COMBINATORICS OF IDEALS OF POINTS: A CERLIENCO-MUREDDU-LIKE APPROACH FOR AN ITERATIVE LEX GAME.

Michela Ceria Teo Mora

ACA2018
Santiago de Compostela
19th June 2018
Cerlienco-Mureddu (1990)

Given a finite set of distinct points X, compute the lexicographical Groebner escalier $N(I(X))$ of the ideal of the points $I(X)$.

There is a 1 – 1 correspondence between X and $N(I(X))$.

The algorithm providing the correspondence is iterative on the points and inductive on the variables.

Complexity: n^2S^2 ($n =$ number of variables, $S = |X|$).
An improvement: the lex game

Felszeghy-Rath-Ronyai (2006)

By a clever use of tries (point trie - lex trie), they develop an algorithm that computes the lexicographical escalier in a more efficient way.

The algorithm drops iterativity for the sake of efficiency. Complexity: \(nS + S \min(S, nr) \)
\((r = \text{maximal number of children of a node}).\)
The point trie

It is a trie representing the reciprocal relations among the coordinates of points.

same path from level 0 to level $i = \text{same } 1, \ldots, i$ first coordinates

It is constructed **iteratively** on the points.
Example of point trie

\[\mathbf{X} = \{ P_1 = (1, 0, 0), P_2 = (0, 1, 0), P_3 = (1, 1, 2), P_4 = (1, 0, 3) \} \]
Example of point trie

\[X = \{P_1 = (1, 0, 0), P_2 = (0, 1, 0), P_3 = (1, 1, 2), P_4 = (1, 0, 3)\} \]
Example of point trie

\[X = \{ P_1 = (1, 0, 0), P_2 = (0, 1, 0), P_3 = (1, 1, 2), P_4 = (1, 0, 3) \} \]
Example of point trie

\[X = \{ P_1 = (1, 0, 0), P_2 = (0, 1, 0), P_3 = (1, 1, 2), P_4 = (1, 0, 3) \} \]

```
{1, 2, 3, 4}  
  / \     / \   
{1, 3, 4} {2}  
     / \     / \\
 0 1 1 0 
{1, 4} {3} {2} 
     / \     / \\
 0 3 2 0 
{1} {4} {3} {2}
```
Another point of view: Moeller’s algorithm

Moeller (1993)

Given an ordered finite set of distinct points $X := \{P_1, ..., P_S\}$, find, for each ideal in Macaulay’s chain $I_i := I(\{P_1, ..., P_i\})$ $1 \leq i \leq S$, the **escalier** $N(I_i)$ and a **separator family** for the points (with some more steps you also get the Groebner bases).
Another point of view: Moeller’s algorithm

Moeller (1993)

Given an ordered finite set of distinct points $\mathbf{X} := \{P_1, ..., P_S\}$, find, for each ideal in Macaulay’s chain $I_i := I(\{P_1, ..., P_i\})$ $1 \leq i \leq S$, the escalier $N(I_i)$ and a separator family for the points (with some more steps you also get the Groebner bases).

→ iterative on points
→ the result (for Lex) is exactly that of Cerlienco-Mureddu algorithm.
Another point of view: Moeller’s algorithm

Moeller (1993)
Given an ordered finite set of distinct points \(X := \{P_1, ..., P_S\} \), find, for each ideal in Macaulay’s chain \(I_i := \mathcal{I}(\{P_1, ..., P_i\}) \) \(1 \leq i \leq S \), the escalier \(N(I_i) \) and a separator family for the points (with some more steps you also get the Groebner bases).
→ iterative on points
→ the result (for Lex) is exactly that of Cerlienco-Mureddu algorithm.

Mora
With the same input data, if we make an adaptation of Moeller algorithm (some more computations, and keeping track of some more information) we can get more information, such as Groebner representation and Auzinger-Stetter matrices and the complexity is actually the same.
Can we construct a new algorithm, that is iterative as Cerlienco-Mureddu and has the same complexity as the lex game?
Bar Codes

Definition
A Bar Code B is a picture composed by segments, called *bars*, superimposed in horizontal rows, which satisfies

A. $\forall i, j, 1 \leq i \leq n - 1, 1 \leq j \leq \mu(i), \exists! j \in \{1, ..., \mu(i + 1)\}$ s.t. $B_{(i+1)}^j$ lies under B_i^j

B. $\forall i_1, i_2 \in \{1, ..., n\}, \sum_{j_1=1}^{\mu(i_1)} l_1(B_{i_1}^{j_1}) = \sum_{j_2=1}^{\mu(i_2)} l_1(B_{i_2}^{j_2})$; we will then say that *all the rows have the same length*.

