
BER calculation

Vahid Meghdadi
reference: Wireless Communications by Andrea Goldsmith

January 2008

1 SER and BER over Gaussian channel

1.1 BER for BPSK modulation

In a BPSK system the received signal can be written as:

y = x+ n (1)

where x ∈ {−A,A}, n ∼ CN (0, σ2) and σ2 = N0. The real part of the above
equation is yre = x + nre where nre ∼ N (0, σ2/2) = N (0, N0/2). In BPSK
constellation dmin = 2A and γb is defined as Eb/N0 and sometimes it is called
SNR per bit. With this definition we have:

γb :=
Eb
N0

=
A2

N0
=
d2
min

4N0
(2)

So the bit error probability is:

Pb = P{n > A} =

∫ ∞
A

1√
2πσ2/2

e
− x2

2σ2/2 (3)

This equation can be simplified using Q-function as:

Pb = Q

√d2
min

2N0

 = Q

(
dmin√

2N0

)
= Q

(√
2γb

)
(4)

where the Q function is defined as:

Q(x) =
1√
2π

∫ ∞
x

e−
x2

2 dx (5)

1.2 BER for QPSK

QPSK modulation consists of two BPSK modulation on in-phase and quadrature
components of the signal. The corresponding constellation is presented on figure
1. The BER of each branch is the same as BPSK:

Pb = Q
(√

2γb

)
(6)
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Figure 1: QPSK constellation

The symbol probability of error (SER) is the probability of either branch
has a bit error:

Ps = 1− [1−Q
(√

2γb

)
]2 (7)

Since the symbol energy is split between the two in-phase and quadrature com-
ponents, γs = 2γb and we have:

Ps = 1− [1−Q (
√
γs)]

2 (8)

We can use the union bound to give an upper bound for SER of QPSK. Regard-
ing figure 1, condition that the symbol zero is sent, the probability of error is
bounded by the sum of probabilities of 0→ 1, 0→ 2 and 0→ 3. We can write:

Ps ≤ Q(d01/
√

2N0) +Q(d02/
√

2N0) +Q(d03/
√

2N0) (9)

= 2Q(A/
√
N0) +Q(

√
2A/

√
2N0) (10)

Since γs = 2γb = A2/N0, we can write:

Ps ≤ 2Q(
√
γs) +Q(

√
2γs) ≤ 3Q(

√
γs) (11)

Using the tight approximation of Q function for z � 0:

Q(z) ≤ 1

z
√

2π
e−z

2/2 (12)

we obtain:

Ps ≤
3√

2πγs
e−0.5γs (13)

Using Gray coding and assuming that for high signal to noise ratio the errors
occur only for the nearest neighbor, Pb can be approximated from Ps by Pb ≈
Ps/2.
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Figure 2: MPSK constellation

1.3 BER for MPSK signaling

For MPSK signaling we can calculate easily an approximation of SER using
nearest neighbor approximation. Using figure , the symbol error probability
can be approximated by:

Ps ≈ 2Q

(
dmin√

2N0

)
= 2Q

(
2A sin π

M√
2N0

)
= 2Q

(√
2γs sin(π/M)

)
(14)

This approximation is only good for high SNR.

1.4 BER for QAM constellation

The SER for a rectangular M-QAM (16-QAM, 64-QAM, 256-QAM etc) with
size L = M2 can be calculated by considering two M-PAM on in-phase and
quadrature components (see figure 3 for 16-QAM constellation). The error
probability of QAM symbol is obtained by the error probability of each branch
(M-PAM) and is given by:

Ps = 1−

(
1− 2 (sqrtM − 1)

sqrtM
Q

(√
3γs
M − 1

))2

(15)

If we use the nearest neighbor approximation for an M-QAM rectangular con-
stellation, there are 4 nearest neighbors with distance dmin. So the SER for
high SNR can be approximated by:

c (16)

In order to calculate the mean energy per transmitted symbol, it can be seen
that

Es =
1

M

M∑
i=1

A2
i (17)
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Figure 3: 16-QAM constellation

Modulation Ps(γs) Pb(γb)

BPSK Pb = Q
(√

2γb
)

QPSK Ps ≈ 2Q
(√
γs
)

