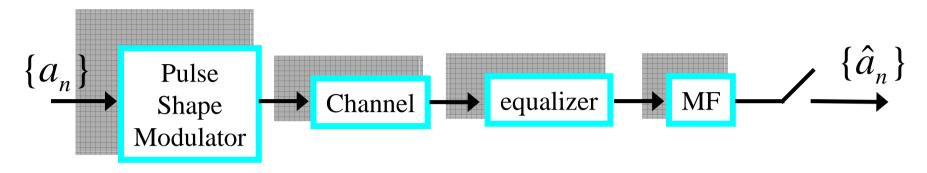
Blind Adaptive Filters &

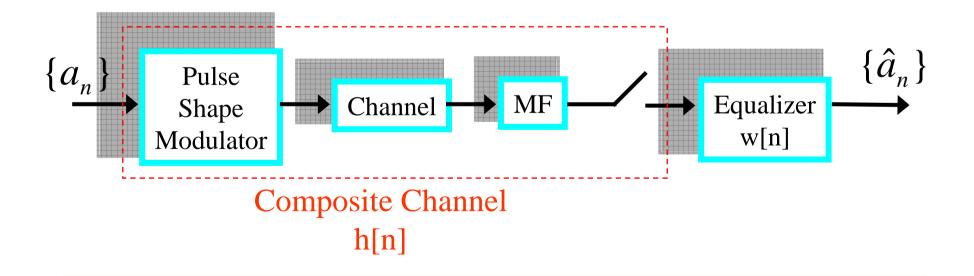
Equalization

Table of contents:

- Introduction about Adaptive Filters
- Introduction about Blind Adaptive Filters
- Convergence analysis of LMS algorithm
- How transforms improve the convergence rate of LMS
- Why Wavelet transform?
- Our blind equalization approaches
- Simulation results

Equalization





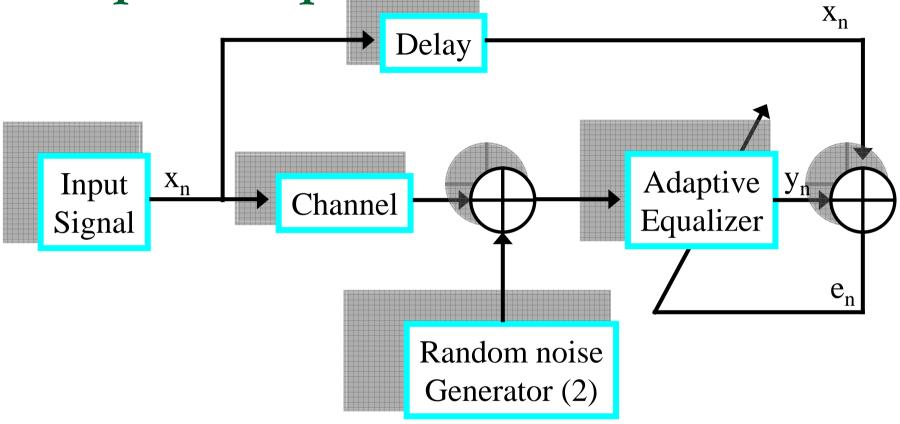
$$h[n] * w[n] = \delta[n] \Rightarrow \sum_{k=-N}^{N} w_k h_{n-k} = \begin{cases} 1 & n=0\\ 0 & n=\pm 1, \pm 2, \dots \end{cases}$$

$$w[n] = \sum_{i=-N}^{N} w_i \delta[n-i]$$

Example:

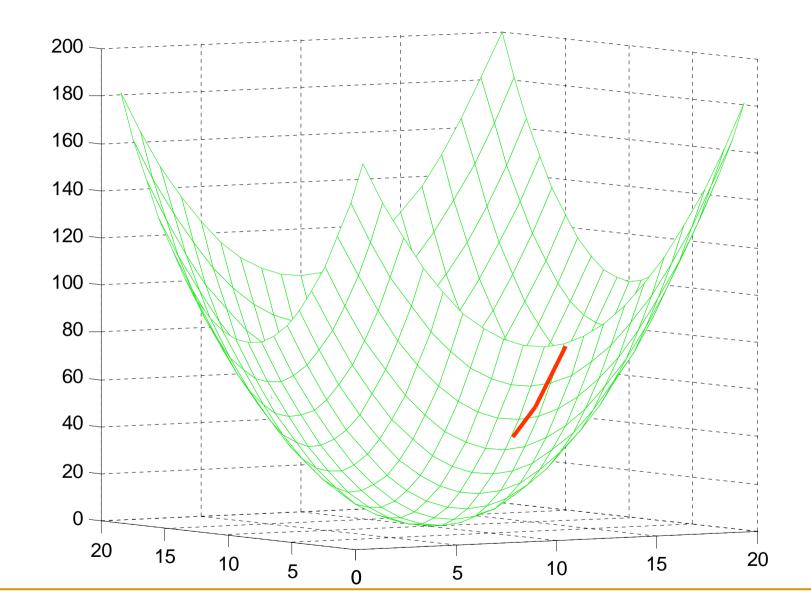
$$\begin{bmatrix} h_0 & h_{-1} & h_{-2} & h_{-3} & h_{-4} \\ h_1 & h_0 & h_{-1} & h_{-2} & h_{-3} \\ h_2 & h_1 & h_0 & h_{-1} & h_{-2} \\ h_3 & h_2 & h_1 & h_0 & h_{-1} \\ h_4 & h_3 & h_2 & h_1 & h_0 \end{bmatrix} \begin{bmatrix} w_{-2} \\ w_{-1} \\ w_0 \\ w_1 \\ w_{+2} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Adaptive Equalization



