Computing Subschemes of the Border Basis Scheme

Martin Kreuzer
University of Passau (Germany)

Applications of Computer Algebra - ACA 2018
Santiago de Compostela, 19.6.2018
1. Border Bases
1. Border Bases
2. Border Basis Schemes
1. Border Bases
2. Border Basis Schemes
3. Computing the Locally Gorenstein Locus
1. Border Bases
2. Border Basis Schemes
3. Computing the Locally Gorenstein Locus
4. The Degree Filtered Border Basis Scheme
Contents

1. Border Bases
2. Border Basis Schemes
3. Computing the Locally Gorenstein Locus
4. The Degree Filtered Border Basis Scheme
5. Computing the Cayley-Bacharach Locus
Contents

1. Border Bases
2. Border Basis Schemes
3. Computing the Locally Gorenstein Locus
4. The Degree Filtered Border Basis Scheme
5. Computing the Cayley-Bacharach Locus
6. The Strict Complete Intersection Locus
1. Border Bases
2. Border Basis Schemes
3. Computing the Locally Gorenstein Locus
4. The Degree Filtered Border Basis Scheme
5. Computing the Cayley-Bacharach Locus
6. The Strict Complete Intersection Locus

This is joint work with

Le Ngoc Long (University of Passau, Hue University)
Lorenzo Robbiano (University of Genova)
1 – Border Bases

Everything that is not connected to elefants
1 – Border Bases

Everything that is not connected to elephants is irrelephant.
1 – Border Bases

Everything that is not connected to elephants is irrelevant.

K field

$P = K[x_1, \ldots, x_n]$ polynomial ring
1 – Border Bases

Everything that is not connected to elephants is irrelephant.

\(K \) field

\(P = K[x_1, \ldots, x_n] \) polynomial ring

\(I \subset P \) 0-dimensional ideal (i.e. \(\dim_K(P/I) < \infty \))

\(X = \text{Spec}(P/I) \) 0-dimensional subscheme of \(\mathbb{A}^n \) of length

\(\mu = \dim_K(P/I) \)
1 – Border Bases

Everything that is not connected to elefants is irrelefant.

\[K \text{ field} \]
\[P = K[x_1, \ldots, x_n] \text{ polynomial ring} \]
\[I \subset P \text{ 0-dimensional ideal (i.e. } \dim_K(P/I) < \infty) \]
\[X = \text{Spec}(P/I) \text{ 0-dimensional subscheme of } \mathbb{A}^n \text{ of length} \]
\[\mu = \dim_K(P/I) \]
\[R = P/I \text{ affine coordinate ring of } X \]
Definition 1.1 (a) A divisor closed set of terms $\mathcal{O} = \{t_1, \ldots, t_\mu\}$ is called an order ideal of terms.
Definition 1.1 (a) A divisor closed set of terms $\mathcal{O} = \{ t_1, \ldots, t_\mu \}$ is called an order ideal of terms.

(b) The border of \mathcal{O} is $\partial \mathcal{O} = (x_1 \mathcal{O} \cup \cdots \cup x_n \mathcal{O}) \setminus \mathcal{O}$. We write $\partial \mathcal{O} = \{ b_1, \ldots, b_\nu \}$.
Definition 1.1 (a) A divisor closed set of terms $\mathcal{O} = \{t_1, \ldots, t_\mu\}$ is called an order ideal of terms.

(b) The border of \mathcal{O} is $\partial \mathcal{O} = (x_1 \mathcal{O} \cup \cdots \cup x_n \mathcal{O}) \setminus \mathcal{O}$. We write $\partial \mathcal{O} = \{b_1, \ldots, b_\nu\}$.

(c) Let $\gamma_{ij} \in K$. Then the set $G = \{g_1, \ldots, g_\nu\}$ such that $g_j = b_j - \sum_{i=1}^{\mu} \gamma_{ij} t_i$ is called an \mathcal{O}-border prebasis.
Definition 1.1 (a) A divisor closed set of terms $\mathcal{O} = \{t_1, \ldots, t_\mu\}$ is called an **order ideal** of terms.

(b) The **border** of \mathcal{O} is $\partial\mathcal{O} = (x_1\mathcal{O} \cup \cdots \cup x_n\mathcal{O}) \setminus \mathcal{O}$. We write $\partial\mathcal{O} = \{b_1, \ldots, b_\nu\}$.

(c) Let $\gamma_{ij} \in K$. Then the set $G = \{g_1, \ldots, g_\nu\}$ such that $g_j = b_j - \sum_{i=1}^{\mu} \gamma_{ij} t_i$ is called an \mathcal{O}-**border prebasis**.

(d) An \mathcal{O}-border prebasis G is called an \mathcal{O}-**border basis** of I if $I = \langle G \rangle$ and if \mathcal{O} represents a K-basis of $R = P/I$.
Picture of an order ideal and its border
Picture of an order ideal and its border

- term in the order ideal
- term in the border
Definition 1.2 Let G be an \mathcal{O}-border prebasis as above. For $r = 1, \ldots, n$, the matrix $A_r = (a_{ij}^{(r)}) \in \text{Mat}_\mu(K)$, where

$$a_{ij}^{(r)} = \begin{cases}
\delta_{im} & \text{if } x_r t_j = t_m \\
\gamma_{im} & \text{if } x_r t_j = b_m
\end{cases}$$

is called the r-th formal multiplication matrix for G.
Definition 1.2 Let G be an O-border prebasis as above. For $r = 1, \ldots, n$, the matrix $A_r = (a_{ij}^{(r)}) \in \text{Mat}_\mu(K)$, where

$$a_{ij}^{(r)} = \begin{cases}
\delta_{im} & \text{if } x_r^t_j = t_m \\
\gamma_{im} & \text{if } x_r^t_j = b_m
\end{cases}$$

is called the r-th formal multiplication matrix for G.

Theorem 1.3 (Mourrain)

An O-border prebasis $G \subset I$ is an O-border basis of I if and only if the formal multiplication matrices commute, i.e. if and only if $A_i A_j - A_j A_i = 0$ for $1 \leq i < j \leq n$.
2 – Border Basis Schemes
The problem with internet quotes is that you can’t always rely on their accuracy.
2 – Border Basis Schemes

The problem with internet quotes is that you can’t always rely on their accuracy.

(Abraham Lincoln, 1864)
The problem with internet quotes is that you can’t always rely on their accuracy.
(Abraham Lincoln, 1864)

\[P = K[x_1, \ldots, x_n] \] polynomial ring over a field \(K \)
The problem with internet quotes is that you can’t always rely on their accuracy.
(Abraham Lincoln, 1864)

\[P = K[x_1, \ldots, x_n] \] polynomial ring over a field \(K \)

\[\mathcal{O} = \{t_1, \ldots, t_\mu\} \] order ideal with border \(\partial \mathcal{O} = \{b_1, \ldots, b_\nu\} \)
The problem with internet quotes is that you can’t always rely on their accuracy.

