)) =
dy(x, T (x)) for almost all x € supp(f+). O

Remark 2.10. Observe also that when u™* is a Kantorovich potential for the metric dy, from (1.2)
and the inequality u*(x) — u*(y) <d;(x, y) it follows that, if u* € T (f+, f7),

w*isoptimal << u*(x) —u*(y)=di(x,y), p*-ae.in 2 x 2. (2.11)

3. Constructing optimal transport plans. A nonlocal version of the Evans—Gangbo
approach

As remarked in the introduction, although the general theory provides the existence of optimal
transport plans, our objective is to give a concrete construction via an equation satisfied by the
Kantorovich potentials following the approach of Evans—Gangbo.

We first begin with the one-dimensional case where some examples illustrate the difficulties
of the mass transport problem with d;.

3.1. The one-dimensional case

3.1.1. A better description of the special Kantorovich potentials
We assume first that the functions f* and f~ are L°°-functions satisfying

fm =7 X0, f+:f+X[c,d]s c=0,

supp(fi) C[—L,L], forsomeL €N. (3.1)

Set §2 any interval containing [—L, L].
By Theorem 2.6, there exists a Kantorovich potential u* associated with the metric d;, such
that u™*(§2) C Z and takes a finite number of values. It is easy to see that we can take

-1 fa—2<x<a-—1,
u(x)=0,(x): =10 ifa—1<x<a, (3.2)
1 fa<x<a+1,

for some 0 < o < 1. In order to find which «’s give the Kantorovich potential, we need to maxi-
mize
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[wr et @ - £ w) s
2

L

0
:—/u*(x)f_(x)dx+fu*(x)f+(x)dx
L

0

-1 1 -1 1
== > /(Ga(x)+j)f‘(x+j)dx+Z/(%(x)ﬂ)f*(xﬂ)dx

j=—Lj J=07

-1 1 L—1 1
== ¥ [awr et Y [auorte s
=07y

j=—L
-1 ! L—1 !

- > /jf—(x+j)dx+Z/jf+(x+j)dx.
j=—L J=07

Since the last two integrals are independent of 6,, we only need to maximize

-1 1 -1 1
=Y [ arhdxr Y [ uw) st s
j:—LO j:00
1 1
zfea(x)M(x)dxsz(x)dx,

0

for 0 < o < 1, where

—1 L—1
Mx)=- > fa+H+> frfa+j). 0<x<L (3.3)

Observe that fol Mx)dx = [(fT — f7)=0. If M(x) is monotone nondecreasing, it is clear
that, for 0 < x <1,

)]0 ifM(x) <O,
9“(")_{1 if M(x) > 0,

is the best choice (unique for points where M (x) # 0). If M(x) is monotone nonincreasing,
o =1 is the best choice.

Remark 3.1. Let us suppose now that the supports of the masses are not ordered. For example,
let us search for a Kantorovich potential associated with the metric d; for f~ = f1 + f2, f1 =
J1 X@.ax)» 2= f5 X(c1,e2), and fr= f+X(b1,b2)7 with a1 < ay < by < by <c1 <. Let
b e (bi,by) be such that [ fi = [ fX@.p) and [ fo= [ fX @by Letus call £ = fX .0
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and f2+ := f X (.,b,)- By the previous example we construct a monotone nondecreasing stair-
shaped function, 61, as Kantorovich potential for ffr and f; with value at b equals to some
A fixed, and a monotone nonincreasing stair function, 6, as Kantorovich potential for f;r and
f,  with the same value A at b. Then, 6 = 01X (4,,5) + 02X (b,c,) gives a Kantorovich potential
for f* and f~. This construction can be done for any configuration f* =" x (b1.:.by;) and

fm= Z?:l X(erivea)

3.1.2. Nonexistence of optimal transport maps

Here we see with a simple example that, in general, an optimal transport map does not exist
for dy as cost function. Let us point out that for the Euclidean distance it is well known (see
for instance [1] or [19]) the existence of an optimal transport map in the case f + e Ll(a,b),
even more, there exists a unique optimal transport map in the class of monotone nondecreasing
functions:

y X
To(x) ::sup{yeR: ff—(t)dtgffw)dz} if x € (a, b). (3.4)

Let f* = LX) and f~ = X[—r,0) with L € R. Set £2 an interval containing [—L, L]. Let
us see that if L € N, L > 2, then there is no optimal transport map 7" with distance d; pushing
ft to f~, nevertheless we will see later in Example 3.4 that if L ¢ N then there is an optimal
transport map pushing f* to f.

A Kantorovich potential for this configuration of masses £ and f~ is given by

0, xe(©0D,

—1, xe(-1,0],
ut(x) =1 .

—L, xe(—L,—L+1],
and hence we have

L(L+1)

sup{P(u): ueKl}=/u*(x)(f+(x)—f_(x))dx=1—|—2—|—3—|—---—|—L= 3

2

Let us see first that the Monge infimum and the Kantorovich minimum are the same by finding
tn € A(fT, f7) such that

n—0t L(L+1)
7 .