Pb ≈ Q
(√

2γb
)

MPSK Ps ≈ 2Q
(√

2γs sin
(
π
M

))
Pb ≈ 2

log2M
Q
(√

2γb log2M sin
(
π
M

))
M-QAM Ps ≈ 4Q

(√
3γs
M−1

)
Pb ≈ 4

log2M
Q

(√
3γb log2M
M−1

)
Table 1: Approximate symbol and bit error probabilities for coherent modula-
tion

Using the fact that Ai = (ai + bi) and ai and bi ∈ {2i− 1− L} for i = 1, ..., L.
After some simple calculations we obtain:

Es =
d2
min

2L

L∑
i=1

(2i− 1− L)2 (18)

For example for 16-QAM and dmin = 2 the Es = 10. For 64-QAM and dmin = 2
the Es = 21.

1.5 conclusion

The approximations or exact values for SER has the following form:

Ps(γs) ≈ αMQ
(√

βMγs

)
(19)

where αM and βM depend on the type of approximation and the modulation
type. In the table 1 the values for αM and βM are semmerized for common
modulations.

We can also note that the bit error probability has the same form as for
SER. It is:

Pb(γb) ≈ α̂MQ
(√

β̂Mγb

)
(20)

where α̂M = αM/ log2M and β̂M = βM/ log2M .

Note: γs = Es/N0, γb = Eb/N0, γb = γs
log2M

and Pb ≈ Ps
log2M

.
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1.6 Appendix

In this appendix the reference curve for AWGN channel is presented in figure
4. As we expected , the results for BPQK and QPSK are the same.
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Figure 4: BER over AWGN channel for BPSK, QPSK, 8PSK and 16QAM

The following matlab program illustrates the BER calculations for BPSK
over an AWGN channel.

%BPSK BER

const=[1 -1];

size=100000;

iter_max=1000;

EbN0_min=0;

EbN0_max=10;

SNR=[];BER=[];

for EbN0 = EbN0_min:EbN0_max

EbN0_lin=10.^(0.1*EbN0);

noise_var=0.5/(EbN0_lin); % s^2=N0/2

iter = 0;

err = 0;

while (iter <iter_max && err <100),

bits=randsrc(1,size,[0 1]);

s=const(bits+1);

x = s + sqrt(noise_var)*randn(1,size);

bit_hat=(-sign(x)+1)/2;

err = err + sum(bits ~= bit_hat);

iter = iter + 1;
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end

SNR =[SNR EbN0];

BER = [BER err/(size*iter)];

end

semilogy(SNR,BER);grid;xlabel(’E_bN_0’);ylabel(’BER’);

title(’BPSK over AWGN channel’);

The following program uses some advanced functions of matlab to evaluate the
symbol error rate for QPSK modulation:

M = 4; % Alphabet size

EbN0_min=0;EbN0_max=10;step=2;

SNR=[];SER=[];

for EbN0 = EbN0_min:step:EbN0_max

SNR_dB=EbN0 + 3; %for QPSK Eb/N0=0.5*Es/N0=0.5*SNR

x = randint(1000000,1,M);

y=modulate(modem.qammod(M),x);

ynoisy = awgn(y,SNR_dB,’measured’);

z=demodulate(modem.qamdemod(M),ynoisy);

[num,rt]= symerr(x,z);

SNR=[SNR EbN0];

SER=[SER rt];

end;

semilogy(SNR,SER);grid;titel(’Symbol error rate for QPSK over AWGN’);

xlabel(’E_b/N_0’);ylabel(’SER’);

2 SER and BER over fading channel 1

2.1 PDF-based approach for binary signal

A fading channel can be considered as an AWGN with a variable gain. The
gain itself is considered as a RV with a given pdf . So the average BER can
be calculated by averaging BER for instantaneous SNR over the distribution of
SNR:

Pb(E) =

∫ ∞
0

Pb(E|γ)pγ(γ)dγ

The BER is expressed by a Q-function as seen in previous chapter:

Pb(E) =

∫ ∞
0

Q(
√

2gγ)pγ(γ)dγ (21)

where g = 1 for the case of coherent BPSK.