(Abraham Lincoln, 1864)

\[P = K[x_1, \ldots, x_n] \] polynomial ring over a field \(K \)

\[\mathcal{O} = \{t_1, \ldots, t_\mu\} \] order ideal with border \(\partial \mathcal{O} = \{b_1, \ldots, b_\nu\} \)

Definition 2.1 Let \(c_{ij} \) be indeterminates. Then the set \(G = \{g_1, \ldots, g_\nu\} \) such that \(g_j = b_j - \sum_{i=1}^{\mu} c_{ij} t_i \) is called the **generic** \(\mathcal{O} \)-border prebasis.
Definition 2.2 (a) For $r = 1, \ldots, n$, the matrix $A_r = (a_{ij}^{(r)}) \in \text{Mat}_\mu(K[c_{ij}])$, where

$$a_{ij}^{(r)} = \begin{cases}
\delta_{im} & \text{if } x_r t_j = t_m \\
 c_{im} & \text{if } x_r t_j = b_m
\end{cases}$$

is called the r-th generic multiplication matrix for O.
Definition 2.2 (a) For $r = 1, \ldots, n$, the matrix
\[A_r = (a_{ij}^{(r)}) \in \text{Mat}_\mu(K[c_{ij}]), \]
where
\[a_{ij}^{(r)} = \begin{cases}
\delta_{im} & \text{if } x_r t_j = t_m \\
c_{im} & \text{if } x_r t_j = b_m
\end{cases} \]
is called the r-th generic multiplication matrix for \mathcal{O}.

(b) Consider the ideal in $K[c_{ij}]$ which is generated by all entries of
the commutator matrices $A_r A_s - A_s A_r$ with $1 \leq r < s \leq n$. Then
the subscheme of $\mathbb{A}^{\mu\nu}_K = \text{Spec}(K[c_{ij}])$ defined by this ideal is called
the \mathcal{O}-border basis scheme. It is denoted by $\mathcal{B}_\mathcal{O}$, its vanishing ideal is denoted by $I(\mathcal{B}_\mathcal{O})$, and its affine coordinate ring is denoted by
$B_\mathcal{O} = K[c_{11}, \ldots, c_{\mu\nu}] / I(\mathcal{B}_\mathcal{O})$.
Example 2.3 Let $\mathcal{O} = \{1, x, y, xy\} \subseteq \mathbb{T}^2$. Then we have

$$A_x = \begin{pmatrix}
0 & c_{12} & 0 & c_{14} \\
1 & c_{22} & 0 & c_{24} \\
0 & c_{32} & 0 & c_{34} \\
0 & c_{42} & 1 & c_{44}
\end{pmatrix} \quad \text{and} \quad A_y = \begin{pmatrix}
0 & 0 & c_{11} & c_{13} \\
0 & 0 & c_{21} & c_{23} \\
1 & 0 & c_{31} & c_{33} \\
0 & 1 & c_{41} & c_{43}
\end{pmatrix}$$
Example 2.3 Let $\mathcal{O} = \{1, x, y, xy\} \subseteq \mathbb{T}^2$. Then we have

$$A_x = \begin{pmatrix} 0 & c_{12} & 0 & c_{14} \\ 1 & c_{22} & 0 & c_{24} \\ 0 & c_{32} & 0 & c_{34} \\ 0 & c_{42} & 1 & c_{44} \end{pmatrix} \quad \text{and} \quad A_y = \begin{pmatrix} 0 & 0 & c_{11} & c_{13} \\ 0 & 0 & c_{21} & c_{23} \\ 1 & 0 & c_{31} & c_{33} \\ 0 & 1 & c_{41} & c_{43} \end{pmatrix}$$

and the defining ideal of $\mathbb{B}_\mathcal{O}$ is generated by

$$\{ \begin{array}{l} c_{11}c_{32} + c_{13}c_{42} - c_{14}, \\ c_{21}c_{32} + c_{23}c_{42} - c_{24}, \\ c_{21}c_{22} + c_{24}c_{41} + c_{11} - c_{23}, \\ c_{31}c_{32} + c_{33}c_{42} + c_{12} - c_{34}, \\ c_{21}c_{32} + c_{34}c_{41} - c_{33}, \\ c_{21}c_{42} + c_{41}c_{44} + c_{31} - c_{43}, \end{array} \quad \begin{array}{l} c_{12}c_{21} + c_{14}c_{41} - c_{13}, \\ c_{12}c_{23} - c_{11}c_{34} + c_{14}c_{43} - c_{13}c_{44}, \\ c_{23}c_{32} - c_{31}c_{34} + c_{34}c_{43} - c_{33}c_{44} - c_{14}, \\ c_{22}c_{23} - c_{21}c_{34} + c_{24}c_{43} - c_{23}c_{44} + c_{13}, \\ c_{32}c_{41} + c_{42}c_{43} + c_{22} - c_{44}, \\ c_{34}c_{41} - c_{23}c_{42} + c_{24} - c_{33} \end{array} \}$$
Remark 2.4 (a) The border basis scheme is an open subscheme of the Hilbert scheme $\text{Hilb}^\mu(\mathbb{A}^n)$ parametrizing all 0-dimensional subschemes of \mathbb{A}^n of length μ.
Remark 2.4 (a) The border basis scheme is an open subscheme of the Hilbert scheme $\text{Hilb}^\mu(\mathbb{A}^n)$ parametrizing all 0-dimensional subschemes of \mathbb{A}^n of length μ.

(b) Note that its affine coordinate ring is given by easily computable quadratic equations.
Remark 2.4 (a) The border basis scheme is an open subscheme of the Hilbert scheme $\text{Hilb}^\mu(\mathbb{A}^n)$ parametrizing all 0-dimensional subschemes of \mathbb{A}^n of length μ.

(b) Note that its affine coordinate ring is given by easily computable quadratic equations.

(c) The various border basis schemes for order ideals with μ elements cover the Hilbert scheme.
Remark 2.4 (a) The border basis scheme is an open subscheme of the Hilbert scheme \(\text{Hilb}^\mu(\mathbb{A}^n) \) parametrizing all 0-dimensional subschemes of \(\mathbb{A}^n \) of length \(\mu \).

(b) Note that its affine coordinate ring is given by easily computable quadratic equations.

(c) The various border basis schemes for order ideals with \(\mu \) elements cover the Hilbert scheme.