Fur(t) = / dy(x. 10 () £+ (x) dx

2

Consider L = 2 for simplicity. These #, can be constructed following the subsequent ideas. Push
fr Xpi_ ﬁ 1 to fx (2,24 4] with a plan induced by a map as in the picture below, paying

2%, and f+X[0,1—L] to f_X[—2+2ln,0] with a plan induced also by a map, see below, paying

on+l
2
3- 2.
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Support of 2X [0,1] (x)‘s[yzlz ]
Observe that all the segments have slope 2.

In this way,

1 noot

}—dl(tn) = /dl(X,tn(x))f+(x)dX =34 2_n — 3.
2

Arguing by contradiction assume now that there is an optimal transport map 7 pushing f*
to f . Then, since inf{F; (T): T € A(fT, f7)} = sup{P s+ r-(u): u € K1}, from Lemma 2.9
we have the equality u*(x) — u™(T (x)) =d;(x, T (x)). Then,

Ai={xelo 1 di(x,T)) =i} =T ((=i, =i +11), i=1,...,L.

Therefore, |A;| = |T~'((—i, —i + 1])| = 1/L. Moreover, we also have T (x) > x — i for all
x € A;. Now, we claim that

T(x)=x—i forallx e A;, foreveryi=1,...,L. (3.5)

Hence, |T(A;)| = 1/L which gives a contradiction with the fact that |7 ([0, 1])| = L.

To prove (3.5) we argue as follows: assume, without lose of generality, that there is a set of
positive measure K C Ap such that 7(x) > x — 1 in K. Then, it is easy to see that there exists
6 € (0,1) such that |[T~1((=1,0 — 1))| < |A; N (0, 0)|. Therefore, since T ((—i, 0 —i)) C
A; N (0, 0) for all i, we have
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()

L
<Jlain 0.0)] =0,
i=1

1
f=—
L

L
Jio-i)
i=1

L
T ((=i.0 1)
i=1

and we arrive to a contradiction.
With a similar proof it can be proved that there is no transport map T between f* = Lx 0.1
and f~ = X[—L,0) with L € N if one considers the distance dj/r with k € N.

Remark 3.2. Observe that it is easy to construct an optimal transport plan u* € 7T (f*, f7)
solving the Monge—Kantorovich problem. Indeed, if define the measure ;«* in £2 x £2 by

1 1 1
w(x,y) = LX[O,l](X)(Z5[y:—1+x] + Z(S[y:—2+x] +--+ ZS[y:—Ler]),

then u* € T (f, f~) and, moreover, since

Kay (%) = f dy (x. y) dpi* (x, )
2x82

1
1 1 1
:L/<—d1(x, —14+x)+—=di(x,-24+x)+ -+ =di(x,—L —I—x)) dx
L L L
0

_L(L+1)
- 2

= sup{P(u): ue K1}
=min{Ki(w): pem(f*, )},

we have that ©* is an optimal plan.

3.1.3. A precise construction of optimal transport plans

Let us now see that in one dimension we can give, in a quite easy way, a construction of
optimal transport plans by using the special Kantorovich potentials obtained in Section 3.1.1.
This is independent of the general construction given afterward.

We will construct an optimal transport plan under the assumptions (3.1); Remark 3.1 says how
to work in a more general situation. Let u* = 6, be the Kantorovich potential given from (3.2)
and construct a new configuration of equal masses as follows:

L—1 L—1
fo @) = (Z o+ J'))X]o,l[(X), Jo &)= (Z Jx— j))X]—l,O[(X)-

Jj=0 Jj=0
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For these masses, the same u* is a Kantorovich potential. Moreover,

L
f () — () dx
L

1 -1 1 L—1 9
= [t @ - )+ Y [irtas paxs T [ ire-pdx.

—1 jZOQ j:0_1

By (2.9) there exists B € [«, 1] such that

For x € (0, 1), we define Ty by
SUP{yERfoH_a fo_:f; f0+} if x € (o, B),

To(x) = Sup{)’ER:ffl f()_:f; f0+} if x € (B, 1),
sup{y eR:fyy o=/ o7} if x € (0, ).

The straight lines are only illustrative.

It is easy to see that Ty € A(f™, f7) and that

di(x, To(x)) =u*(x) —u*(To(x)) ae.x €supp(f™).
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Then, by Lemma 2.9 (or a direct computation), poo(x, y) = f(;L (X)8[y=Ty(x)] 1 an optimal trans-
port plan between f(;L and f, for the cost function d;.
Once we have the above construction, it is also easy to see that

L-1

po(x, y) =Y FH )X j+1) (O)81y=1p(x—j)]
j=0

is an optimal transport plan between f* and f,~ for the cost function d;. A remarkable observa-
tion is that these oo and g are induced by transport maps and that for the above configurations
the Monge infimum and the Monge—Kantorovich minimum coincide.