$$e_n = a_n - y_n, \quad error = E[e_n^2]$$

= $E[a_n^2 + (\sum w_k x_{n-k})^2 - 2a_n \sum w_k x_{n-k}]$



$$y_n = \sum_{k=-N}^{N} w_k x_{n-k}$$

$$e_n = a_n - y_n$$

$$error = E[e_n^2]$$

$$w_k(n+1) = w_k(n)a_n - \frac{1}{2}\mu \frac{\partial error}{\partial w_k}$$

$$\frac{\partial error}{\partial w_k} = 2E[e_n \frac{\partial e_n}{\partial w_k}]$$

$$= -2E\left[e_n \frac{\partial y_n}{\partial w_k}\right] = -2E\left[e_n x_{n-k}\right]$$

$$X_{n} = [x_{n+N}, ..., x_{n+1}, x_{n}, x_{n-1}, ..., x_{n-N}]^{T}$$

$$W_{n} = [w_{-N}, ..., w_{-1}, w_{0}, w_{1}, ..., w_{N}]^{T}$$

$$y_n = \sum_{k=-N}^{N} w_k x_{n-k}$$

$$e_n = a_n - y_n$$

$$w_k(n+1) = w_k(n)a_n - \frac{1}{2}\mu \frac{\partial error}{\partial w_k}$$

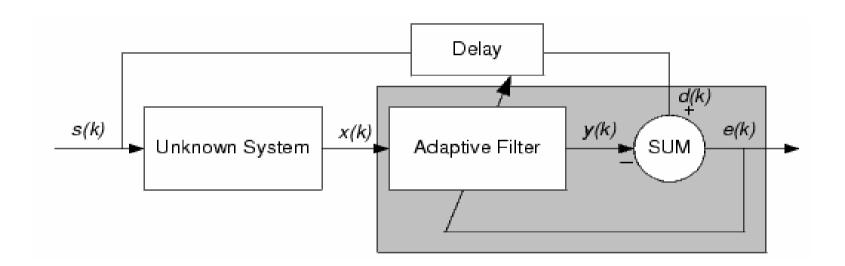
$$\frac{\partial error}{\partial w_k} = -2E[e_n x_{n-k}]$$

$$Y_n = X_n^T W_n$$

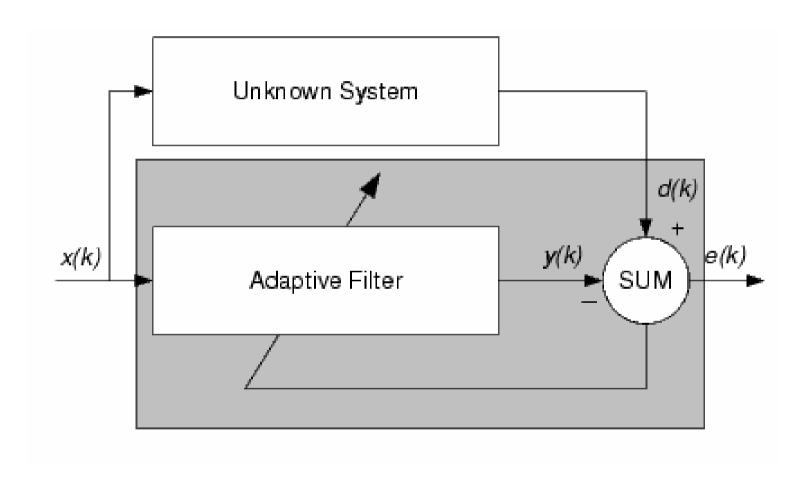
$$e_n = a_n - y_n$$

$$W_{n+1} = W_n + \mu e_n x_n$$

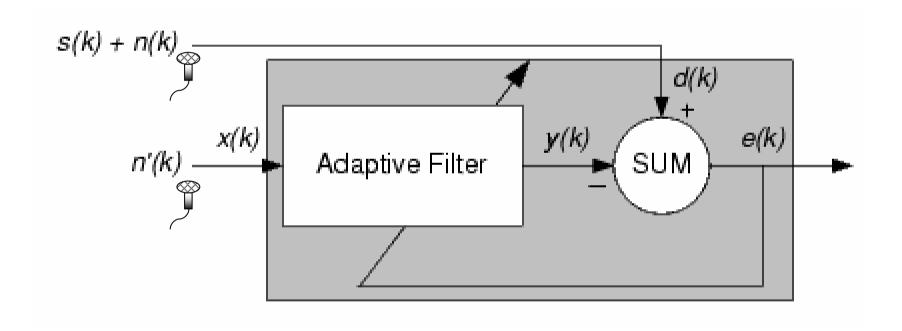
Equalization, Deconvolution, System compenstation