Idea: Using the generic multiplication matrices and the algorithms given in the preceding talk, we can calculate sets of equations which define subschemes of \(\mathcal{B}_\mathcal{O} \) parametrizing 0-dimensional schemes having certain special properties such as Gorenstein schemes, CBP, strict Gorenstein schemes, strict complete intersections, etc.
3 – Computing the Locally Gorenstein Locus

90% of coding is debugging.
3 – Computing the Locally Gorenstein Locus

90% of coding is debugging.
The other 10% is writing bugs.
(Bram Cohen)
90% of coding is debugging.
The other 10% is writing bugs.
(Bram Cohen)

\[O = \{t_1, \ldots, t_\mu\} \text{ order ideal in } \mathbb{T}^n \]
90% of coding is debugging.
The other 10% is writing bugs.
(Bram Cohen)

\[\mathcal{O} = \{ t_1, \ldots, t_\mu \} \] order ideal in \(\mathbb{T}^n \)

Definition 3.1 The set of all \(K \)-rational points \(\Gamma = (\gamma_{ij}) \in K^{\mu \nu} \) of the border basis scheme \(\mathbb{B}_\mathcal{O} \) whose associated 0-dimensional scheme \(\mathbb{X}_\Gamma \) is locally Gorenstein is called the **locally Gorenstein locus** of \(\mathbb{B}_\mathcal{O} \) and is denoted by \(\text{L Gor}(\mathcal{O}) \).
Algorithm 3.2 (The Non-Locally Gorenstein Locus in $\mathbb{B}_\mathcal{O}$)

The following steps compute an ideal in $K[c_{ij}]$ which defines the complement of the locally Gorenstein locus in $\mathbb{B}_\mathcal{O}$.
Algorithm 3.2 (The Non- Locally Gorenstein Locus in $\mathcal{B}_\mathcal{O}$)
The following steps compute an ideal in $K[c_{ij}]$ which defines the complement of the locally Gorenstein locus in $\mathcal{B}_\mathcal{O}$.

(1) Determine the generic multiplication matrices A_1, \ldots, A_n for \mathcal{O}.
Algorithm 3.2 (The Non-Locally Gorenstein Locus in $\mathbb{B}_\mathcal{O}$)

The following steps compute an ideal in $K[c_{ij}]$ which defines the complement of the locally Gorenstein locus in $\mathbb{B}_\mathcal{O}$.

(1) Determine the generic multiplication matrices A_1, \ldots, A_n for \mathcal{O}.

(2) Calculate the commutators $A_r A_s - A_s A_r$ for $1 \leq r < s \leq n$ and form the ideal $I(\mathbb{B}_\mathcal{O})$ in $K[c_{ij}]$ generated by their entries.
Algorithm 3.2 (The Non-Locally Gorenstein Locus in $\mathbb{B}_\mathcal{O}$)
The following steps compute an ideal in $K[c_{ij}]$ which defines the complement of the locally Gorenstein locus in $\mathbb{B}_\mathcal{O}$.

(1) Determine the generic multiplication matrices A_1, \ldots, A_n for \mathcal{O}.

(2) Calculate the commutators $A_r A_s - A_s A_r$ for $1 \leq r < s \leq n$ and form the ideal $I(\mathbb{B}_\mathcal{O})$ in $K[c_{ij}]$ generated by their entries.

(3) Introduce new indeterminates z_1, \ldots, z_μ and construct the matrix C in $\text{Mat}_\mu(K[c_{ij}][z_1, \ldots, z_\mu])$ whose i-th column is given by $t_i(A_{1 \text{ tr}}, \ldots, A_{n \text{ tr}}) \cdot (z_1, \ldots, z_\mu)^{\text{tr}}$.
Algorithm 3.2 (The Non-locally Gorenstein Locus in \mathbb{B}_O)
The following steps compute an ideal in $K[c_{ij}]$ which defines the complement of the locally Gorenstein locus in \mathbb{B}_O.

1. Determine the generic multiplication matrices A_1, \ldots, A_n for O.
2. Calculate the commutators $A_r A_s - A_s A_r$ for $1 \leq r < s \leq n$ and form the ideal $I(\mathbb{B}_O)$ in $K[c_{ij}]$ generated by their entries.
3. Introduce new indeterminates z_1, \ldots, z_μ and construct the matrix C in $\text{Mat}_\mu(K[c_{ij}][z_1, \ldots, z_\mu])$ whose i-th column is given by $t_i(A_1^{tr}, \ldots, A_n^{tr}) \cdot (z_1, \ldots, z_\mu)^{tr}$.
4. Compute $\det(C)$ in $K[c_{ij}][z_1, \ldots, z_\mu]$, and let J be the ideal in $K[c_{ij}]$ generated by the coefficients of $\det(C)$ w.r.t. z_1, \ldots, z_μ.
Algorithm 3.2 (The Non-Locally Gorenstein Locus in $\mathbb{B}_\mathcal{O}$)

The following steps compute an ideal in $K[c_{ij}]$ which defines the complement of the locally Gorenstein locus in $\mathbb{B}_\mathcal{O}$.

(1) Determine the generic multiplication matrices A_1, \ldots, A_n for \mathcal{O}.

(2) Calculate the commutators $A_r A_s - A_s A_r$ for $1 \leq r < s \leq n$ and form the ideal $I(\mathbb{B}_\mathcal{O})$ in $K[c_{ij}]$ generated by their entries.

(3) Introduce new indeterminates z_1, \ldots, z_μ and construct the matrix C in $\text{Mat}_\mu(K[c_{ij}][z_1, \ldots, z_\mu])$ whose i-th column is given by $t_i(A_1^{tr}, \ldots, A_n^{tr}) \cdot (z_1, \ldots, z_\mu)^{tr}$.

(4) Compute $\det(C)$ in $K[c_{ij}][z_1, \ldots, z_\mu]$, and let J be the ideal in $K[c_{ij}]$ generated by the coefficients of $\det(C)$ w.r.t. z_1, \ldots, z_μ.

(5) Return the ideal $I(\mathbb{B}_\mathcal{O}) + J$.
Example 3.3 Let us compute the locally Gorenstein locus of $\mathbb{B}_\mathcal{O}$ in the above example $\mathcal{O} = \{1, x, y, xy\}$.
Example 3.3 Let us compute the locally Gorenstein locus of $B_\mathcal{O}$ in the above example $\mathcal{O} = \{1, x, y, xy\}$.

Let $Z = (z_1, z_2, z_3, z_4)^{tr}$ and form the matrix $C = (Z, A_x Z, A_y Z, A_x A_y Z)$. Its four columns are

\[
\begin{pmatrix}
0 & 1 & 0 & 0 \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\end{pmatrix}Z,
\begin{pmatrix}
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\end{pmatrix}Z,
\begin{pmatrix}
p_1 & p_2 & p_3 & p_4 \\
q_1 & q_2 & q_3 & q_4 \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\end{pmatrix}Z
\]

where $p_1 = c_{11}c_{32} + c_{13}c_{42}$, $p_2 = c_{21}c_{32} + c_{23}c_{42}$,

$p_3 = c_{31}c_{32} + c_{33}c_{42} + c_{12}$, $p_4 = c_{32}c_{41} + c_{42}c_{43} + c_{22}$,

$q_1 = c_{11}c_{34} + c_{13}c_{44}$, $q_2 = c_{21}c_{34} + c_{23}c_{44}$, $q_3 = c_{31}c_{34} + c_{33}c_{44} + c_{14}$, and $q_4 = c_{34}c_{41} + c_{43}c_{44} + c_{24}$.
The determinant of C is a polynomial

$$\det(C) = (-c_{11}^2 c_{14} c_{32} + c_{11}^2 c_{12} c_{34} - c_{11} c_{13} c_{41} c_{42} + c_{11} c_{12} c_{13} c_{44}$$

$$- c_{12} c_{13}^2) z_1^4 + \cdots + (-c_{41} c_{42} + 1) z_4^4$$

in $K[c_{ij}][z_1, z_2, z_3, z_4]$ which is homogeneous of degree 4 with respect to z_1, \ldots, z_4 and has 35 non-zero coefficients in $K[c_{ij}]$. Let J be the ideal generated by these coefficients. Then the Non-Locally Gorenstein Locus NonLGor(\mathcal{O}) is defined by the ideal $I(\mathcal{B}_\mathcal{O}) + J$.