By splitting the mass

L—-1

frOXG @ =Y g j(x). j=01,...,L—1, (3.6)
i=0

is such a way that, fori =0,1,...,L — 1,

[ Xti To(x)—i
/ 8ij= / f~ ifx€(0,B), (3.7)
=0 y—i
and
L—1 x+j To(x)—i
> [eai= [ 5 itxee. (.3)
1=0p+j i
we can finally see that
L—1L-1
W=D 8 (X ()Sy=—itTy(x—)]
i=0 j=0

is a transport plan between fT and f~ for the cost function d;: taking x = 8 in (3.7), and x = 1
in (3.8), respectively, we get

L1 Bt - Loy 1+ y—i
f 8i,j = / f and Z / 8i,j = / f
j=0 j y—i jZO,B—i-j —1—i

Adding the last two equalities, we obtain

L—1 I+

—i 0
Z/gi,j(X)dX= f f_(X)dx=/f_(x—i)dx.
=0 ~1

—1—i
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Hence,
L 11 0
/u*(f+—f_)=//d1(x Y)o(x, y)+Z/Jf (x — j)dx
L Jj=0 —1
[ Jt] 0
_ /dl(x To(x — J) f+(x)+Zl/f (x — i) dx
j=075 i=0 24
L—1 j+1 L— 1]+1
= /dl(x,mx—]) (Zgl,oc))dwzl Z/gi,joc)dx
j=0" i=0  j=0
L—1L-1 /%1
= / d1 X, To(x—]))+l)g,](x)dx
i=0 j=0
j
L—1L-1 /%1
_ / dy (. —i + To(x — ))gi; (x) dx
i=0 j=0 ]

= / di(x, y)u(x,y).

2x82

In the following example, w(x, y) = f "'(x)(S[y:Tl* (x)] lustrates the above construction.

_ 1 1

Example 3.3. Set f~ = ;7 X1—1,0f and ft= X]Z—L,Z[' Then M = _ZX]O,%[ + %X]f—wl[ and therefore

u*(x) = 03 is (up to adding a constant) the unique Kantorovich potential associated with the
P\

metric d for f* and f~, moreover, [u*(f™ — f7) = 1i. Nevertheless, there exist infinitely

many optimal transport maps. For example, the following two are optimal transport maps,

dx — == if 2 < x <22
29 28 29 16 327
Wod Me<r<is —4x+5—7 if 3 <x<2
* k ’
Ty (x) = 4x—ﬁ 1f%<x<2, Ty (x) = | 8 32 16
) —4x+7 if 29 <x <2,
X otherwise,
X 0therw1se.

Observe that both push the mass f X, 729 toward f7X,_ Lo paying, after 2 steps, 2 x 1—16, and

push the rest from f+ X]29 2[ toward f~ X 1L paying, after 3 steps, 3 x %. Therefore the

3 11
total cost is, as known, 2 x 6 +3x = 16

We want to remark that the unique monotone nondecreasing optimal transport map, 7o, for
the Euclidean distance as cost function that pushes f* forward to f~ in this particular case is
To(x) = 4x — 8 Now Ty is not an optimal transport map for dj, the transport cost with this

map is, in fact, 1 16 However, it is well known (see [3]) that if the cost function c(x, y) is equal
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to ¢ (|]x — y|) with ¢ monotone nondecreasing and convex then 7y is an optimal transport, but
in our situation ¢ fails to be convex. On the other hand, the following simple transport plan

n _ . : cole L — 1 1
between fT and f~, not induced by a map, is optimal: u = X(ZT,Z) () (78ry=x—21t+ 48[y:x_%] +

1 1
201y=x 101 3011y

In contrast with the example given in Section 3.1.2 for which there is not optimal transport
map we present the following one.

Example 3.4. Let f* = LX[o,17and f~ = X[—z,0y With L ¢ N. Let us see that there is an optimal
transport map T pushing fT to f~ for d;. In order to simplify the exposition we take 2 < L < 3.
This particular case shows clearly how to handle the general case.

Using the procedure introduced in this subsection we have that

%x —1 if0<x < @,
To(x) =
%(x—l) if@ <x <,
is an optimal transport map pushing f(;r to fo (@ =1=p and y = —1). Now, we perform

the splitting procedure (3.6) (there are many different ways) in the following adequate way. For
x < @ we have to distribute the mass f in two equiweighted parts, so, set the rectangles
with corner coordinates,

upper-left, ul; = (xj11,yi), upper-right, ur; = (x;, yi),
lower-left, [Il; = (xj+1, Yi+1), lower-right, [r; = (x;, Yi+1),
i=1,2,..., where
23—L)
= -, = 2 — L,
X1 I 1

2 2
Yit1 =x; — 1, Xipl = X;i — Z(yz' — Yitl) = z()’i—i—l +1)

(observe that Ir; € [y =x — 1] and ll;,ur; € [y = %x — 1]); in each rectangle we can trace 2
parallel segments of slope L defined by the lines

o 1A Xi — Xi+1
y=Lr—x)+y and y=Lx-x)+y, withi=x——7—;

then 7; (x) = fT () X 13, 2,1 ) [y=Lix—x)+3i] + T ) Xy 518 y=L (x—2,)+y;— 1] Push in an
optimal way f+X]xl'+1,x1'[ o f7 XyirryilUlyipi—1yi -1 fori = 1,2, ...
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2(3-L)
L

For x > @ we have to distribute the mass £ in three equiweighted parts, in this case,

set the rectangles with corner coordinates,

lower-left, 1I; = (x;, y;), lower-right, Ir; = (Xi+1, i),

upper-left, ul; = (x;, yi+1), upper-right, ur; = (xj4+1, yi+1),
i=1,2,..., where now

_23-1L)

) :2_La
I 1

X1
L L
Xip1=yi +1, Yitl :yi+§(xi+l —xi)=§(xi+1 -1

(observe that [r; € [y =x — 1] and ll;, ur; € [y = %(x — 1)]); in each rectangle we can trace
three parallel segments of slope L defined by the lines

~ ~ Xi4l — Xj
y=L(x—x;)+ Yy, y=L(x—Xx;)+y, Xi=xi+—

and

Xit1 — Xi

y=L(x—Xx;)+yi, Xi=xi+2 7

then

Ti(x) = fTOX (.50 ®)y=Lx—x)tyi) + F T OOX & 50 )y (x—5)yi—1]

+ [T i) C)Sy=Lx—7) 43121

push in an optimal way f+X(xiaxi+l) to f_X()’i,yi+l)U()’i_1»Yi+l_I)U(yi —2,yi+1—2)> fori=1,2,....