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
For $t = x_1^{\gamma_1} \cdots x_n^{\gamma_n} \in \mathcal{T}$, $\forall i \in \{1, \ldots, n\}$, $\pi^i(t) := x_1^{\gamma_i} \cdots x_n^{\gamma_n}$;
$M = \{t_1, \ldots, t_m\} \subset \mathcal{T}$, $M[i] := \pi^i(M)$, M, $M[i]$ increasingly ordered w.r.t. Lex.

$$M := \begin{pmatrix}
\pi^1(t_1) & \cdots & \pi^1(t_m) \\
\pi^2(t_1) & \cdots & \pi^2(t_m) \\
\vdots & \ddots & \vdots \\
\pi^n(t_1) & \cdots & \pi^n(t_m)
\end{pmatrix}$$

Bar Code: connecting with a bar the repeated terms
We can see the Bar Code as a **point trie** by taking as points the exponents’ lists (*→* Macaulay’s trick) for the given terms.

For $M = \{1, x_1, x_2, x_3\} \subset k[x_1, x_2, x_3]$, we have

- $\mathcal{M} = \{p_1 = (0, 0, 0), p_2 = (0, 0, 1), p_3 = (0, 1, 0), p_4 = (1, 0, 0)\}$, so

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Several applications of Bar Code

Bar Codes are useful to study properties of monomial/polynomial ideals:

- counting (strongly) stable ideals;
- computing Pommaret bases via interpolation;
- computing Janet multiplicative variables and Janet-like multiplicative powers
- detect completeness;
- find variables’ orderings which make a set of terms Janet-complete
- Bar Code, point trie vs. Janet tree
Two questions

In St Petersburg...

1.

 Lundqvist: since the BC is similar to the lex/point trie; why do you use it instead of using the tries?

 Mora: since we cannot give an iterative version of the Lex Game using tries

 Lundqvist: ok, I will try to find an iterative algorithm with the same complexity using tries.

2.

 Robbiano can you generalize your algorithm to the case of multiple points?

 Mora: probably not, since Macaulay’s language is heavy...

 Ceria-Mora: we have to do it!! → research in progress by generalizing Lundqvist’s results (see previous talk)
Base step

$|\mathbf{X}| = N = 1$: set $N(1) = \{1\}$ and construct the point trie $T(P_1) = \mathcal{T}(\mathbf{X})$ and the Bar Code $B(1)$ displayed below. The output is stored in the matrix M.

\[
\begin{array}{c}
\{1\} \\
a_{11} \vdots \\
\{1\} \\
a_{21} \vdots \\
\{1\} \\
a_{n-1,1} \vdots \\
a_{n,1} \\
\{1\}
\end{array}
\begin{array}{c}
1 \\
x_1 \\
\vdots \\
x_n
\end{array}
\]

\[
M = \begin{bmatrix}
x_n & x_{n-1} & \cdots & x_1 \\
\downarrow & \downarrow & \cdots & \downarrow \\
1 \rightarrow & 0 & 0 & \cdots & 0
\end{bmatrix}
\]
Our algorithm: $|X| = N > 1$

- update the point trie: forking level $s = \sigma$-value; leftmost label of the rightmost sibling $l = \sigma$-antecedent;
- find the s–bar of t_l: $B_j^{(s)}$

Information on t_N:
- it lies over $B_1^{(n)}, B_1^{(n-1)}, \ldots, B_1^{(s+1)}$ so t_N lies over the first $n, \ldots, s + 1$ bars, i.e. $a_{s+1}^{(N)} = \ldots = a_n^{(N)} = 0$, so $x_n, \ldots, x_{s+1} \not\mid t_N$;
- it should lie over $B_{j+1}^{(s)}$: $a_s^{(N)} = a_s^{(l)} + 1$.
Our algorithm: \(|X| = N > 1\)

We test whether \(B_{j+1}^{(s)}\) lies over \(B_1^{(n)}, B_1^{(n-1)}, \ldots, B_1^{(s+1)}\); two possible cases

A. **NO**: we construct a new \(s\)-bar of length one over \(B_1^{(n)}, B_1^{(n-1)}, \ldots, B_1^{(s+1)}\), on the right of \(B_j^{(s)}\), we label it as \(B_j^{(s)}\)
and we construct a 1, ..., \(s-1\) bar of length 1 over \(B_{j+1}^{(s)}\):
\[t_N = x_{j+2}^s \]; store the output in the \(N\)-th row of \(M\).