Via the isomorphism $\mathcal{B}_\mathcal{O} \cong \tilde{\mathcal{P}} = K[c_{21}, c_{23}, c_{32}, c_{34}, c_{41}, c_{42}, c_{43}, c_{44}]$, we can examine NonLGor(\mathcal{O}) further. Let \tilde{J} be the image of J in $\tilde{\mathcal{P}}$. Then we can compute a Gröbner basis of \tilde{J} and check that $\dim(\tilde{\mathcal{P}}/\tilde{J}) = 4$. Hence NonLGor($\mathcal{O}$) is the set of closed points of a 4-dimensional closed subscheme of $\mathcal{B}_\mathcal{O} \cong \mathbb{A}^8$.
4 – The Degree Filtered Border Basis Scheme
The first five days after the weekend
The first five days after the weekend are always the worst.
The first five days after the weekend are always the worst.

Recall that the degree filtration of $R = P/I$ is given by $F_i R = P_{\leq i} / (I \cap P_{\leq i})$ for $i \in \mathbb{Z}$.

Definition 4.1 (a) A tuple $B = (\bar{t}_1, \ldots, \bar{t}_\mu) \in R^\mu$ is called a degree filtered K-basis of R if the set $B \cap F_i R$ is a K-basis of $F_i R$ for every $i \in \mathbb{Z}$ and if $\text{ord}(\bar{t}_1) \leq \cdots \leq \text{ord}(\bar{t}_\mu)$.
The first five days after the weekend are always the worst.

Recall that the degree filtration of \(R = P/I \) is given by
\[
F_i R = P_{\leq i}/(I \cap P_{\leq i}) \quad \text{for} \quad i \in \mathbb{Z}.
\]

Definition 4.1

(a) A tuple \(B = (\bar{t}_1, \ldots, \bar{t}_\mu) \in R^\mu \) is called a degree filtered \(K \)-basis of \(R \) if the set \(B \cap F_i R \) is a \(K \)-basis of \(F_i R \) for every \(i \in \mathbb{Z} \) and if \(\text{ord}(\bar{t}_1) \leq \cdots \leq \text{ord}(\bar{t}_\mu) \).

(b) We say that \(I \) has a degree filtered \(\mathcal{O} \)-border basis if \(\overline{\mathcal{O}} \) is a degree filtered \(K \)-basis of \(R \).
Proposition 4.2 For a K-rational point $\Gamma = (\gamma_{ij})$ of \mathcal{B}_O, the 0-dimensional scheme \mathbb{X}_Γ associated to Γ has a degree filtered \mathcal{O}-border basis if and only if $\gamma_{ij} = 0$ for all $i \in \{1, \ldots, \mu\}$ and $j \in \{1, \ldots, \nu\}$ such that $\deg(t_i) > \deg(b_j)$.
Proposition 4.2 For a K-rational point $\Gamma = (\gamma_{ij})$ of $B_\mathcal{O}$, the 0-dimensional scheme X_{Γ} associated to Γ has a degree filtered \mathcal{O}-border basis if and only if $\gamma_{ij} = 0$ for all $i \in \{1, \ldots, \mu\}$ and $j \in \{1, \ldots, \nu\}$ such that $\deg(t_i) > \deg(b_j)$.

Definition 4.3 Let $I_{\mathcal{O}}^{\text{df}}$ be the ideal in $K[c_{ij}]$ generated by all indeterminates c_{ij} such that $\deg(t_i) > \deg(b_j)$.
Proposition 4.2 For a K-rational point $\Gamma = (\gamma_{ij})$ of $\mathbb{B}_\mathcal{O}$, the 0-dimensional scheme X_Γ associated to Γ has a degree filtered \mathcal{O}-border basis if and only if $\gamma_{ij} = 0$ for all $i \in \{1, \ldots, \mu\}$ and $j \in \{1, \ldots, \nu\}$ such that $\text{deg}(t_i) > \text{deg}(b_j)$.

Definition 4.3 Let $I^\text{df}_\mathcal{O}$ be the ideal in $K[c_{ij}]$ generated by all indeterminates c_{ij} such that $\text{deg}(t_i) > \text{deg}(b_j)$.

(a) The closed subscheme $\mathbb{B}^\text{df}_\mathcal{O}$ of $\mathbb{B}_\mathcal{O}$ defined by $I(\mathbb{B}^\text{df}_\mathcal{O}) = I(\mathbb{B}_\mathcal{O}) + I^\text{df}_\mathcal{O}$ is called the degree filtered \mathcal{O}-border basis scheme. Its affine coordinate ring is denoted by $B^\text{df}_\mathcal{O} = K[c_{ij}]/I(\mathbb{B}^\text{df}_\mathcal{O})$.
Proposition 4.2 For a K-rational point $\Gamma = (\gamma_{ij})$ of $\mathbb{B}_\mathcal{O}$, the 0-dimensional scheme \mathbb{X}_Γ associated to Γ has a degree filtered \mathcal{O}-border basis if and only if $\gamma_{ij} = 0$ for all $i \in \{1, \ldots, \mu\}$ and $j \in \{1, \ldots, \nu\}$ such that $\deg(t_i) > \deg(b_j)$.

Definition 4.3 Let $I^\text{df}_\mathcal{O}$ be the ideal in $K[c_{ij}]$ generated by all indeterminates c_{ij} such that $\deg(t_i) > \deg(b_j)$.

(a) The closed subscheme $\mathbb{B}^\text{df}_\mathcal{O}$ of $\mathbb{B}_\mathcal{O}$ defined by $I(\mathbb{B}^\text{df}_\mathcal{O}) = I(\mathbb{B}_\mathcal{O}) + I^\text{df}_\mathcal{O}$ is called the degree filtered \mathcal{O}-border basis scheme. Its affine coordinate ring is denoted by $B^\text{df}_\mathcal{O} = K[c_{ij}]/I(\mathbb{B}^\text{df}_\mathcal{O})$.

