p-adic precision and isogeny computation Applications to cryptography

Xavier Caruso, Pierre Lairez, David Roe Tristan Vaccon

Univ.Rennes 1, TU Berlin, Univ. Pittsburgh, 立教大学

July 5th, 2016

- 1 Background
 - Isogenies
 - Building \mathbb{Q}_p
- 2 p-adic precision: direct approach and differential precision
 - Direct analysis
 - Application in linear algebra
 - The main lemma
- **3** *p*-adic differential equations with separation of variables
 - Isogeny computation
 - The original scheme
 - Applying the lemma
 - A more subtle approach

Motivation for isogeny computations

Study of elliptic curves

■ Isogenies are "morphisms" between elliptic curves ;

introduction

Motivation for isogeny computations

Study of elliptic curves

- Isogenies are "morphisms" between elliptic curves ;
- Relationship between curves: yields point-counting algorithms.

Motivation for isogeny computations

Study of elliptic curves

- Isogenies are "morphisms" between elliptic curves ;
- Relationship between curves: yields point-counting algorithms.

Cryptosytems

■ De Fao, Jao and Plût have proposed cryptosystems based on isogenies between elliptic curves

Why should one work with p-adic numbers ?

p-adic methods

• Working in \mathbb{Q}_p instead of \mathbb{Q} , one can handle more efficiently the coefficients growth ;

Why should one work with *p*-adic numbers ?

p-adic methods

■ Working in \mathbb{Q}_p instead of \mathbb{Q} , one can handle more efficiently the coefficients growth ;

p-adic algorithms

■ Going from $\mathbb{Z}/p\mathbb{Z}$ to \mathbb{Z}_p and then back to $\mathbb{Z}/p\mathbb{Z}$ enables more computation ;

Why should one work with p-adic numbers?

p-adic methods

■ Working in \mathbb{Q}_p instead of \mathbb{Q} , one can handle more efficiently the coefficients growth ;

p-adic algorithms

- Going from $\mathbb{Z}/p\mathbb{Z}$ to \mathbb{Z}_p and then back to $\mathbb{Z}/p\mathbb{Z}$ enables more computation ;
- Counting-points algorithms: Satoh, SEA, Kedlaya, . . .

Why should one work with *p*-adic numbers?

p-adic methods

■ Working in \mathbb{Q}_p instead of \mathbb{Q} , one can handle more efficiently the coefficients growth ;

p-adic algorithms

- Going from $\mathbb{Z}/p\mathbb{Z}$ to \mathbb{Z}_p and then back to $\mathbb{Z}/p\mathbb{Z}$ enables more computation ;
- Counting-points algorithms: Satoh, SEA, Kedlaya, . . .

My personal (long-term) motivation

Computing (some) moduli spaces of p-adic Galois representations.

Background

Disclaimer

Background

Disclaimer

■ I am **not** an expert in cryptography.

Background

Disclaimer

- I am **not** an expert in cryptography.
- However, one of my goal today is to present tools that can be useful for cryptography and computer algebra: isogenies and p-adic numbers.

Table of contents

- 1 Background
 - Isogenies
 - Building \mathbb{Q}_p
- 2 p-adic precision: direct approach and differential precision
 - Direct analysis
 - Application in linear algebra
 - The main lemma
- 3 p-adic differential equations with separation of variables
 - Isogeny computation
 - The original scheme
 - Applying the lemma
 - A more subtle approach

What is... an isogeny?

Definition

We can define an isogeny between two elliptic curves E_1 and E_2 to be at the same time:

- lacksquare a rational map $E_1 o E_2$;
- a group morphism $E_1 \rightarrow E_2$.

Background
Isogenies

Isogeny and quotient

Proposition

Every isogeny is either zero or surjective.

Isogeny and quotient

Proposition

Every isogeny is either zero or surjective.

Remark

All non-zero isogenies corresponds to taking some quotient:

$$E \rightarrow E/H$$
.

Toward point-counting

Why point-counting on elliptic curves?

For the Elliptic Curve Discrete Logarithm Problem, some cardinals should be avoided.

Toward point-counting

Why point-counting on elliptic curves?

For the Elliptic Curve Discrete Logarithm Problem, some cardinals should be avoided.

Using isogeny for point-counting

If $\Phi: E_1 \to E_2$ is non-zero then:

$$\sharp E_1 = \sharp E_2 + \sharp Ker(\Phi).$$

Further toward point-counting

Isogeny and kernel, Vélu's formula

For $\Phi: E_1 \to E_2$, Φ can be written in affine coordinates as:

$$\Phi(x,y) = \left(\frac{g(x)}{h(x)}, cy\left(\frac{g(x)}{h(x)}\right)'\right),\,$$

with g, h polynomials, c scalar.

Further toward point-counting

Isogeny and kernel, Vélu's formula

For $\Phi: E_1 \to E_2$, Φ can be written in affine coordinates as:

$$\Phi(x,y) = \left(\frac{g(x)}{h(x)}, cy\left(\frac{g(x)}{h(x)}\right)'\right),\,$$

with g, h polynomials, c scalar.

Remark

For x-coordinates:

$$Ker(\Phi) = {\infty} \cup {\text{ zeroes of h }}$$

Further toward point-counting

Isogeny and kernel, Vélu's formula

For $\Phi: E_1 \to E_2$, Φ can be written in affine coordinates as:

$$\Phi(x,y) = \left(\frac{g(x)}{h(x)}, cy\left(\frac{g(x)}{h(x)}\right)'\right),\,$$

with g, h polynomials, c scalar.