B. **YES**: we must continue, repeating the procedure
Our algorithm: $|X| = N > 1$

- **restrict** the point trie to the points whose corresponding terms lie over $B_{j+1}^{(s)}$. The set containing these points is denoted by S and is obtained reading $B_{j+1}^{(s)}$. More precisely, $S = \psi(B_{j+1}^{(s)})$, where

$$\psi : B \rightarrow \mathcal{T}$$

is the function sending each 1-bar $B_{l}^{(1)}$ in the term t_l over it and, inductively, for $1 < u \leq n$, $\psi(B_{h}^{(u)}) = \bigcup_{B \text{ over } B_{h}^{(u)}} \psi(B)$

- **read P_N’s path**, from level $s - 1$ to level 1, looking for the first forking level w.r.t. S (σ-value/σ-antecedent as before).

- **repeat** the test

The procedure is repeated until we get to the 1-bars or if in the decision step we get case a.
Example

\[
\mathbf{X} = \{P_1 = (0, 0, 0, 0), P_2 = (0, 0, 0, 1), P_3 = (0, 1, 2, 3), P_4 = (1, 0, 0, 0), P_5 = (1, 0, 0, 1)\}
\]

\[
\{1, 2, 3\}
\]

\[
\begin{array}{c}
\{1, 2, 3\} \\
\{1, 2\} & \{3\} \\
\{1\} & \{2\} & \{3\}
\end{array}
\]

\[
\begin{pmatrix}
1 & 1 \\
3 & _ \\
2 & _ \\
_ & _ \\
_ & _ \\
_ & _ \\
_ & _ \\
\end{pmatrix}
\]

\[
\mathbf{M} = \begin{bmatrix}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{bmatrix}
\]
For $P_4 = (1, 0, 0, 0)$, $s = 1$, $l = 1$; B the blue bar

{1, 2, 3, 4}

{1, 2, 3} {4}

{1, 2} {3} {4}

{1, 2} {3} {4}

{1} {2} {3} {4}

There is no 1-bar on the right of B, lying over $B_1^{(4)}$, $B_1^{(3)}$, $B_1^{(2)}$:
\(P_5 = (1, 0, 0, 1); \ s = 4 \ l = 4: \)

\[
\begin{array}{c}
\{1, 2, 3, 4, 5\} \\
\{1, 2, 3\} & \{4, 5\} \\
\{1, 2\} & \{3\} & \{4, 5\} \\
\{1, 2\} & \{3\} & \{4, 5\} \\
\{1\} & \{2\} & \{3\} & \{4\} & \{5\}
\end{array}
\]

\[
B = B_1^{(4)}; \ B' = B_2^{(4)}, \ S = \{P_2\}.
\]

\[
\begin{array}{cccc}
1 & 4 & 3 & 2 \\
1 & x_1 & x_2 & x_4 \\
\hline
x_1 & \quad & \quad & \quad \\
\hline
x_2 & \quad & \quad & \quad \\
\hline
x_3 & \quad & \quad & \quad \\
\hline
x_4 & \quad & \quad & \quad
\end{array}
\]

\begin{itemize}
\item Blue line: \(x_1 \)
\item Red line: \(x_4 \)
\end{itemize}
The fork with P_2 happens at $s = 1$ and the σ-antecedent is P_l, for $l = 2$, so $B = B_4^{(1)}$.

$$
\begin{array}{cccc}
1 & 4 & 3 & 2 \\
1 & x_1 & x_2 & x_4 \\
\end{array}
$$

Since B' still does not exist, we create it

$$
\begin{array}{ccccc}
1 & 4 & 3 & 2 & 5 \\
1 & x_1 & x_2 & x_4 & x_1 x_4 \\
\end{array}
$$

$N = \{1, x_1, x_2, x_4, x_1 x_4\}$
A family of separators for a finite set $X = \{P_1, ..., P_N\}$ of distinct points is a set $Q = \{Q_1, ..., Q_N\}$ s.t. $Q_i(P_i) = 1$ and $Q_i(P_j) = 0$, for each $1 \leq i, j \leq N$, $i \neq j$.

$X = \{P_1, ..., P_N\}$, with $P_i := (a_{1,i}, ..., a_{n,i})$, $i = 1, ..., N$, we denote by $C = (c_{i,j})$ the witness matrix i.e. the (symmetric) matrix s.t., for $i, j = 1, ..., N$, $c_{i,j} = 0$ if $i = j$ and if $i \neq j$,

$c_{i,j} = \min\{h : 1 \leq h \leq n \text{ s.t. } a_{h,i} \neq a_{h,j}\}$.