(b) The set of polynomials $G^\text{df} = \{g_1^\text{df}, \ldots, g_\nu^\text{df}\}$ in $K[c_{ij}][x_1, \ldots, x_n]$ given by $g_j = b_j - \sum_{i: \deg(t_i) \leq \deg(b_j)} c_{ij} t_i$ is called the generic degree filtered \mathcal{O}-border prebasis.
Remark 4.4 (Some Properties of $\mathbb{B}_{\mathcal{O}}^{df}$)
Let C^{mondf} be the set of all indeterminates c_{ij} such that $\deg(t_i) > \deg(b_j)$.
Remark 4.4 (Some Properties of \mathbb{B}_O^{df})

Let C_{nondf} be the set of all indeterminates c_{ij} such that $\deg(t_i) > \deg(b_j)$.

(a) For $k = 1, \ldots, n$, let A_k^{df} be the matrix obtained from A_k by setting all indeterminates in C_{nondf} equal to zero. Then the matrices $A_1^{df}, \ldots, A_n^{df}$ are called the generic degree filtered multiplication matrices with respect to O.

17-a
Remark 4.4 (Some Properties of $\mathbb{B}^\text{df}_\mathcal{O}$)

Let C^nondf be the set of all indeterminates c_{ij} such that $\deg(t_i) > \deg(b_j)$.

(a) For $k = 1, \ldots, n$, let \mathcal{A}^df_k be the matrix obtained from \mathcal{A}_k by setting all indeterminates in C^nondf equal to zero. Then the matrices $\mathcal{A}^\text{df}_1, \ldots, \mathcal{A}^\text{df}_n$ are called the generic degree filtered multiplication matrices with respect to \mathcal{O}.

(b) When we set the indeterminates in C^nondf equal to zero in $I(\mathbb{B}_\mathcal{O})$, we get an ideal $\bar{I}(\mathbb{B}^\text{df}_\mathcal{O})$ such that $B^\text{df}_\mathcal{O} \cong K[C^\text{df}] / \bar{I}(\mathbb{B}^\text{df}_\mathcal{O})$.
Remark 4.4 (Some Properties of $\mathbb{B}^{df}_\mathcal{O}$)

Let C^{nondf} be the set of all indeterminates c_{ij} such that $\deg(t_i) > \deg(b_j)$.

(a) For $k = 1, \ldots, n$, let A^{df}_k be the matrix obtained from A_k by setting all indeterminates in C^{nondf} equal to zero. Then the matrices $A^{\text{df}}_1, \ldots, A^{\text{df}}_n$ are called the generic degree filtered multiplication matrices with respect to \mathcal{O}.

(b) When we set the indeterminates in C^{nondf} equal to zero in $I(\mathbb{B}_\mathcal{O})$, we get an ideal $\bar{I}(\mathbb{B}^{df}_\mathcal{O})$ such that $B^{\text{df}}_\mathcal{O} \cong K[C^{\text{df}}]/\bar{I}(\mathbb{B}^{df}_\mathcal{O})$.

(c) If \mathcal{O} has a generic Hilbert function then $\mathbb{B}_\mathcal{O} = \mathbb{B}^{df}_\mathcal{O}$.
5 – Computing the Cayley-Bacharach Locus

Great! It is summer!
Finally I can wear short trousers
Great! It is summer!
Finally I can wear short trousers while I play with my computer.
Great! It is summer!
Finally I can wear short trousers while I play with my computer.

Let $\mathcal{O} = \{t_1, \ldots, t_\mu\}$ be an order ideal in \mathbb{T}^n.

Definition 5.1 The set of all K-rational points $\Gamma = (\gamma_{ij}) \in K^{\mu \nu}$ of the border basis scheme $\mathbb{B}_\mathcal{O}$ whose associated 0-dimensional scheme X_Γ is a Cayley-Bacharach scheme is called the **Cayley-Bacharach locus** of $\mathbb{B}_\mathcal{O}$ and is denoted by $\text{CB}(\mathcal{O})$.
Great! It is summer!
Finally I can wear short trousers while I play with my computer.

Let $\mathcal{O} = \{t_1, \ldots, t_\mu\}$ be an order ideal in \mathbb{T}^n.

Definition 5.1 The set of all K-rational points $\Gamma = (\gamma_{ij}) \in K^{\mu \nu}$ of the border basis scheme $\mathbb{B}_\mathcal{O}$ whose associated 0-dimensional scheme X_Γ is a Cayley-Bacharach scheme is called the **Cayley-Bacharach locus** of $\mathbb{B}_\mathcal{O}$ and is denoted by $\text{CB}(\mathcal{O})$.

Goal: Calculate the Cayley-Bacharach locus in $\mathbb{B}^{\text{df}}_\mathcal{O}$, i.e. the equations defining $\text{CB}(\mathcal{O}) \cap \mathbb{B}^{\text{df}}_\mathcal{O}$.
Algorithm 5.2 (The Cayley-Bacharach Locus in $\mathbb{B}_\mathcal{O}^{df}$)
Let $\mathcal{O} = \{t_1, \ldots, t_\mu\}$ be an order ideal with $\deg(t_1) \leq \cdots \leq \deg(t_\mu)$, and let $\Delta = \# \{i \in \{1, \ldots, \mu\} \mid \deg(t_i) = \deg(t_\mu)\}$. The following algorithm computes the vanishing ideal of $\text{NonCB}(\mathcal{O}) \cap \mathbb{B}_\mathcal{O}^{df}$.

Algorithm 5.2 (The Cayley-Bacharach Locus in \mathbb{B}_O^{df})

Let $\mathcal{O} = \{t_1, \ldots, t_\mu\}$ be an order ideal with $\deg(t_1) \leq \cdots \leq \deg(t_\mu)$, and let $\Delta = \#\{i \in \{1, \ldots, \mu\} \mid \deg(t_i) = \deg(t_\mu)\}$. The following algorithm computes the vanishing ideal of $\text{NonCB}(\mathcal{O}) \cap \mathbb{B}_O^{df}$.

(1) As above, calculate $I(\mathbb{B}_O^{df}) = I(\mathbb{B}_O) + I_O^{df}$.
Algorithm 5.2 (The Cayley-Bacharach Locus in B^d_O)

Let $\mathcal{O} = \{t_1, \ldots, t_\mu\}$ be an order ideal with $\deg(t_1) \leq \cdots \leq \deg(t_\mu)$, and let $\Delta = \# \{i \in \{1, \ldots, \mu\} \mid \deg(t_i) = \deg(t_\mu)\}$. The following algorithm computes the vanishing ideal of $\text{NonCB}(\mathcal{O}) \cap B^d_O$.

(1) As above, calculate $I(B^d_O) = I(B_O) + I^d_O$.

(2) Form the generic multiplication matrices A_1, \ldots, A_n. For $i = 1, \ldots, \mu$, compute the multiplication matrix $M_{t_i} = t_i(A_1, \ldots, A_n)$.
Algorithm 5.2 (The Cayley-Bacharach Locus in $\mathcal{B}^{df}_\mathcal{O}$)

Let $\mathcal{O} = \{t_1, \ldots, t_\mu\}$ be an order ideal with $\deg(t_1) \leq \cdots \leq \deg(t_\mu)$, and let $\Delta = \#\{i \in \{1, \ldots, \mu\} \mid \deg(t_i) = \deg(t_\mu)\}$. The following algorithm computes the vanishing ideal of $\text{NonCB}(\mathcal{O}) \cap \mathcal{B}^{df}_\mathcal{O}$.