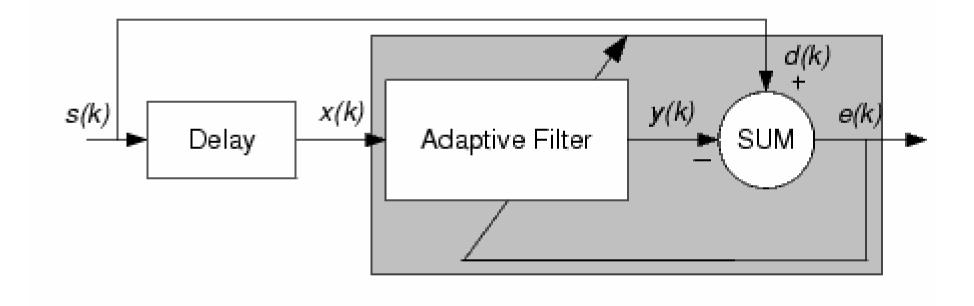
System Identification



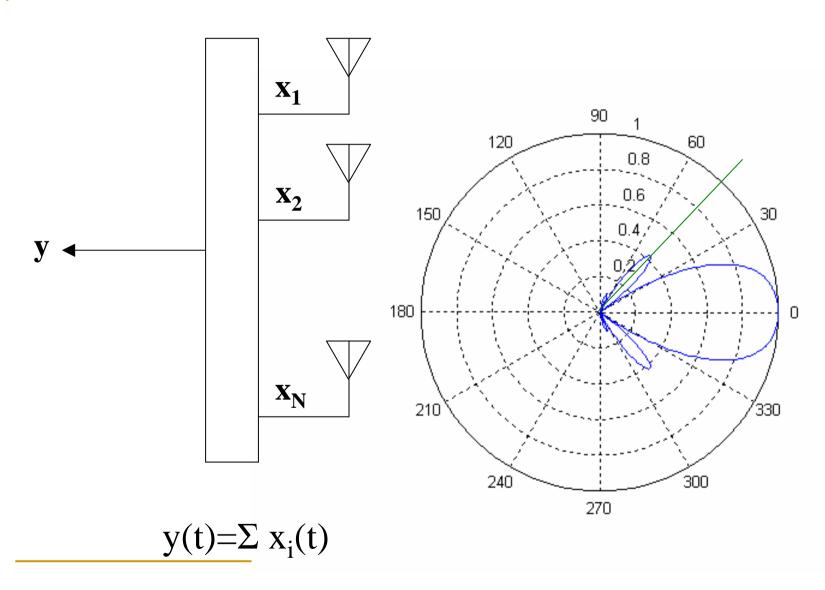
Noise Cancellation



Prediction

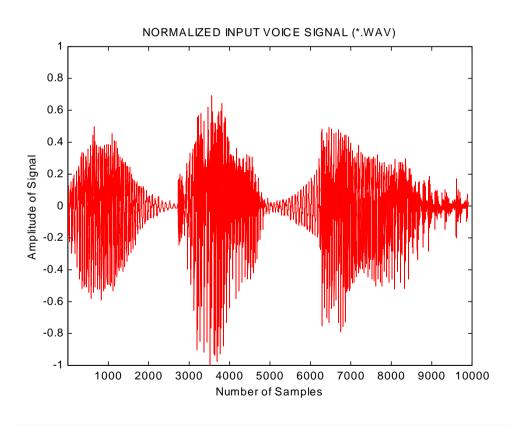


Sidelobe cancellation



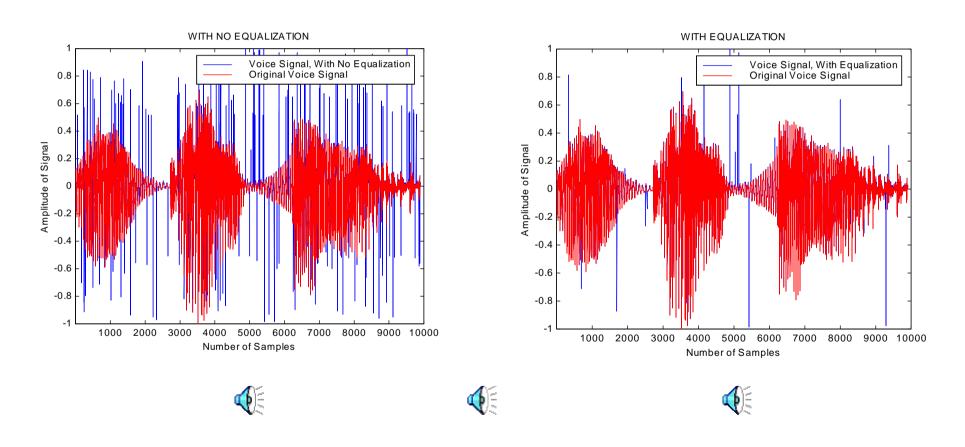


Sound Clip



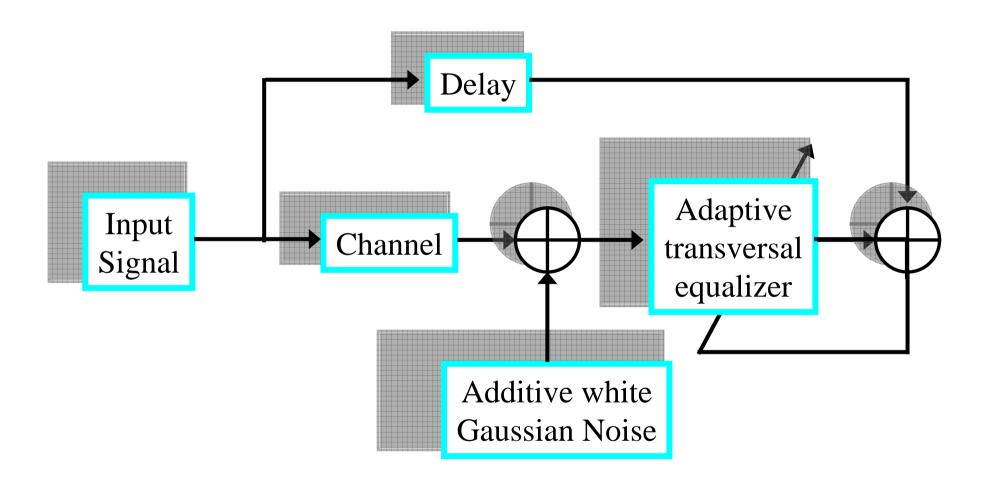
- Normalized*.wav file(microsoft format)
- 9,946 bytes
- click here

Graphs – w/o and w/ equalization



Simulation under the advisory of Prof. Fontaine (downloaded)

Blind Equalization



Blind equalization approaches

- Stochastic gradient descent approach that minimizes a chosen cost function over all possible choices of the equalizer coefficients in an iterative fashion
- Higher Order Statistics (HOS) method that is using the higher order cumulants spread of the underlying process, and hence to the flatness