Building blocks:

$$p_{i,j}^{[c_{i,j}]} = \frac{x_{c_{i,j}} - a_{c_{i,j},j}}{a_{c_{i,j},i} - a_{c_{i,j},j}}$$
$|X| = 1$: $Q_1 = 1$. $Q_1, ..., Q_{N-1}$ associated to $\{P_1, ..., P_{N-1}\}$: P_N?

We see now how to get the new separators $Q'_1, ..., Q'_N$ for X.

- Set $Q'_N = 1$.
- $\forall j = 1, ..., n$, we take the node $v_{j,u}$ of N
- for each sibling $v_{j,u'}$ of $v_{j,u}$, we pick an element \tilde{i} of its label and set $Q'_N = Q'_N p^{[\tilde{j}]}_{N,\tilde{i}}$.
- if $v_{j,u}$ is labelled only by N, then, for each sibling $v_{j,u'}$, for each element i in its label we set $Q'_i = Q_i p^{[\tilde{j}]}_{i,N}$.

Once concluded this procedure, if a separator Q_h, $1 \leq h \leq N$ has not been involved in the above steps, we set $Q'_h = Q_h$, getting a family of separators $\{Q'_1, ..., Q'_N\}$ for $X = \{P_1, ..., P_N\}$.

Complexity of a single iterative round: $O(\min(N, nr))$.
Example

\[\mathbf{X} = \{P_1 = (1, 0), P_2 = (0, 1), P_3 = (0, 2)\} \]

\[
\begin{array}{c}
\{1, 2, 3\} \\
\downarrow 1 \quad \downarrow 0 \\
\{1\} \quad \{2, 3\} \\
\downarrow 0 \quad \downarrow 1 \quad \downarrow 2 \\
\{1\} \quad \{2\} \quad \{3\}
\end{array}
\]

In the first step, we set \(Q'_1 = 1 \); then, adding \(P_2 \) to the trie we set \(Q'_2 = p_{1,1}^{[1]} = -(x - 1) \) and we modify also \(Q''_1 \), setting \(Q'_1 = Q''_1 p_{1,1}^{[1]} = x \), since, when \(P_3 \) is still not in the trie, the node \(v_{1,2} \), has \(V_{1,2} = \{2\} \). So, w.r.t. \(\{P_1, P_2\} \), we have \(Q'_1 = x, Q'_2 = -(x - 1) \). Finally, we add \(P_3 \). This way, \(Q_3 = p_{3,1}^{[1]} p_{3,2}^{[2]} = -(x - 1)(y - 1) \) and since \(V_{2,3} = \{3\}, Q_2 = Q'_2 p_{2,3}^{[2]} = (x - 1)(y - 2) \). Finally, we have

\[
Q_1 = x; \quad Q_2 = (x - 1)(y - 2); \quad Q_3 = -(x - 1)(y - 1).
\]
Comparisons?

\[Q_1 = x; \quad Q_2 = (x - 1)(y - 2); \quad Q_3 = -(x - 1)(y - 1). \]

From Lex game

\[Q_1 = \frac{1}{2}x(y-1)(y-2); \quad Q_2 = y(x-1)(y-2); \quad Q_3 = -\frac{1}{2}(x-1)y(y-1), \]

Lundqvist

\[Q_1 = x^2; \quad Q_2 = (x - 1)(y - 2); \quad Q_3 = -(x - 1)(y - 1). \]

Moeller

\[Q_1 = x; \quad Q_2 = 2 - 2x - y; \quad Q_3 = x + y - 1. \]
Auzinger-Stetter

\(l \triangleleft k[x_1, \ldots, x_n] \) zero-dimensional ideal; \(A := k[x_1, \ldots, x_n]/l \). \(\forall f \in A, \Phi_f : A \to A \) multiplication by \(f \) in \(A \) and, fixed a basis \(B = \{[b_1], \ldots, [b_m]\} \) for \(A \), \(A_f = (a_{ij}) \) so that

\[
[b_i f] = \sum_j a_{ij} [b_j], \forall i.
\]

We call **Auzinger-Stetter matrices** associated to \(l \), the matrices \(A_{x_i}, i = 1, \ldots, n \), defined w.r.t. the basis given by the lex escalier of \(l \).