Example 1. Rayleigh fading channel with coherent detection:
The received signal in a Rayleigh fading channel is of the form:

y = hx+ w (22)

1”Digital Communication over Fading Channel” by Simon and Alouini
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where h is the channel attenuation with normal distribution h ∼ CN (0, 1) and
n is a white additive noise w ∼ CN (0, N0). The coherent receiver constructs
the following metric from the received signal:

h∗y = |h|2x+ h∗w (23)

Using BPSK modulation and since the information are real, only the real part
of the equation is of interest. So the following sufficient statistic is used for
decision at the receiver.

<
{
h∗

|h|
y

}
= |h|x+ n (24)

The noise n has the same statistics as <w because h∗/|h| = exp(jθ) with θ
uniformly distributed in (0, π), therefore n ∼ CN (0, N0/2). This equation
shows that we have a normal AWGN channel with the signal scaled by |h|.
The bit error probability as seen before for this case, given h, will be:

Pb = Q
(√

2|h|2γb
)

Now, we compute the SER by averaging this BER over the distribution of h.
Since h is complex Gaussian, the distribution of r = |h|2 will be exponential
with:

Pr(r) =
d

dr

(
P (h2

r + h2
i < r)

)
=

d

dr

(∫ 2π

0

∫ √r
0

1

2π1/2
e−x

2

xdxdθ

)

=
d

dr

(
1− e−r

)
= e−rU(r)

Therefore the signal-to-noise-ratio distribution γ = |h|2γb will be:

pγ(γ) =
1

γb
e−γ/γb

The error probability can be calculated by:

Pb =

∫ ∞
0

Q(
√

2γ)pγ(γ)dγ =

∫ ∞
0

Q(
√

2γ)
1

γb
e−γ/γbdγ

Using the following form of Q-function and MGF function, the integral can eb
calculated.

Q(x) =
1

π

∫ π/2

0

exp(− x2

2 sin2 θ
)dθ

pb =
1

2

(
1−

√
γb

1 + γb

)
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Example 2. Consider a SIMO system with L receive antennas. Each branch
has a SNR per bit of γl and therefore the SNR at the output of MRC combiner
is γt =

∑L
l=1 γl. Suppose a Rayleigh channel, the pdf of SNR for each channel

will be (supposing i.i.d. channels):

pγl(γl) =
1

γ̄
e−γl/γ̄

At the output of combiner, the SNR follows the distribution of chi-square (or
gamma) with L degrees of freedom:

pγt(γt) =
1

(L− 1)!γ̄L
γL−1
t e−γt/γ̄

The average probability can be calculated using the integration by part and
resulting in the following formula:

Pb(E) =

(
1− µ

2

)L L−1∑
l=0

(
L− 1 + l

l

)(
1 + µ

2

)l

2.2 MGF-based approach

2.2.1 Binary PSK

We can use the other representation of Q-function to simplify the calculations.

Q(x) =

∫ ∞
x

1√
2π
exp

(
−y

2

2

)
dy =

1

π

∫ π/2

0

exp

(
− x2

2 sin2 θ

)
dθ

Therefore the equation (5) can be written as:

Pb(E|{γl}Ll=1) =
1

π

∫ π/2

0

exp(− gγt

sin2 φ
)dφ =

1

π

∫ π/2

0

L∏
l=1

exp(− gγl

sin2 φ
)dφ (25)

This form of Q-function is more convenient because it allows us to average
first over the individual distributions of γl and then perform the integral over
φ.

Pb(E) =

∫ ∞
0

∫ ∞
0

...

∫ ∞
0

Pb({γl}Ll=1)

L∏
l=1

pγl(γl)dγ1dγ2...dγL (26)

Using (25) in (26) and changing the order of integration gives:

Pb(E) =
1

π

∫ π/2

0

L∏
l=1

Mγl

(
− g

sin2 φ

)
dφ (27)
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2.2.2 MPSK

For MPSK signaling the SER given all the SNRs is:

Ps(E|{γl}Ll=1) =
1

π

∫ (M−1)π/M

0

exp

(
− gγt

sin2 φ

)
dφ (28)

Ps(E|{γl}Ll=1) =
1

π

∫ (M−1)π/M

0

L∏
l=1

exp

(
− gγl

sin2 φ

)
dφ (29)

where g = sin2(π/m).

9