- Approaches that exploit statistical cyclostationarity information coefficients toward their optimum value, at a given frequency
- Algorithms that are based on the maximum likelihood criterion. depends on the value of the power spectral density of the

Blind Equalization: HOS

$$C_x^{(1)} = E\{x(t)\} = \int x(t) f_X(x) dx$$
: First Order Statistics

Second Order Statistics:

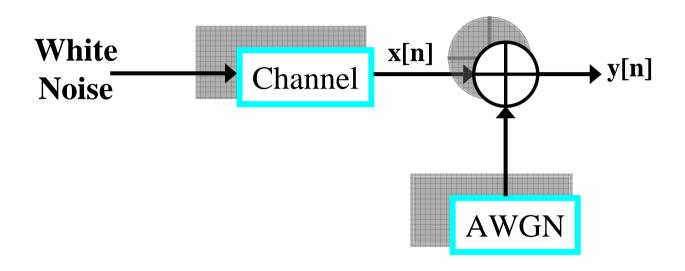
$$C_x^{(2)}(\tau) = E\{x(t)x(t+\tau)\} = \int x(t)x(t+\tau)f_X(x(t), x(t+\tau)) dx$$

Third Order Statistics:

$$C_x^{(3)}(\tau_1, \tau_2) = E\{x(t)x(t+\tau_1)x(t+\tau_2)\}$$

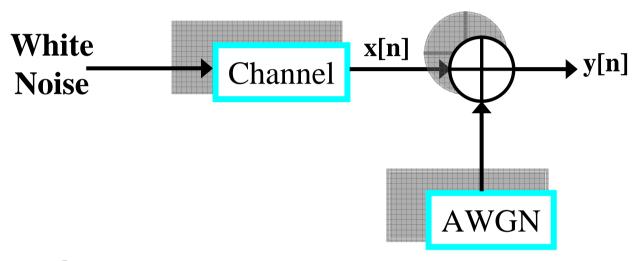
= $\int x(t)x(t+\tau_1)x(t+\tau_2)f_X(x(t), x(t+\tau_1), x(t+\tau_2)) dx$

