Fields

Vahid Meghdadi

February 2008

A field $<\mathbf{F},+,.>$ is a set of objects \mathbf{F} on which the operation of addition and multiplication apply in a manner analogous to the way these operations work for real numbers. In addition the following conditions are satisfied:

- 1. Closure under addition: if a and $b \in \mathbf{F}$ then $a + b \in \mathbf{F}$.
- 2. Additive identity: there is an element in \mathbf{F} , which is denoted by 0, such that 0 + a = a for every a in \mathbf{F} .
- 3. Additive inverse: for every $a \in \mathbf{F}$ there is an element $b \in \mathbf{F}$ such that a+b=b+a=0. This element is denoted as -a.
- 4. Associativity: (a+b)+c=a+(b+c) for every $a,b,c\in \mathbf{F}$.
- 5. Commutativity: a + b = b + a for every $a, b \in \mathbf{F}$.
- 6. Closure under multiplication: For every $a, b \in \mathbf{F}$, a.b is also in \mathbf{F} .
- 7. Multiplicative identity: There is an element in \mathbf{F} , which is denoted by 1, such that 1.a = a.1 = a
- 8. Multiplicative inverse: For every $a \in \mathbf{F}$ with $a \neq 0$, there is an element $b \in \mathbf{F}$ such that a.b = b.a = 1. This element is called the inverse of a an denoted by a^{-1} .
- 9. Associativity: (a.b).c = a.(b.c) for every $a, b, c \in \mathbf{F}$.
- 10. Commutativity: a.b = b.a for every $a, b \in \mathbf{F}$.
- 11. Multiplication distributes over addition: a.(b+c) = a.b + a.c.

The field $\langle \mathbf{F}, +, . \rangle$ with q elements in it may be denoted by \mathbf{F}_q .