Lundqvist

\(X = \{P_1, \ldots, P_N\}, l := I(X) \triangleleft k[x_1, \ldots, x_n]; N = \{t_1, \ldots, t_N\} \subset k[x_1, \ldots, x_n] \) s.t. \([N] = \{[t_1], \ldots, [t_N]\} \) is a basis for \(A := k[x_1, \ldots, x_n]/l \). Then, for each \(f \in k[x_1, \ldots, x_n] \) we have

\[
Nf(f, N) = (t_1, \ldots, t_N)(N(X)^{-1})^t(f(P_1), \ldots, f(P_N))^t,
\]

where \(Nf(f, N) \) is the normal form of \(f \) w.r.t. \(N \).
Notation

- \(A_{xh} := \left(a_{li}^{(h)} \right)_{li}, 1 \leq h \leq n, 1 \leq l, i \leq N, \) the Auzinger-Stetter matrices w.r.t. \(N(l) \);
- \(B := N(l)(X) := (b_{lj})_{lj}, 1 \leq l, j \leq N, b_{lj} := t_l(P_j); \)
- \(C := (c_{ji})_{ji}, 1 \leq j, i \leq N, \) the inverse matrix of \(B \), i.e. \(C := B^{-1} \);
- \(D^{(h)} := \left(d_{lj}^{(h)} \right)_{lj}, 1 \leq h \leq n, 1 \leq l, j \leq N, d_{lj}^{(h)} := \alpha_{h}^{(i)} t_l(P_j), \) the evaluation of \(x_h t_l \) at the point \(P_j \).
Lundqvist

\(\mathbf{X} = \{ P_1, \ldots, P_N \}, \ l := l(\mathbf{X}) \triangleq \mathbf{k}[x_1, \ldots, x_n]; \ N = \{ t_1, \ldots, t_N \} \subseteq \mathbf{k}[x_1, \ldots, x_n] \)

s.t. \([N] = \{ [t_1], \ldots, [t_N] \}\) is a basis for \(A := \mathbf{k}[x_1, \ldots, x_n]/l \). Then, for each \(f \in \mathbf{k}[x_1, \ldots, x_n] \) we have

\[
Nf(f, N) = (t_1, \ldots, t_N)(N(X)^{-1})^t(f(P_1), \ldots, f(P_N))^t,
\]

where \(Nf(f, N) \) is the normal form of \(f \) w.r.t. \(N \).

For \(1 \leq l \leq N \), the \(l \)-th row of \(A_{xh} \) is the normal form of \(x_h t_l \):

\[
Nf(x_h t_l, N(l)) = \sum_{i=1}^{N} a_{li} t_i = (t_1, \ldots, t_N)C^t(x_h t_l(P_1), \ldots, x_h t_l(P_N))^t =
\]

\[
(t_1, \ldots, t_N)C^t(d_{l1}^{(h)}, \ldots, d_{lN}^{(h)})^t = \sum_{i} \left(\sum_{j=1}^{N} d_{ij}^{(h)} c_{ji} \right) t_i.
\]

This trivially implies that \(A_{x_h} = D^{(h)} C = D^{(h)} B^{-1} \).
Computing B^{-1}.

Gaussian column-reduction of \[
\begin{pmatrix} B \\ I \end{pmatrix}.
\]

At each step \[
\begin{pmatrix} B \\ I \end{pmatrix} \rightarrow \begin{pmatrix} E \\ F \end{pmatrix}
\]

it holds $E = BF$ So $E = 1 \implies F = B^{-1}$.
We border B obtaining $B' := \begin{pmatrix} B \\ b_{N1} & \cdots & b_{NN-1} \\ b_{N1} & \cdots & b_{NN-1} \\ \vdots & \ddots & \vdots \\ b_{NN} \\ b_{NN} \end{pmatrix}$ and properly border \(\frac{(I \ C)}{C} \) as

\[
\begin{pmatrix}
 I \\
 f_{N1} & \cdots & f_{NN-1} \\
 0 & \cdots & 0 \\
 0 & \cdots & 1
\end{pmatrix}
\]

where

\[
(f_{N1} \cdots f_{NN-1}) = (b_{N1} \cdots b_{NN-1}) \ C
\]
For each point \(i \) we know the last \(\sigma \)-value \(s(i) \) and \(\sigma \)-antecedent \(P_{l(i)} \)

\[
t_i = x_{s(i)} t_{l(i)}
\]