1. As above, calculate $I(\mathcal{B}^{df}_\mathcal{O}) = I(\mathcal{B}_\mathcal{O}) + I^{df}_\mathcal{O}$.

2. Form the generic multiplication matrices A_1, \ldots, A_μ. For $i = 1, \ldots, \mu$, compute the multiplication matrix $M_{t_i} = t_i(A_1, \ldots, A_\mu)$.

3. For $j = 1, \ldots, \Delta$, form the matrix $V_j \in \text{Mat}_\mu(K[c_{ij}])$ whose i-th column is the $(\mu - \Delta + j)$-th column of $M_{t_i}^{tr}$ for $i = 1, \ldots, \mu$.
Algorithm 5.2 (The Cayley-Bacharach Locus in B^d_O)
Let $O = \{t_1, \ldots, t_\mu\}$ be an order ideal with $\deg(t_1) \leq \cdots \leq \deg(t_\mu)$, and let $\Delta = \#\{i \in \{1, \ldots, \mu\} \mid \deg(t_i) = \deg(t_\mu)\}$. The following algorithm computes the vanishing ideal of $\text{NonCB}(O) \cap B^d_O$.

(1) As above, calculate $I(B^d_O) = I(B_O) + I^d_O$.

(2) Form the generic multiplication matrices A_1, \ldots, A_n. For $i = 1, \ldots, \mu$, compute the multiplication matrix $M_{t_i} = t_i(A_1, \ldots, A_n)$.

(3) For $j = 1, \ldots, \Delta$, form the matrix $V_j \in \text{Mat}_\mu(K[c_{ij}])$ whose i-th column is the $(\mu - \Delta + j)$-th column of $M_{t_i}^{\text{tr}}$ for $i = 1, \ldots, \mu$.

(4) Form the block column matrix $W = \text{Col}(V_1, \ldots, V_\Delta)$ and compute the ideal J generated by the maximal minors of W.
Algorithm 5.2 (The Cayley-Bacharach Locus in $\mathbb{B}^\text{df}_\mathcal{O}$)

Let $\mathcal{O} = \{t_1, \ldots, t_\mu\}$ be an order ideal with $\deg(t_1) \leq \cdots \leq \deg(t_\mu)$, and let $\Delta = \#\{i \in \{1, \ldots, \mu\} \mid \deg(t_i) = \deg(t_\mu)\}$. The following algorithm computes the vanishing ideal of $\text{NonCB}(\mathcal{O}) \cap \mathbb{B}^\text{df}_\mathcal{O}$.

(1) As above, calculate $I(\mathbb{B}^\text{df}_\mathcal{O}) = I(\mathbb{B}_\mathcal{O}) + I^\text{df}_\mathcal{O}$.

(2) Form the generic multiplication matrices A_1, \ldots, A_μ. For $i = 1, \ldots, \mu$, compute the multiplication matrix $M_{t_i} = t_i(A_1, \ldots, A_\mu)$.

(3) For $j = 1, \ldots, \Delta$, form the matrix $V_j \in \text{Mat}_\mu(K[c_{ij}])$ whose i-th column is the $(\mu - \Delta + j)$-th column of $M_{t_i}^{\text{tr}}$ for $i = 1, \ldots, \mu$.

(4) Form the block column matrix $W = \text{Col}(V_1, \ldots, V_\Delta)$ and compute the ideal J generated by the maximal minors of W.

(5) Return the ideal $I(\mathbb{B}^\text{df}_\mathcal{O}) + J$.
The trouble with socialism is that eventually
The trouble with socialism is that eventually you run out of other people’s money.

(Margaret Thatcher)
The trouble with socialism is that eventually you run out of other people’s money.
(Margaret Thatcher)

Definition 6.1 Let X be a 0-dimensional subscheme of \mathbb{A}^n. The scheme X is called a \textbf{strict complete intersection scheme} if the associated graded ring $\text{gr}_F(R_X) \cong P/DF(I)$ is a (local) complete intersection.
The trouble with socialism is that eventually you run out of other people’s money.

(Margaret Thatcher)

Definition 6.1 Let X be a 0-dimensional subscheme of \mathbb{A}^n. The scheme X is called a **strict complete intersection scheme** if the associated graded ring $\text{gr}_F(R_X) \cong P/DF(I)$ is a (local) complete intersection.

Idea: The rings $P/DF(I)$ are parametrized by the **homogeneous border basis scheme**. Apply the characterization of local complete intersections to this family.
Definition 6.2 Let $I^\text{hom}_\mathcal{O}$ be the ideal in $K[c_{ij}]$ generated by all indeterminates c_{ij} such that $\text{deg}(t_i) \neq \text{deg}(b_j)$.
Definition 6.2 Let $I^\text{hom}_\mathcal{O}$ be the ideal in $K[c_{ij}]$ generated by all indeterminates c_{ij} such that $\deg(t_i) \neq \deg(b_j)$.

(a) The closed subscheme $\mathbb{B}^\text{hom}_\mathcal{O}$ of $\mathbb{B}_\mathcal{O}$ defined by $I(\mathbb{B}^\text{hom}_\mathcal{O}) = I(\mathbb{B}_\mathcal{O}) + I^\text{hom}_\mathcal{O}$ is called the homogeneous \mathcal{O}-border basis scheme. Its affine coordinate ring is $B^\text{hom}_\mathcal{O} = K[c_{ij}]/I(\mathbb{B}^\text{hom}_\mathcal{O})$.
Definition 6.2 Let $I_{\mathcal{O}}^{\text{hom}}$ be the ideal in $K[c_{ij}]$ generated by all indeterminates c_{ij} such that $\deg(t_i) \neq \deg(b_j)$.

(a) The closed subscheme $\mathbb{B}_{\mathcal{O}}^{\text{hom}}$ of $\mathbb{B}_{\mathcal{O}}$ defined by $I(\mathbb{B}_{\mathcal{O}}^{\text{hom}}) = I(\mathbb{B}_{\mathcal{O}}) + I_{\mathcal{O}}^{\text{hom}}$ is called the homogeneous \mathcal{O}-border basis scheme. Its affine coordinate ring is $B_{\mathcal{O}}^{\text{hom}} = K[c_{ij}]/I(\mathbb{B}_{\mathcal{O}}^{\text{hom}})$.

(b) The set of polynomials $G_{\mathcal{O}}^{\text{hom}} = \{g_{1}^{\text{hom}}, \ldots, g_{\nu}^{\text{hom}}\}$ in $K[c_{ij}][x_1, \ldots, x_n]$ given by $g_{j}^{\text{hom}} = b_j - \sum_{\{i | \deg(t_i) = \deg(b_j)\}} c_{ij} t_i$ is called the generic homogeneous \mathcal{O}-border prebasis.
Definition 6.2 Let $I^\text{hom}_\mathcal{O}$ be the ideal in $K[c_{ij}]$ generated by all indeterminates c_{ij} such that $\deg(t_i) \neq \deg(b_j)$.