N. Igbida et al. / Journal of Functional Analysis 260 (2011) 3494-3534 3519

3.2. Characterizing the Euler—Lagrange equation: A nonlocal version of the Evans—Gangbo
approach

Our first objective is to characterize the Euler—Lagrange equation associated with the varia-
tional problem sup{P s+ r-(u): u € Kg,(£2)}, that is, characterize fr—f" e 0lk, (u), where,
as above, we denote for simplicity K := Ky, (£2).

Let M} (82 x £2) := {bounded antisymmetric Radon measures in £2 x §2}. And define the

multivalued operator Bj in L?(£2) as follows: (u, v) € B; if and onlyifue Kj,ve L?(£2), and
there exists o € M7 (£2 x £2) such that

oc=ocl{(x,y) €2 x2: |x—yl <1},

/s<x>da<x,y>=fs<x)v<x>dx, VE € Co(2),
2

2% 82
and
lo|(§2 x £2) < 2/ v(x)u(x)dx.
Q

Theorem 3.5. The following characterization holds: dlx, = Bj.

Proof. Let us first see that By C dllk,. Let (u, v) € By, to see that (u, v) € dlx, we need to prove
that

ogfu(x)(u(x)—g(x))dx, VE € K.
2

Using an approximation procedure, we can assume that & € K is continuous. Then,

1
[ o)~ ) dr > Sl x @) - [ v dx

2 2

1
=S lol(2 x 2) - f §(x)do(x,y)

2% 82

1 1
= Slol@x2) - 3 f (E() — £() do(x. y) >0,

2x82
where in the last equality we have used the antisymmetry of o. Therefore, we have By C dlg,.

Since dll, is a maximal monotone operator, to see that the operators are equal we only need to
show that for every f € L?(£2) there exists u € K such that

u—+ Bi(u)> f. (3.9
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Let J : RN — R as in (2.1). By results in [5], given p > N and f € L?(£2) there exists a
unique solution u, € L°°(§2) of the nonlocal p-Laplacian problem

up(X)—/J(x—y)\up(y)—up(X)\p_z(up(y)—up(X))dy=Tp(f)(X) Vx e, (3.10)
2

where Ty (r) := max{min{k, r}, —r}. And we also know, using again Lemma 2.3, that there exists
u € Kq such that

up — u in L*(£2) as p — +oo, (3.11)
with u + dllg, (u) > f, from where it follows that

/(f(x) —u(x))(wx) —ux))dx <0, VYweKj,

2

and consequently, u = Pk, (f). Multiplying (3.10) by u,, and integrating, we get

1
/(Tp(f)(x)—u,,(x))up(x)dx:5 / Jx =W |up) —up)|"dxdy, (3.12)

$2 2x82

from where it follows that

f TG = D|up() — up@)|” dx dy + /}up(x>}2dx g, GI3)
2x82 2

If weseto,(x,y) :=J(x—y)lup(y) — up(x)|p_2(up(y) —up(x)), by Holder’s inequality,

/ }ap(x, y)| dxdy

2x82

= / J(x —y)|up(y) —up(x)}p_ldxdy

2% 82
<( / J(x—y)lup<y>—up<x>\”dxdy) (/J(x—y)dxdy)”
2% 82 2% 82

=( f J(x—y)|”p(y)—up(X)\pdxdy> "

2x82
Now, by (3.13), we have

p—1

[ Joptx sl dxdy < (151 q)
2x82
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Hence, {0),: p > 2} is bounded in L! (£2 x £2), and consequently we can assume that
op(.,.) =0 weakly” in My(£2 x £2). (3.14)

Obviously, since each o, is antisymmetric, o € My (§2 x §2). Moreover, since supp(J) = B;(0),
wehave o =ol_{(x,y) € 2 x £2: |x — y| < 1}. On the other hand, given & € C.(£2), by (3.10),
(3.11) and (3.14), we get

[ ewdsn= tim_ [ o edxdy

2x82 2x82

= lim T = )|up () = up@)|P 77 (1 (0) — 1 (x))E(x) dx dy

p—>+00
2x82

= plirfoof(Tp(f)(x) —up(x))§(x)dx
2

=/(f(X)—u(X))S(X)dX-

2

Then, to prove (3.9), we only need to show that |o|(£2 x £2) < 2fQ (f(x) —u(x)u(x)dx. In
fact, by (3.14), we have

lo (2 x §2) < hminf/f{ap(x,y)\dxdy.
p—>+00
2 2

Now, by (3.12),

p—1

/ |a,,<x,y>\dxdy<( / J(x—y>|up<y>—up<x>|dedy)
2x82 2% 82

p—1

p

(2/(Tp(f)(x) - up(x))up(x)dx)
£

p—1

2 (/(Tp(f)(x) — up(x))up(x)dx>

2

Therefore |0|(2 x £2) <2 [ (f(x) —u(x)u(x)dx. O
We can rewrite the operator B; as follows.

