Le théorème de Molien

Soit G un sous-groupe fini de $GL_n(\mathbb{C})$. On considère l'action (à gauche) de $GL_n(\mathbb{C})$ sur $\mathbb{C}[X_1,\ldots,X_n]$ définie par, $A \in GL_n(\mathbb{C}), P \in \mathbb{C}[X_1,\ldots,X_n], A.P =$

$$P\left(A^{-1}\begin{pmatrix} X_1 \\ \vdots \\ X_n \end{pmatrix}\right)$$
. On regardera plus particulièrement la restriction de cette action

à G, et on s'intéressera à l'anneau $\mathbb{C}\left[X_1,\ldots,X_n\right]^G$ des polynômes invariants par cette action.

La Computational Invariant Theory a en particulier l'objet de trouver des générateurs des cet anneau. Le théorème de Molien permet de savoir dans quel $\mathbb{C}[X_1,\ldots,X_n]_d$ les chercher (avec $\mathbb{C}[X_1,\ldots,X_n]_d$ l'espace vectoriel des polynômes homogènes de degré $d \in \mathbb{N}$).

Théorème 1. On a l'égalité de séries formelles :

$$\frac{1}{\sharp G} \sum_{A \in G} \frac{1}{\det(1 - tA)} = \sum_{d=0}^{+\infty} \dim(\mathbb{C}\left[X_1, \dots, X_n\right]_d^G) t^d.$$

De plus, la série entière a un rayon de convergence supérieur ou égal à 1.

On remarque d'abord que notre action de G sur $\mathbb{C}[X_1,\ldots,X_n]$ définit une représentation de G dans $V_d=\mathbb{C}[X_1,\ldots,X_n]_d, d\in\mathbb{N}$ (de dimension $\binom{n+d-1}{n-1}$). On notera ρ_d et χ_d les représentations et caractères correspondants.

Proposition 0.1. soit $d \in \mathbb{N}$, alors :

$$\dim \left(V_d^G\right) = \frac{1}{\sharp G} \sum_{g \in G} \chi_d(g)$$

On pose $p_G = \frac{1}{\sharp G} \sum_{g \in G} g$ (on reconnaîtra l'opérateur de Reynold). On montre que p_G est une projection sur V_d^G .

En effet, si $x \in V_d^G$, alors on a directement $p_G(x) = x$, donc $p_G(V_d^G) = V_d^G$. De plus, si $x \in V_d$, alors si $\phi \in G$,

$$\phi(p_G(x)) = \frac{1}{\sharp G} \sum_{g \in G} \phi(g(x)) = \frac{1}{\sharp G} \sum_{g' \in G} g'(x) = p_G(x).$$

On en déduit que $p_G(V_d) \subset V_d^G$ et finalement

$$p_G(V) = V^G,$$

$$p_G^2 = p_G.$$

Comme nous sommes en caractéristique nulle, on a $rg(G) = trp_G$, soit dim $V_d^G =$ $\frac{1}{\sharp G} \sum_{g \in G} \operatorname{tr} g = \frac{1}{\sharp G} \sum_{g \in G} \chi_d(g).$

Proposition 0.2. Montrons que $\frac{1}{\det(1-tg)} = \sum_{l=0}^{+\infty} \chi_l(g)t^l$, avec la série entière ayant un rayon de convergence au moins 1.

Si $g \in G$, on a $g^{\sharp G} = Id_{V_d}$, et $X^{\sharp G} - 1$ est scindé à racines simples. Ainsi, il existe $u \in GL_{\dim V_d}(\mathbb{C})$ tel que $u^{-1}gu = \begin{bmatrix} \lambda_1 & & O \\ & \ddots & \\ 0 & & \lambda_n \end{bmatrix}$.

Si l'on procède à un changement de groupe étudié, en remplaçant G par $u^{-1}Gu$ (ce qui correspond à un changement de variables linéaire), on travaille toujours avec la même action de groupe de $GL_n(\mathbb{C})$ sur $\mathbb{C}[X_1,\ldots,X_n]$ ou sur $\mathbb{C}_d[X_1,\ldots,X_n]$, et en particulier, traces, déterminants et caractères sont conservés. On peut donc se ramener au cas où q est diagonal.

Nous allons donc supposer que $g = \begin{bmatrix} \lambda_1 & O \\ & \ddots & \\ 0 & & \lambda_n \end{bmatrix}$. De plus, on a $|\lambda_i| = 1$.

On peut alors écrire :

$$\frac{1}{\det(1-tg)} = \prod_{i=1}^{n} \frac{1}{1-\lambda_i t} = \prod_{i=1}^{n} \left(\sum_{p=1}^{+\infty} \lambda_i^p t^p\right).$$

Par définition du produit de Cauchy, on obtient alors, avec rayon de convergence au moins 1 pour la série :

$$\frac{1}{\det(1-tg)} = \sum_{p=1}^{+\infty} \left(\sum_{k_1+\dots+k_n=p} \lambda_1^{k_1} \dots \lambda_n^{k_n} \right) t^p.$$

D'un autre côté, si on regarde un élément de la base canonique de $V_p, X_1^{k_1} \dots X_n^{k_n}$ avec $k_1 + \dots + k_n = p$, alors $\rho_p(g)(X_1^{k_1} \dots X_n^{k_n}) = g.(X_1)^{k_1} \dots g.(X_n)^{k_n} = \lambda_1^{k_1} \dots \lambda_n^{k_n} X_1^{k_1} \dots X_n^{k_n}$. Ainsi, $\chi_p(g) = \operatorname{tr}(\rho_p(g)) = \sum_{k_1 + \dots + k_n = p} \lambda_1^{k_1} \dots \lambda_n^{k_n}$. On obtient alors bien au final $\frac{1}{\det(1-tg)} = \sum_{l=0}^{+\infty} \chi_l(g)t^l$, avec la série entière ayant un reven de convergence ou moins 1

un rayon de convergence au moins 1.

Enfin,

$$\frac{1}{\sharp G} \sum_{A \in G} \frac{1}{\det(1 - tA)} = \frac{1}{\sharp G} \sum_{g \in G} \sum_{p=0}^{+\infty} \chi_p(g) t^p \quad \text{somme finie}$$

$$= \frac{1}{\sharp G} \sum_{p=0}^{+\infty} \left(\sum_{g \in G} \chi_p(g) \right) t^p$$

$$= \sum_{p=0}^{+\infty} \dim(\mathbb{C} [X_1, \dots, X_n]_p^G) t^p.$$

Remarque. La généralisation de ce résultat à tout corps de caractéristique nulle est relativement aisée. Pour la caractéristique non nulle, c'est plus compliqué, mais on peut aussi généraliser le résultat... (en un certain sens).

Références

- [1] LEICHTNAM Exercices corrigés posés aux oraux de Polytechnique et des ENS, tome algèbre et géométrie p 95
- [2] Peyré L'algèbre discrète de la transformée de Fourier, p 219-220 et 288-289.