We perform the following computations

- \(b_{1N} := 1 \)
- for \(i = 2 \cdots N - 1 \), \(b_{iN} := b_{l(i)N} a_{s(i)N} \)
- for \(j = 1 \cdots N \), \(b_{Nj} := b_{l(N)j} a_{s(N)N} \)

border \(B \)
For each point i we know the last σ-value $s(i)$ and σ-antecedent $P_{l(i)}$.

\[
t_{i} = x_{s(i)} t_{l(i)}
\]

We perform the following computations:

- $b_{1N} := 1$
- for $i = 2 \cdots N - 1$, $b_{iN} := b_{l(i)N} a_{s(i)N}$
- for $j = 1 \cdots N$, $b_{Nj} := b_{l(N)j} a_{s(N)N}$
- for $i = 1 \cdots N - 1, 1 \leq h \leq n$, $d_{iN}^{(h)} := d_{l(i)N}^{(h)} a_{s(i)N}$
- for $j = 1 \cdots N, 1 \leq h \leq n$, $d_{Nj}^{(h)} := d_{l(N)j}^{(h)} a_{s(N)N}$
For each point i we know the last σ-value $s(i)$ and σ-antecedent $P_{l(i)}$:

\[t_i = x_{s(i)}t_{l(i)} \]

We perform the following computations:

- $b_{1N} := 1$
- for $i = 2 \cdots N - 1$, $b_{iN} := b_{l(i)N}a_{s(i)N}$
- for $j = 1 \cdots N$, $b_{Nj} := b_{l(N)j}a_{s(N)N}$

border B

- for $i = 1 \cdots N - 1$, $1 \leq h \leq n$, $d_{iN}^{(h)} := d_{l(i)N}^{(h)}a_{s(i)N}$
- for $j = 1 \cdots N$, $1 \leq h \leq n$, $d_{Nj}^{(h)} := d_{l(N)j}^{(h)}a_{s(N)N}$

border D

- for $i = 1 \cdots N - 1$, $f_{Ni} := \sum_j b_{Nj}c_{ji}$

border C
• for \(i = 1 \cdots N - 1 \), \(g_{iN} := \sum_j c_{ij} b_{jN} \)
• \(h_{NN} := f_{NN} - \sum_j f_{Nj} b_{jN} \)
• \(c_{iN} := \frac{g_{iN}}{h_{NN}}, 1 \leq i \leq N \)
• \(c_{ij} := c'_{ij} - f_{Nj} c_{iN} 1 \leq i \leq N, 1 \leq j < N \)
 computing \(C = B^{-1} \)
\begin{itemize}
 \item for $i = 1 \cdots N - 1$, $g_{iN} := \sum_j c_{ij} b_{jN}$
 \item $h_{NN} := f_{NN} - \sum_j f_{Nj} b_{jN}$
 \item $c_{iN} := \frac{g_{iN}}{h_{NN}}$, $1 \leq i \leq N$
 \item $c_{ij} := c'_{ij} - f_{Nj} c_{iN}$, $1 \leq i \leq N, 1 \leq j < N$
 \item computing $C = B^{-1}$
 \item for $1 \leq l < N, 1 \leq h \leq n$, $a_{IN}^{(h)} := \sum_i d_{li}^{(h)} c_{iN}$,
 \item for $1 \leq j < N, 1 \leq h \leq n$, $a_{Nj}^{(h)} := \sum_i d_{Ni}^{(h)} c_{ij}$,
 \item $A^{(h)} = CD^{(h)}$
\end{itemize}
Example

For $\mathbf{X} = \{P_1 = (1, 0), P_2 = (0, 1), P_3 = (0, 2)\}$:

P_1: $B = C = 1$ and $D^{(1)} = (1) = A_x$, $D^{(2)} = (0) = A_y$.

P_2: $B'' = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$, $C'' = \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} \Rightarrow B = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$, $C = B^{-1} = \begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix}$.

$D^{(1)} = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$, $A_x = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$, $D^{(2)} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $A_y = \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}$.

P_3: $B'' = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 2 \end{pmatrix}$, $C'' = \begin{pmatrix} 0 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, $I'' = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & -1 & 2 \end{pmatrix} \Rightarrow$

$C = B^{-1} = \begin{pmatrix} 0 & 1 & 0 \\ 2 & -2 & -1 \\ -1 & 1 & 1 \end{pmatrix}$. $D^{(1)} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, $A_x = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, $D^{(2)} = \begin{pmatrix} 0 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 1 & 4 \end{pmatrix}$, $A_y = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 2 & -2 & 3 \end{pmatrix}$.
Thank you for your attention!