Corollary 3.6. (1, v) € By ifand only if u € Ky, v € L*(£2), and there exists o € M3 (82 x £2)
such that
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ot =0"L{(x,y) €2 x2: |x—y|< 1, ulx) —u(y) =1},
a_:a_l_{(x,y)e.Q x £2: |x —y| <1, u(y)—u(x):l},

/ E(X)dﬁ(x,y)=/§(X)v(X)dx, V& € Co(£2),
Q

2x82

and

lo|(£2 x $2) :2/v(x)u(x)dx.
Q

Proof. Let (u,v) € By, then

f E(x)do(x,y) =/S(x)v(x)dx, VE € C.(£2). (3.15)
2

2x82

Hence, by approximation, we can take & € L?(£2) in (3.15) and [, [, §(x)do (x, y) has this
sense.
Taking & = u in (3.15) and using the antisymmetric of o and the previous result we get

0182 x 2) > f (o) — u(y) do(x. y)

2x82

=2 / u(x)do(x,y)

2x82

:2/u(x)v(x)dx
2
> o |(£2 x £2). O

As consequence of the above results, we have that u™ € K is a Kantorovich potential for d,
ft, £, if and only if

[T = f eBi(u*), (3.16)

that is, if u* € K and there exists 0™ € M (§2 x £2), such that

[U*]+=[G*]+|_{(x,y)e.9 X 2:u'(x)—u*(y)=1, |x —y] 1},

) [0*] =[c"] L{(x.y) €2 x 2: u*(y) —u*(x)=1, |x —y| <1}, G.17)

/ E(x)da*(x,y)=/€(x)(f+(x)—f‘(x))dx,
2

2x82

<
<
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and

|0*](2 x ) =2/(f+(x) — fT)u*(x)dx =2P(u*). (3.18)

2

We want to highlight that (3.16) plays the role of (1.4). Moreover, we will see in the next
subsection that we can construct optimal transport plans from it, more precisely, we shall see
that the potential #} and the measure o encode all the information that we need to construct an
optimal transport plan associated with the problem.

3.3. Constructing optimal transport plans

We will use a gluing lemma (see Lemma 7.6 in [19]), which permits to glue together two
transport plans in an adequate way. As remarked in [19], it is possible to state the gluing lemma
in the following way (we present it for the distance d).

Lemma 3.7. Let fi, f2, g be three positive measures in 2. If 1 € 7T (f1, &) and uy € T (g, f2),
there exists a measure G(jL1, L2) € T (f1, f2) such that

Ka (G, n2)) < Kay (1) + Ka, (12). (3.19)

Let us now proceed with the general construction. Given f*, f~ € L% (£2) two non-negative
Borel functions satisfying the mass balance condition (1.1) and | supp(f™) Nsupp(f~)| =0, by
Theorems 1.2 and 2.6, there exists a Kantorovich potential u* taking a finite number of entire
values such that

min{JCa s w7 (1 7)) = [ W@ - £ w)dx.

2

Then, by Corollary 3.6, there exists o € Mj (£2 x £2) satisfying (3.17) and (3.18). We are going
to give a method to obtain an optimal transport plan ©* from the measure o.
We divide the construction in two steps. We assume without loss of generality that

w*=0Xay+ 1Xa, + +kXa, withA;={xe: u*(x)=i}.

Step 1. How the measures ot (A j x Aj_1) work. Taking into account the antisymmetry of o
and (3.17), we have that proj, (o) — proj, (0 ™) = f™ — f~, which implies g := proj, (c+) —
[T =proj,(6™) — f~. By (2.8), proj, (6 )L Ay = f¥xa, and proj, (6 )L Ag = f* x4, =0,
then

gl Ar=¢gL Ap=0.

Moreover, we have proj, (0 "L (A x Aj_1)) = proj, (0 7). A; and proj, (0 "L (A; x Aj_1)) =
proj, (e )L Aj_1, then proj, (6T (A; x Aj_1)) = fTXxa, + gL A;j and proj,(c L (A; x
Aj—1))=f"Xa;_, +8gL Aj_1. Letus call = a+|_(Aj x Aj_1). Let us briefly comment
what these measures do. The first one, g, transports f Tx A, 1nto £~ X a,_, plus something else,
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thatis gl Ax_;. Afterwards, u; transports f TXa s gL Ajinto f~ X4 i1 again plus something
else, thatis gl A;_1. The last one, w1, transports ]“L)(A1 +gL Ajto f™ X 4,-

Step 2. The gluing. Now, we would like to glue this transportations, and, in order to apply the
gluing lemma, we consider the measures

e, y) o= () + F X A (O)B]y=s,
and
M1, y) i=p—1(x, ) + (O X Ay (X)S[y=x]-
It is easy to see that
e €T (f T X g+ F X arys [ Xy +proj (o) Ar_y)
and
Wiy €TT(f Xap, +proj (0T )L Ag—r, f7Xa, + f Xap, + 8L Ax2).
Therefore, by the gluing lemma,
G(uh, ) €T (F T Xag+ F T Xap o [ X + F Xapr + 8L Ara).
Let us now consider the measures
ke, y) o= G i) G, 9) + £ X 4, (0)81y=x)
and
Hioa (e, ) = =2 (e ) + (F 7 )X Ay () + f 70X 4, (1)) 8y=x1-

Then we have

o €T (T xae+ FTxay + X FXaes + 7 Xae, +proj (0 7)L Ax—2)

and

Wiy €TT(f Xap,+f Xa,, +proj (o)L Ax_a,
F X+ [ Xaps+ [ Xa s + 8L Ar3).