(a) The closed subscheme $\mathbb{B}_\mathcal{O}^\text{hom}$ of $\mathbb{B}_\mathcal{O}$ defined by $I(\mathbb{B}_\mathcal{O}^\text{hom}) = I(\mathbb{B}_\mathcal{O}) + I^\text{hom}_\mathcal{O}$ is called the homogeneous \mathcal{O}-border basis scheme. Its affine coordinate ring is $B^\text{hom}_\mathcal{O} = K[c_{ij}]/I(\mathbb{B}_\mathcal{O}^\text{hom})$.

(b) The set of polynomials $G^\text{hom} = \{g^\text{hom}_1, \ldots, g^\text{hom}_\nu\}$ in $K[c_{ij}][x_1, \ldots, x_n]$ given by $g^\text{hom}_j = b_j - \sum\{i|\deg(t_i) = \deg(b_j)\} c_{ij} t_i$ is called the generic homogeneous \mathcal{O}-border prebasis.

(c) Let C^hom be the set of all c_{ij} such that $\deg(t_i) \neq \deg(b_j)$. For $k = 1, \ldots, n$, let A^hom_k be the matrix obtained from A_k by setting all indeterminates in C^hom equal to zero. Then the matrices $A^\text{hom}_1, \ldots, A^\text{hom}_n$ are called the generic homogeneous multiplication matrices with respect to \mathcal{O}.
Algorithm 6.3 (Computing the Strict CI Locus in $\mathbb{B}^d_\mathcal{O}$)

Let $\mathcal{O} = \{t_1, \ldots, t_\mu\}$ be an order ideal with $\deg(t_1) \leq \cdots \leq \deg(t_\mu)$, and let $\varrho = \deg(t_\mu)$. Consider the following sequence of instructions.
Algorithm 6.3 (Computing the Strict CI Locus in $\mathbb{B}_{\mathcal{O}}^{df}$)

Let $\mathcal{O} = \{t_1, \ldots, t_\mu\}$ be an order ideal with $\deg(t_1) \leq \cdots \leq \deg(t_\mu)$, and let $\varrho = \deg(t_\mu)$. Consider the following sequence of instructions.

(1) For $i = 1, \ldots, \varrho$, determine the number $h_i = \#\{t_j \in \mathcal{O} \mid \deg(t_j) = i\}$. If the tuple (h_0, \ldots, h_ϱ) is not symmetric, then return the ideal $\langle 1 \rangle$ and stop.
Algorithm 6.3 (Computing the Strict CI Locus in $\mathbb{B}^{\text{df}}_{\mathcal{O}}$)

Let $\mathcal{O} = \{t_1, \ldots, t_\mu\}$ be an order ideal with $\deg(t_1) \leq \cdots \leq \deg(t_\mu)$, and let $\varrho = \deg(t_\mu)$. Consider the following sequence of instructions.

1. For $i = 1, \ldots, \varrho$, determine the number $h_i = \# \{ t_j \in \mathcal{O} \mid \deg(t_j) = i \}$. If the tuple (h_0, \ldots, h_ϱ) is not symmetric, then return the ideal \langle 1 \rangle and stop.

2. Let $I_{\mathcal{O}}^{\text{df}}$ be the ideal in $K[c_{ij}]$ generated by all indeterminates c_{ij} such that $\deg(t_i) > \deg(b_j)$, and let $I(\mathbb{B}^{\text{df}}_{\mathcal{O}}) = I(\mathbb{B}_{\mathcal{O}}) + I_{\mathcal{O}}^{\text{df}}$
Algorithm 6.3 *(Computing the Strict CI Locus in B^d_O)*

Let $\mathcal{O} = \{t_1, \ldots, t_\mu\}$ be an order ideal with $\deg(t_1) \leq \cdots \leq \deg(t_\mu)$, and let $\varrho = \deg(t_\mu)$. Consider the following sequence of instructions.

(1) For $i = 1, \ldots, \varrho$, determine the number

$h_i = \# \{t_j \in \mathcal{O} \mid \deg(t_j) = i\}$. If the tuple (h_0, \ldots, h_ϱ) is not symmetric, then return the ideal $\langle 1 \rangle$ and stop.

(2) Let $I^d_{\mathcal{O}}$ be the ideal in $K[c_{ij}]$ generated by all indeterminates c_{ij} such that $\deg(t_i) > \deg(b_j)$, and let $I(B^d_{\mathcal{O}}) = I(B_{\mathcal{O}}) + I^d_{\mathcal{O}}$

(3) Form the generic homogeneous \mathcal{O}-border prebasis

$G^\text{hom} = \{g^\text{hom}_1, \ldots, g^\text{hom}_j\}$ and write $g^\text{hom}_j = \sum_{i=1}^n h_{ij} x_i$ with $h_{ij} \in K[c_{ij}][x_1, \ldots, x_n]$ for $j = 1, \ldots, \nu$.

Algorithm 6.3 (Computing the Strict CI Locus in $\mathcal{B}^{\text{df}}_{\mathcal{O}}$)

Let $\mathcal{O} = \{t_1, \ldots, t_\mu\}$ be an order ideal with $\deg(t_1) \leq \cdots \leq \deg(t_\mu)$, and let $\varrho = \deg(t_\mu)$. Consider the following sequence of instructions.

(1) For $i = 1, \ldots, \varrho$, determine the number $h_i = \#\{t_j \in \mathcal{O} \mid \deg(t_j) = i\}$. If the tuple (h_0, \ldots, h_ϱ) is not symmetric, then return the ideal $\langle 1 \rangle$ and stop.

(2) Let $I^{\text{df}}_{\mathcal{O}}$ be the ideal in $K[c_{ij}]$ generated by all indeterminates c_{ij} such that $\deg(t_i) > \deg(b_j)$, and let $I(\mathcal{B}^{\text{df}}_{\mathcal{O}}) = I(\mathcal{B}_{\mathcal{O}}) + I^{\text{df}}_{\mathcal{O}}$.

(3) Form the generic homogeneous \mathcal{O}-border prebasis $G_{\text{hom}} = \{g_{1\text{hom}}, \ldots, g_{j\text{hom}}\}$ and write $g_{j\text{hom}} = \sum_{i=1}^{n} h_{ij} x_i$ with $h_{ij} \in K[c_{ij}][x_1, \ldots, x_n]$ for $j = 1, \ldots, \nu$.

(4) Form the matrix W of size $n \times \nu$ whose columns are given by $\sum_{i=1}^{n} h_{ij} e_i$ for $j = 1, \ldots, \nu$.
(5) Let $k = \binom{\nu}{n}$. Calculate the minors f_1, \ldots, f_k of order n of W.
(5) Let \(k = \binom{\nu}{n} \). Calculate the minors \(f_1, \ldots, f_k \) of order \(n \) of \(W \).