Blind Equalization: HOS



$$C_y^{(2)} \Rightarrow S_y(f) = |H(f)|^2 S_{input}(f) + S_n(f)$$
$$C_y^{(2)} \Rightarrow S_y(f) = |H(f)|^2 K$$

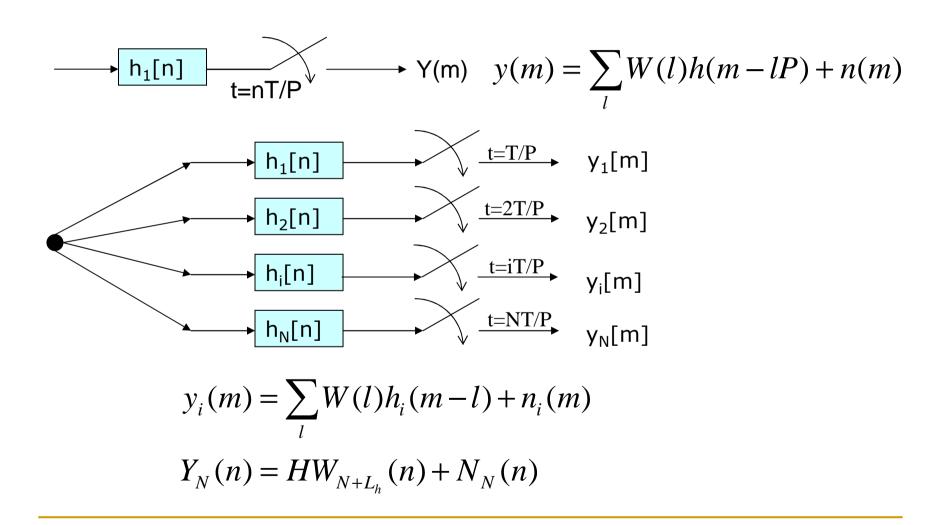
Blind Equalization: HOS



For Gaussian signals:

$$C_x^{(n)} = 0$$
 for $n > 2$ $C_y^{(4)} = C_h^{(4)} + C_n^{(4)}$

Fractionally Spaced Equalizer



Fractionally Spaced Equalizer

Fractionally Spaced Sampling \Rightarrow Cyclostationary Output

$$Y_{N}(n) = HW_{N+L_{h}}(n) + N_{N}(n)$$

$$H = \begin{bmatrix} h(0) & h(1) & \cdots & h(L_h) & \cdots & 0 \\ 0 & h(0) & \cdots & \ddots & \ddots & \vdots \\ 0 & 0 & \ddots & \vdots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & \cdots & h(L_h - 1) & h(L_h) \end{bmatrix}$$

Formula:

Channel model

$$Y_N(n) = HW_{N+L_h}(n) + V_N(n)$$

Cost function definition
$$J = E\left\{ \left| \hat{W} - W(n) \right|^2 \right\}$$

coefficients

Updating equalizer
$$\hat{g}(T) = \hat{g}(T-1) - 0.5 \mu \nabla \hat{J}(T)$$

Our proposed Wavelet domain gradient

$$\nabla \hat{J}(T) = Y_N(n)Y_N'(n)g_0 - \sigma_W^2 H(:,1)$$

Convergence rate of LMS algorithm

 It is well known that the convergence behavior of conventional LMS algorithm depends on the eigenvalue spread of input process

Faster convergence rate of LMS algorithm

Smaller EIG-spread of input correlation matrix

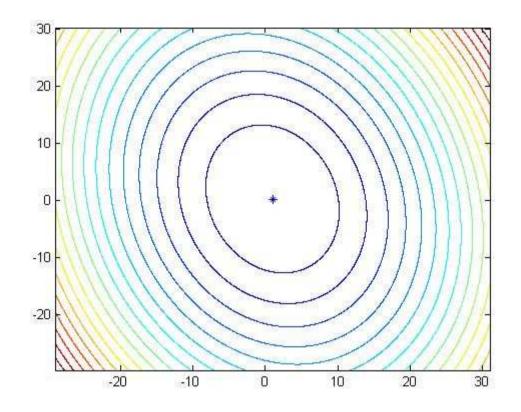
EIG-spread of input correlation matrix (R) vs. flatness of its PSD

Convergence rate of filter coefficients toward their optimum value, at a given frequency depends on the value of the power spectral density of the underlying process at that frequency relative to all other frequencies.