Consequently,

g(lu“gc—l’ M/rc—z) € jT(f+XAk + f+XAk71 + f+XAk72’
f_XAkq + f_XAk,Q + f_XAk73 +g|— Ak—3)-
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Proceeding in this way we arrive to the construction of

ulz(x, y) = Q(Mé, ME)(X, Y) 4 )X 4, (0)81y=x1,
k—1

WG y) =1, Y) + Y F T X 40 81y=x]
i=1

and
W =G(uh uh) em(fF, f7),

which is, in fact, an optimal transport plan since, by (3.19),

Ka, (1) = Ka, (G(1h. 7)) < Kay (115) + Kay (1])

= Ka, (G (15, 145)) + Kay (1) < Ka, (145) + Kay (145) + Ka, (1)
k—1

= Ka, (G (1l 15)) + Kay (12) + Kay (1) < .. < Ky (1) + D Kay (1)
=1

k k
:Z/cdl(uj)=2/ doTL(Aj x Aj_)) = / do™
j=1

I=loxe Qx0

1
=5lol@2 x 2) = min{Ky (w): nem(f*, f7)}.

We want to remark that a similar construction works for any Kantorovich potential u*, without
assuming that u*(£2) C Z, but the above one is simpler.

4. Convergence to the classical problem

The task of this section is the connection between this discrete mass transport problem and
the classical transport problem for the Euclidean distance. In particular we recover the PDE
formulation (1.4) of Evans—Gangbo by means of this discrete approach.

Let us begin by remarking that an equivalent result to Corollary 3.5 for d. gives us that

(u}, o)) is a solution of the Euler—Lagrange equation

T —=f" edlg, @), 4.1)

that corresponds to the maximization problem

max{/u(x)(f+(x) — fT(x))dx: ueKq (2) 1,

2
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if and only if u} € K4, (§2) and o, in §2 is an antisymmetric bounded Radon measure such that

[0 =0T {0 ) € 2 x 20 uf (o) —wi(y) =e, Ix -yl <e},

[0] =[of] L{(x.y) €2 x 2: ul(y) —ui(x)=¢, |x —y| <&}, 4.2)
/ S(x)doj(x,y)=f§(x)(f+(x)—f‘(x))dx, (4.3)
2x82 $2
and
2 2
o2 x 2) = - f(f+(x) — [T @)ui(x)dx = g7>(u;;). 4.4)
2

4.1. Convergence to the classical problem

Let us fix f1, f~ € L?(2) satisfying the mass balance condition (1.1). First of all, in the
following result we state the convergence to the Monge—Kantorovich problems. We will denote
K. = Kg4,(82) and K4, | = Kg,(§2) for simplicity (recall that d.| denotes the Euclidean distance),
and

W= sup{Pr+ - w): u€ Kg, } =min{Kq, (n): pem(f*, f7)}
= inf{F(T): T e A(f*, f7)},
W, = sup{Pf+’f—(u): ue Kg} = min{ICg(,u): [TRS JT(f+, f_)}.

Proposition 4.1. For the costs W, and W the following facts hold:

We < W, fore <é'.

0<W8—W<8/f+(x)dx for any € > 0. 4.5)
2

For the primal problems, it also holds:

lim, inf{Fe(w): wem(f*, f7)}=w. (4.6)
Proof. Since
ds(X,Y)—8<d|-|(X,)’)<ds(xa)’), (47)

given u € T (f+, f7), we have

/(dg<x,y)—e)du<x,y>< / di (e, y)du(x, ) < / do(x, y)dp(x, y).

2x82 2x82 2x82
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Then, taking the minimum over all © € 7T (f *, f7), and having in mind that

/ du(x,y)=/f+(X)dx,
2

2x82

we obtain (4.5). Moreover, since d, < d, for ¢ < &/, the sequence of costs {W,}¢~¢ is monotone
nonincreasing as & decreases to zero.

Let us now prove (4.6), which, by Example 1.4, is not a trivial consequence of the above
statement. Precisely, this previous statement gives:

lim W, =inf{F(T): T € A(f", f7)}. (4.8)

e—0t

Take now 7" a transport map. Thanks to (4.7),

limsupinf{}"g(T): T e A(er, f_)}

e—>0

= lim sup inf{/ de(x, T(x))fr(x)dx: T GA(f+,f_)}

e—0
2

e—0

<1imsup/ de(x, T'(x)) fT(x) dx =/\x —T'(x)|fT(x)dx.
2

Therefore,
limsup inf{F,(T): T € A(f*, f7)} <inf{F(T): T e A(fT, )} (4.9)
e—0
On the other hand,

W, =min{K,(u): pem (f+, f7)} <inf{F(T): T € A(f*, f7)}.