(6) Using border division by \(G^{\text{hom}} \), write the residue classes \(\bar{f}_1, \ldots, \bar{f}_k \in B^{\text{hom}}_\mathcal{O}/\langle G^{\text{hom}} \rangle \) as \(B^{\text{hom}}_\mathcal{O} \)-linear combinations

\[
\bar{f}_j = \sum_{i=1}^{\mu} \bar{a}_{ij}t_i \quad \text{with} \quad \bar{a}_{1j}, \ldots, \bar{a}_{\mu j} \in B^{\text{hom}}_\mathcal{O} \quad \text{for} \quad j = 1, \ldots, k.
\]
(5) Let $k = \binom{\nu}{n}$. Calculate the minors f_1, \ldots, f_k of order n of W.

(6) Using border division by G^{hom}, write the residue classes
\[\bar{f}_1, \ldots, \bar{f}_k \in B^{\text{hom}}_{O}/\langle G^{\text{hom}} \rangle \]
as B^{hom}_{O}-linear combinations
\[\bar{f}_j = \sum_{i=1}^\mu \bar{a}_{ij} t_i \]
with $\bar{a}_{1j}, \ldots, \bar{a}_{\mu j} \in B^{\text{hom}}_{O}$ for $j = 1, \ldots, k$.

(7) Let $C^{\text{hom}} = \{ c_{ij} \mid \deg(t_i) = \deg(b_j) \}$. For $i = 1, \ldots, \mu$ and
\[j = 1, \ldots, k, \]
let $a_{ij} \in K[C^{\text{hom}}]$ be a polynomial which represents the
\[\bar{a}_{ij} \]
with respect to $B^{\text{hom}}_{O} \cong K[C^{\text{hom}}]/I(B^{\text{hom}}_{O})$. Return the ideal
\[J = I(B^{\text{df}}_{O}) + \langle a_{ij} \mid i \in \{1, \ldots, \mu\}, j \in \{1, \ldots, k\} \rangle \]
and stop.
(5) Let $k = \binom{n}{\nu}$. Calculate the minors f_1, \ldots, f_k of order n of W.

(6) Using border division by G^hom, write the residue classes $ar{f}_1, \ldots, \bar{f}_k \in B^\text{hom}_O / \langle G^\text{hom} \rangle$ as B^hom_O-linear combinations

$$
\bar{f}_j = \sum_{i=1}^{\mu} \bar{a}_{ij} t_i \text{ with } \bar{a}_{1j}, \ldots, \bar{a}_{\mu j} \in B^\text{hom}_O \text{ for } j = 1, \ldots, k.
$$

(7) Let $C^\text{hom} = \{ c_{ij} \mid \deg(t_i) = \deg(b_j) \}$. For $i = 1, \ldots, \mu$ and $j = 1, \ldots, k$, let $a_{ij} \in K[C^\text{hom}]$ be a polynomial which represents the \bar{a}_{ij} with respect to $B^\text{hom}_O \cong K[C^\text{hom}] / \bar{I}(B^\text{hom}_O)$. Return the ideal

$$
J = I(B^\text{df}_O) + \langle a_{ij} \mid i \in \{1, \ldots, \mu\}, j \in \{1, \ldots, k\} \rangle
$$

and stop.

This is an algorithm which computes an ideal J in the ring $K[c_{ij}]$ which defines a closed subscheme $\text{NonSCI}(O) \cap B^\text{df}_O$. The K-rational points of this subscheme represent the 0-dimensional subschemes of \mathbb{A}^n which have a degree filtered O-border basis, but are not strict complete intersection schemes.
(1) There are many other loci in the border bases scheme which we can describe explicitly, e.g.
(1) There are many other loci in the border bases scheme which we can describe explicitly, e.g.

- strict Cayley-Bacharach schemes
(1) There are many other loci in the border bases scheme which we can describe explicitly, e.g.

- strict Cayley-Bacharach schemes
- strict Gorenstein schemes
Outlook

(1) There are many other loci in the border bases scheme which we can describe explicitly, e.g.

- strict Cayley-Bacharach schemes
- strict Gorenstein schemes
- locally Gorenstein Cayley-Bacharach schemes
Outlook

(1) There are many other loci in the border bases scheme which we can describe explicitly, e.g.

- strict Cayley-Bacharach schemes
- strict Gorenstein schemes
- locally Gorenstein Cayley-Bacharach schemes

(2) Many properties require us to fix the (affine) Hilbert function.
(1) There are many other loci in the border bases scheme which we can describe explicitly, e.g.

- strict Cayley-Bacharach schemes
- strict Gorenstein schemes
- locally Gorenstein Cayley-Bacharach schemes

(2) Many properties require us to fix the (affine) Hilbert function.

- The closed subscheme $B_\mathcal{O}(\overline{H})$ of $B_\mathcal{O}$ corresponds to all schemes whose Hilbert function is dominated by a fixed Hilbert function \mathcal{H}.
Outlook

(1) There are many other loci in the border bases scheme which we can describe explicitly, e.g.

• strict Cayley-Bacharach schemes
• strict Gorenstein schemes
• locally Gorenstein Cayley-Bacharach schemes

(2) Many properties require us to fix the (affine) Hilbert function.

• The closed subscheme $B_\mathcal{O}(\overline{H})$ of $B_\mathcal{O}$ corresponds to all schemes whose Hilbert function is dominated by a fixed Hilbert function H.
• Its open subset $B_\mathcal{O}(H)$ corresponds to all schemes whose Hilbert function is H.
• The defining equations of $\mathcal{B}_\mathcal{O}(\mathcal{H})$ can be computed.
• The defining equations of $\mathcal{B}_\mathcal{O}(\overline{\mathcal{H}})$ can be computed.

(3) The various Hilbert function subschemes of $\mathcal{B}_\mathcal{O}$ form a tree at whose root lies $\mathcal{B}_\mathcal{O}^{\text{df}}$ and whose unique leaf is the subscheme corresponding to $\mathcal{H} : 1 2 \cdots \mu \mu \cdots$.
• The defining equations of $\mathbb{B}_\mathcal{O}(\overline{\mathcal{H}})$ can be computed.

(3) The various Hilbert function subschemes of $\mathbb{B}_\mathcal{O}$ form a tree at whose root lies $\mathbb{B}_\mathcal{O}^{df}$ and whose unique leaf is the subscheme corresponding to $\mathcal{H} : 1 2 \cdots \mu \mu \cdots$.

(4) Inside the parts of this stratification we can calculate the equations defining the loci of the subschemes which are locally Gorenstein, Cayley-Bacharach, strict complete intersections, etc. In general, these loci are constructible and can be described by a pair of ideals.
The trouble with Spanish food is that 5-6 days later you are hungry again.

Thank you for your attention!
The trouble with Spanish food is that 5-6 days later you are hungry again.

Thank you for your attention!

Humor is if you laugh anyway.