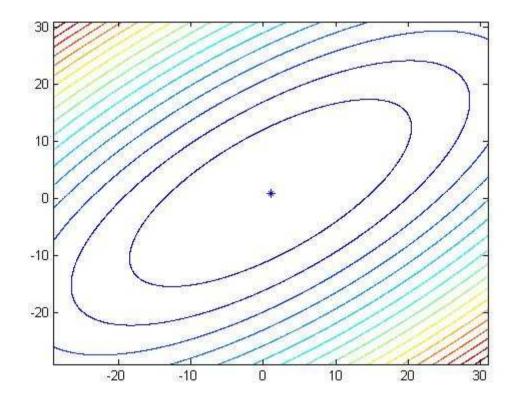
Smaller EIG-spread of input correlation matrix

PSD flatness of input signal

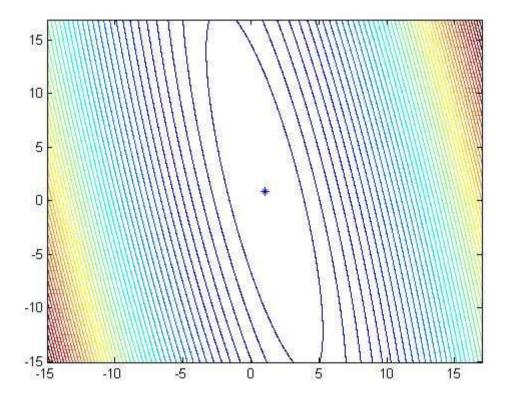
EIG-spread of R vs. shape of error surface: Example 1, EIG = 1.22



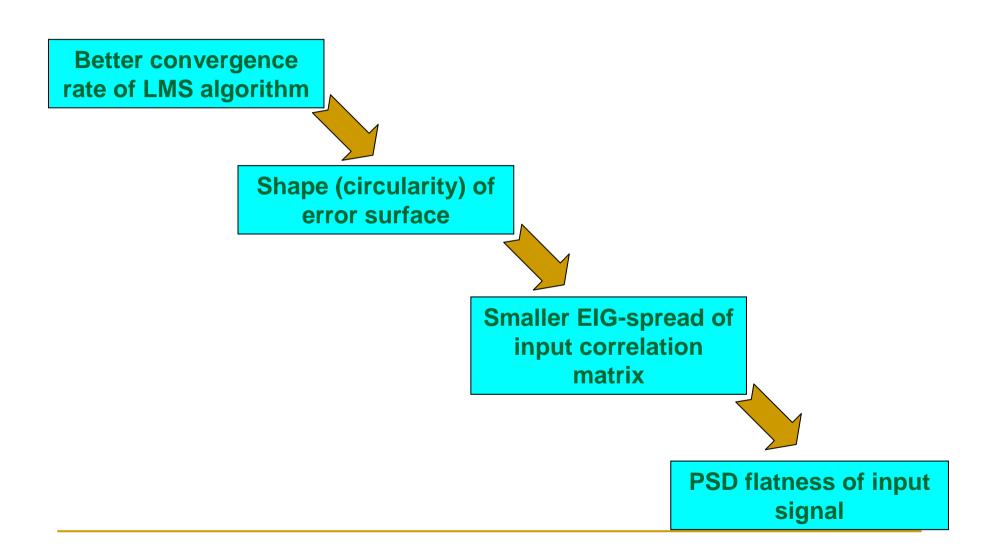
Example 2, EIG = 3



Example 3, EIG = 100



Summary:



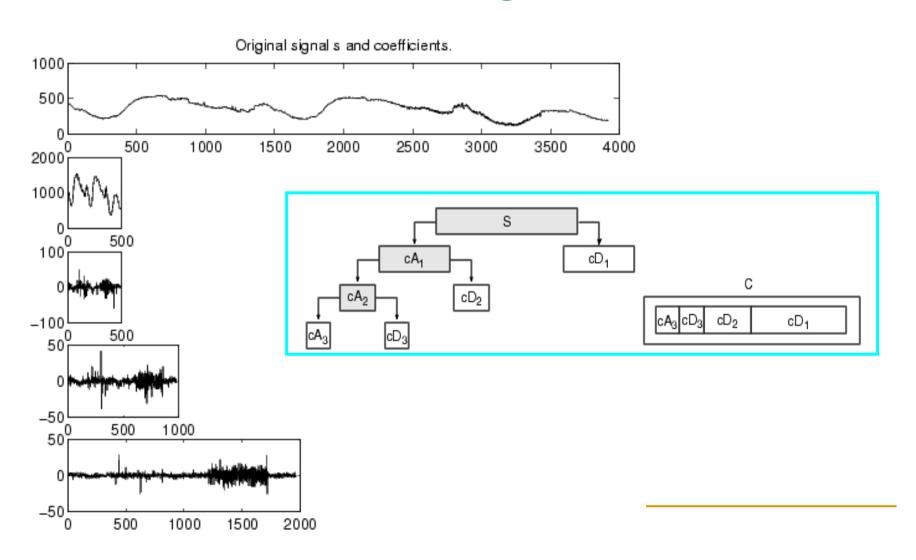
How transforms improve the convergence rate of LMS?