Taking now the liminf,_,¢ in the above expression and taking into account (4.8) and (4.9) we
obtain (4.6). O

Let us now proceed with the approximation of optimal transport plans. Let us consider, for
each & > 0, an optimal transport plan . between f* and f~ for d., thatis, u. € T(f*, f7)
such that

Ke(pe) = min{lcs(//«): ne n(f+a f_)}
Proposition 4.2. There exists a sequence &, — 0 as n — oo and w* € T (f T, £7) such that
We, — *  as measures

and

K(p*)=min{Kw): pem (f, f7)}
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Proof. To prove this we just observe that
dij(x,y) =|x —y[<de(x,y) <|x —y[+¢
(note that this implies d¢(x, y) — |x — y| uniformly as € — 0). Hence,
/ lx — yldue(x, y) < / de (x, y)dpe(x, y) < / (Ix =yl + &) dpe(x, y).
2x82 2x82 2x82

On the other hand, by Prokhorov’s Theorem, we can assume that, there exists a sequence &, — 0
as n — oo such that u,, converges weakly* in the sense of measures to a limit p*. Therefore,
we conclude that

/|x—y|du*<x,y>= lim /d8n<x,y>du8,,<x,y>.
n—-+oo
2x82 2x82

Finally, by Proposition 4.1 we obtain that ;* is a minimizer for the usual Euclidean distance. O

To illustrate these results, we present an example in one dimension that shows how one can
recover the unique monotone nondecreasing optimal transport map for the Euclidean distance
between f* and f~.

Example 4.3. Let f+ = 2X10,11 and f7 = X[—2,01- Set §2 an interval containing [—2, 2]. As we
setin Section 3.1.2, there is no transport map T between fT and f~ if one considers the distance
dyr with k € N. Nevertheless, for each n € N,

2]
Hn(X,y) = X[2';_;1’1](x)5[y:x—1] + Z X[Z"—Z:';—l,2"—2;'11+1](x)8[y=x—1—2ﬂ,,] + X0, 11 ()8y=x—2]

m=1

is an optimal transport plan between f* and f~ for the distance d 1 such that
mn

pn = Y (x)8y=r(x)] Wweakly* as measures,

where T (x) = 2x — 2 is the unique monotone nondecreasing optimal transport map for the Eu-
clidean distance between f+ and f~.

Let us finish this subsection with a convergence result for Kantorovich potentials.

Proposition 4.4. Let u* be a Kantorovich potential for f+ — f~ associated with the metric dp.
Then, there exists a sequence &, — 0 as n — oo such that

wt —~u* inlL?

&n

where u* is a Kantorovich potential associated with the Euclidean metric d|.|.
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Proof. It is an obvious fact that {u.} is L°°-bounded, then, there exists a sequence
u* —v in L%

&n

Therefore,

nilr—l{loo/ wy () = fT () dx = / v (fT) = f7 () dx.

2 2

Now, since

fu:” @O (fTx) = f7 @) dx =sup{Pp+ - (u): u €K},
2

by Proposition 4.1, we conclude that

/v(x)(f+(x) — f7(x))dx =sup{Ps+ - (w): uecKy,}.

2

In order to have that the limit v is a maximizer u* we need to show that v € K dy.;» and this follows
by the Mosco-convergence of Ik, to Ik ., (see [5]). O

4.2. Approximating the Evans—Gangbo PDE

The main task in this subsection is to show how from the solutions (u}, 0,") of the Euler—
Lagrange equation

[T —f7 edlg, 2w,

that corresponds to the maximization problem

max{/ u(x)(f+(x) — f_(x)) dx: ue Ky, (.Q)},
2
we can recover u™* € K4, (£2) such that

/ W) (fF () — f () dx = max{ / w@)(f*00) = = (0)dx: u e Ky, <sz>},
22

2

and 0 < a € L*°(£2) such that
[T —f~=—div(aVu*) inD'(R), |Vu*|=1 a.e. on the set {a > 0}.

Remember that u} € K4, (£2) and o/ is an antisymmetric bounded Radon measure in £2 sat-
isfying (4.2), (4.3) and (4.4). Moreover, by Proposition 4.4, after a subsequence,



3530 N. Igbida et al. / Journal of Functional Analysis 260 (2011) 3494-3534

uf —u* inL*(2)ase— 0,

where u* is a Kantorovich potential associated with the metric d|.|.
Let us now fix

e e (4.10)

be such that |x — y| > r = diam(supp(f*T — f 7)) for any x € supp(fT — f~) and any y €
2\ 2'.By 4.3),

fE(X)(f+(X)—f_(X))dX= / E(x)doj(x,y), V&€ Ce(£). (4.11)
2

2x82

Hence, for & € CC1 (£2), by (4.11) and the antisymmetry of ¢.°, we have that

/s<x>(f+<x>—f—<x>)dx= / E(x)dor (x, y) = f wd@a;(x,y)),
22

)
2x82 2x82

and

/ EO(fT)— fm(x)dx= f E(x)do}(x,y)
2

282

= / wd(e[a;]ﬂx,y)). (4.12)