- Band-partitioning property of Wavelet transform
- Transformed elements are (at least) approximately uncorrelated with one another
- Correlation matrix is closer to a diagonal matrix
- An appropriate normalization can convert the result to a normalized matrix whose EIG spread will be much smaller

Advantages of using Wavelet transform

- Efficient transform algorithms exist (e.g. the Mallat algorithm)
- Transforms can be implemented as filter banks with FIR filters
- Strong mathematical foundations allow the possibility of custom designing the wavelets e.g. the lifting scheme

Wavelet transform algorithm:

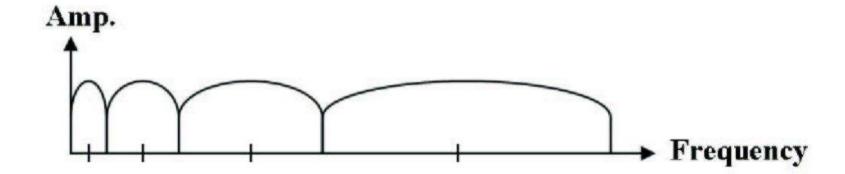


Matrix form implementation of Wavelet transform

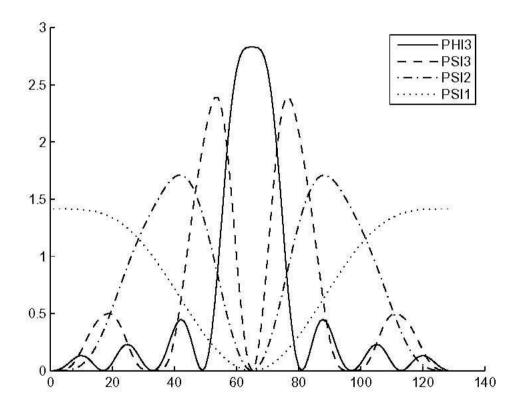
Low Pass As mentioned in $c_3 - c_2 c_1 - c_0$ the previous c_0 c_1 c_2 c_3 High Pass slide, Wavelet $c_3 - c_2 - c_1 - c_0$ transform Data consists of two Width low-pass and high-pass filters $c_3 - c_2 c_1$

Why Wavelet transform?

 wavelet analysis filters are "constant-Q" filters; i.e., the ratio of the bandwidth to the center frequency of the band is constant



band-partitioning property of Daubechies filters

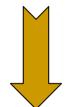


After transformation, each coefficient shows the amount of energy passed from one of above filters

The bandwidth of the filters in low frequencies is narrow compared to the bandwidth of the filters in higher frequencies

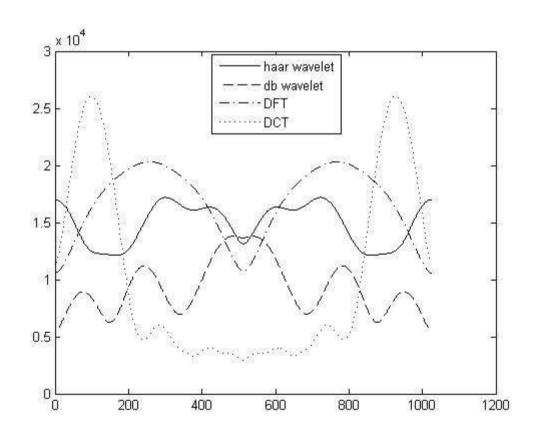
Most communication signals have a low-pass nature

It's more probable that the output of filters contain the same amount of energy

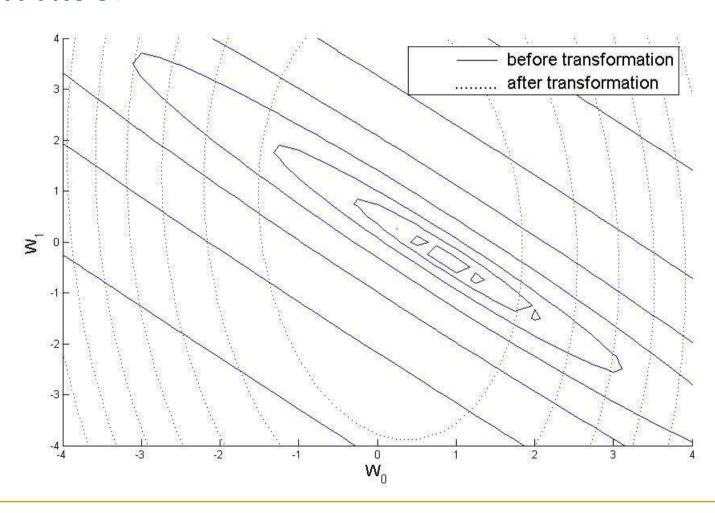


more likely to obtain a flat spectrum.

PSD of a typical communication signal after different transforms

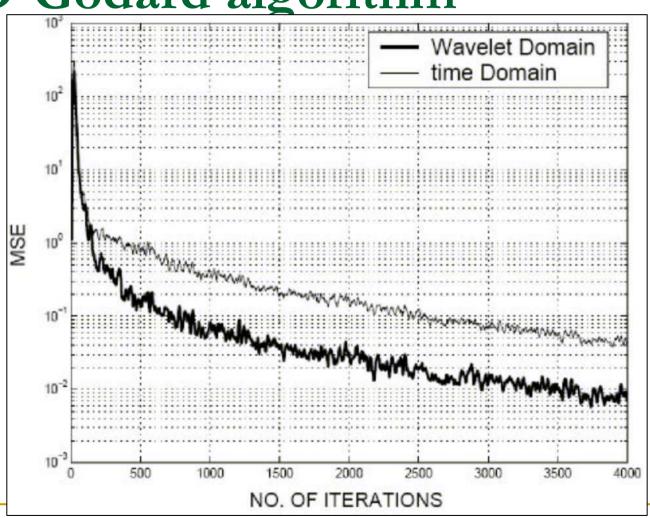


Effect of Wavelet transform on error surface



MSE of a TD-Godard algorithm vs.

WD-Godard algorithm



Formula:

Channel model

$$Y_N(n) = HW_{N+L_h}(n) + V_N(n)$$

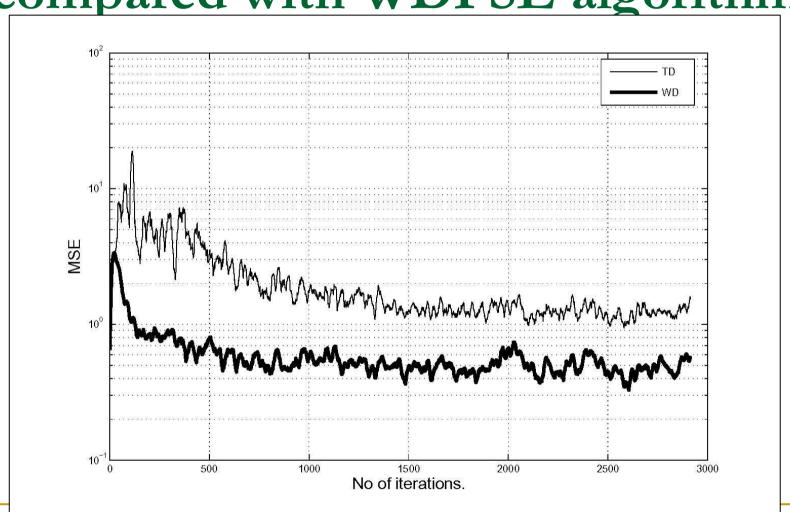
- Cost function definition $J = E\left\{\left|\hat{W} W(n)\right|^2\right\}$
- Updating equalizer coefficients

$$\hat{g}(T) = \hat{g}(T-1) - 0.5 \,\mu \,\nabla \hat{J}(T)$$

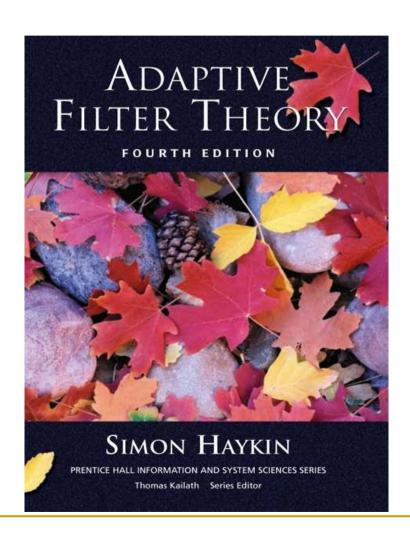
Our proposed Wavelet domain gradient

$$\nabla \hat{J}(T) = TY_N(n)Y'_N(n)T'g_0 - \sigma_w^2 TH(:,1)$$

MSE of a TD-FSE algorithm compared with WDFSE algorithm



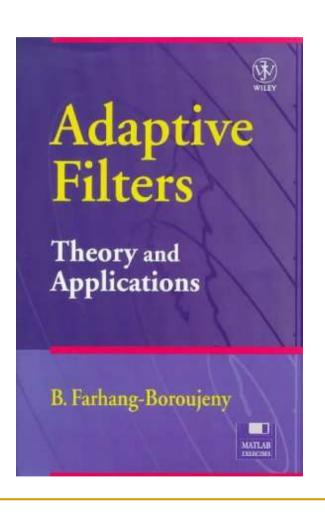
References



Adaptive FilterTheory

Simon Haykin

Prentice Hall



Adaptive FiltersTheory andApplications

B. Farhang-Boroujeny

wiley