2x82
Now observe that for ¢ € Cc(£2 x £2), if ¢ (x,z) = ¢(x, x 4+ £2) and T (x, y) = ===, then

f o, ) d[or] (x, y) = f ¢ (1, Te) (x, ) [0 (x, y)

2x82 2x82

= / ¢(x,z)d((7r1,Tg)#[U:]+)(X,Z)

Also, since
+ +
[eof]" =[eol ] L{(r. ) € 2 x 2 uf(x) —ui(y) =e, [x —y| <e},
and (71, T) 1s one to one and continuous, we have that, setting u, := (mwy, Tp) # [80’:]+,

e = el (1, To) ({(x, y) € 2 x 2: uf(x) —ul(y) =¢, |x —y| <e}),
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that is,
pe=pel{(x,2): x €2, x+ez€8, 12| <1, uf(x) —ui(x +ez) =¢}.

Therefore, we can rewrite (4.12) as

/ s —sr ) o). (4.13)

&

f EO (T — f7 () dx =
$2

2xB1(0)

On the other hand, by (4.4), 1. is bounded by a constant independent of ¢. Therefore there exists
a subsequence &, — 0 such that

We, — U weakly as measures, (4.14)
with
9 =vL{(x,2): x e, |z <1}.
Then, taking limit in (4.13), for ¢ = ¢,, as n goes to infinity, we obtain
/S(X)(f+(X) — [T (0)dx = f VEx) - (—2)dv (x, 2). (4.15)
£2 2xB1(0)
Now, by disintegration of the measure ¥ (see [2]),
0 =(0)x®u,
with
u = #1,
that is a non-negative measure. Moreover, if we define
vi= [ Codon@. xew,
B1(0)
then, v € L}L(.Q, RV and we can rewrite (4.15) as

/S(X)(f+(X) —fT(0))dx= f VEX) - v(x)du(x), VE€CHR). (4.16)
2

£

Let us see that

supp(p) € £2. 4.17)
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The proof of (4.17) follows the argument of [1, Lemma 5.1] (we include this argument here for
the sake of completeness). In fact, let xo € supp(f ™ — f~) be a minimum point for the restriction
of u* to supp(f* — f7) and define

w(x) := min{ (u* (x) — u*(x0)) ", dist(x, 2\ 2')},

where £2’ verifies (4.10). Then, w(x) = u*(x) —u*(xo) on supp(f™ — f~)and w =0on 2\ £2’.
On the other hand,

n(2) =(2 x RY) < limiinf 1 (€2 RY) < nmigfe[ojﬁ(.(z x RM)
£— £—

:limi(l)lf/ wE)(fH(x) — f~(x)dx

2

_ / 7O — £ () da. (4.18)

2

and, for a regularizing sequence {p1 }, on account of (4.16) and using that |v(x)| < 1, we have

/ OO (FF 00 — f7 () dx = / () — (o)) () — £~ () dx

2 2

—tim [ w0 (/ ) = () dx
22

=tim [ V(o)) v do) < (82,
2

where 2" verifies (4.10). So, u($2 \ £2”7) =0, and (4.17) is satisfied.
Let us now recall some tangential calculus for measures (see [7,8]). We introduce the tangent
space 7, to the measure u which is defined p-a.e. by setting 7,,(x) := N, ML (x) where:

Nu(x) ={&(x): £ €N} being
N, ={te LZO(Q, RN): Ju,, smooth, u, — 0 uniformly, Vu, — & weakly™ in Llof}
In [7], given u € D(£2), for pu-a.e. x € §2, the tangential derivative V,u(x) is defined as the

projection of Vu(x) on 7,(x). Now, by [8, Proposition 3.2], there is an extension of the linear
operator V,, to Lip,(£2, d.)) the set of Lipschitz continuous functions. Let us see that

v(x) € T,(x), p-ae. xes. (4.19)

For that we need to show that

/v(x)-&(x)d,u(x)zo, VEeN,. (4.20)

2
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In fact, given & € N, there exists u, smooth, u,, — 0 uniformly, Vu, — & weakly* in Lff.
Then, taking & = u, in (4.16), which is possible on account of (4.17), we obtain

/ un () — (1)) dx = f Vin (6) - v(x) dp(x),

2 2

from here, taking limit as n — 400, we get

f VEX) V) dux) =0, Yue D),

2

from where (4.20) follows. Now, if we set @ :=vu, by (4.16) we have
—div(®)= f" — f~ in D'(R).

Then, having in mind (4.19), by [8, Proposition 3.5], we get

/u*(x)(f+(x) — fT(x))dx =/v(x)VMu*(x)dpL(x), 4.21)

2 2

where V,u* is the tangential derivative. Then, since |v(x)| < 1 and |V, u*(x)| <1 for p-a.e.
x € £2, from (4.21) and (4.18), we obtain that v(x) = V,u*(x) and |V, u*(x)| =1, n-a.e. x € 2.
Therefore, we have

—div(uVu*)=fT— f7 inD'(2),
|V, u*(x)] =1 p-a.e. x € £2.

Now, by the regularity results given in [12] (see also [1] and [13]), since f1, f~ € L>®(£2), we
have that the transport density u € L°°(§2). Consequently we conclude that the density transport
of Evans—Gangbo is represented by a = w1 #1 for any ¢} obtained as in (4.14).
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