Remark

For x-coordinates:

$$Ker(\Phi) = {\infty} \cup {\text{ zeroes of h }}$$

Point-counting algorithms

Use isogenies between an elliptic curve E and other curves: twist by Frobenius, quotient by I-torsion.

Preparation

Public modulus p and generator g of $\mathbb{Z}/p\mathbb{Z}^{\times}$.

Preparation

Public modulus p and generator g of $\mathbb{Z}/p\mathbb{Z}^{\times}$.

Alice

■ Choose an integer a.

Bob

■ Choose an integer *b*.

Preparation

Public modulus p and generator g of $\mathbb{Z}/p\mathbb{Z}^{\times}$.

Alice

- Choose an integer a.
- Sends $A = g^a \mod p$ to Bob.

- Choose an integer *b*.
- Sends $B = g^b \mod p$ to Alice.

Preparation

Public modulus p and generator g of $\mathbb{Z}/p\mathbb{Z}^{\times}$.

Alice

- Choose an integer a.
- Sends $A = g^a \mod p$ to Bob.
- Computes $s = B^a \mod p$.

- Choose an integer *b*.
- Sends $B = g^b \mod p$ to Alice.
- Computes $s = A^b \mod p$.

Preparation

Public modulus p and generator g of $\mathbb{Z}/p\mathbb{Z}^{\times}$.

Alice

- Choose an integer a.
- Sends $A = g^a \mod p$ to Bob.
- Computes $s = B^a \mod p$.

Bob

- Choose an integer b.
- Sends $B = g^b \mod p$ to Alice.
- Computes $s = A^b \mod p$.

Shared information

$$s = g^{ab} = B^a = A^b \mod p$$
.

Preparation

Elliptic curve E_0/\mathbb{F}_{p^2} , generators $\{P_A, Q_A\}$, $\{P_B, Q_B\}$ of $E_0[I_A^{e_A}]$, $E_0[I_b^{e_B}]$.

Preparation

Elliptic curve E_0/\mathbb{F}_{p^2} , generators $\{P_A,Q_A\}$, $\{P_B,Q_B\}$ of $E_0[I_A^{e_A}]$, $E_0[I_b^{e_B}]$.

Alice

 $\mathbf{m}_{A}, \mathbf{n}_{A} \in \mathbb{Z}/I_{A}^{e_{A}}\mathbb{Z}$, one is inv.

Bob

 \blacksquare $m_B, n_B \in \mathbb{Z}/I_B^{e_B}\mathbb{Z}$, one is inv.

Preparation

Elliptic curve E_0/\mathbb{F}_{p^2} , generators $\{P_A, Q_A\}$, $\{P_B, Q_B\}$ of $E_0[I_A^{e_A}]$, $E_0[I_b^{e_B}]$.

Alice

- $\mathbf{m}_A, \mathbf{n}_A \in \mathbb{Z}/I_A^{e_A}\mathbb{Z}$, one is inv.
- $\Phi_A : E_0 \to E_A =$ $E_0 / \langle [\mathbf{m_A}] P_A + [\mathbf{n_A}] Q_A \rangle.$

- $m_B, n_B \in \mathbb{Z}/I_B^{e_B}\mathbb{Z}$, one is inv.
- $\Phi_B : E_0 \to E_B =$ $E_0 / \langle [m_B] P_B + [n_B] Q_B \rangle .$

Preparation

Elliptic curve E_0/\mathbb{F}_{p^2} , generators $\{P_A, Q_A\}$, $\{P_B, Q_B\}$ of $E_0[I_A^{e_A}]$, $E_0[I_b^{e_B}]$.

Alice

- $\mathbf{m}_A, \mathbf{n}_A \in \mathbb{Z}/I_A^{e_A}\mathbb{Z}$, one is inv.
- $\Phi_A : E_0 \to E_A =$ $E_0 / \langle [\mathbf{m_A}] P_A + [\mathbf{n_A}] Q_A \rangle.$
- Sends E_A , $\Phi_A(P_B)$, $\Phi_A(Q_B)$.

- $\mathbf{m}_B, n_B \in \mathbb{Z}/I_B^{e_B}\mathbb{Z}$, one is inv.
- $\Phi_B : E_0 \to E_B =$ $E_0 / \langle [m_B] P_B + [n_B] Q_B \rangle .$
- Sends E_B , $\Phi_B(P_A)$, $\Phi_B(Q_A)$.

Preparation

Elliptic curve E_0/\mathbb{F}_{p^2} , generators $\{P_A, Q_A\}$, $\{P_B, Q_B\}$ of $E_0[I_A^{e_A}]$, $E_0[I_b^{e_B}]$.

Alice

- $\mathbf{m}_A, \mathbf{n}_A \in \mathbb{Z}/I_A^{e_A}\mathbb{Z}$, one is inv.
- $\Phi_A : E_0 \to E_A =$ $E_0 / \langle [m_A] P_A + [n_A] Q_A \rangle .$
- Sends E_A , $\Phi_A(P_B)$, $\Phi_A(Q_B)$.

- $m_B, n_B \in \mathbb{Z}/I_B^{e_B}\mathbb{Z}$, one is inv.
- $\Phi_B : E_0 \to E_B =$ $E_0 / \langle [m_B] P_B + [n_B] Q_B \rangle .$
- Sends E_B , $\Phi_B(P_A)$, $\Phi_B(Q_A)$.
- $\Psi_B : E_B \to E_{AB} =$ $E_A / \langle [m_B] \Phi_A(P_B) + [n_B] \Phi_A(Q_B) \rangle.$

Preparation

Elliptic curve E_0/\mathbb{F}_{p^2} , generators $\{P_A, Q_A\}$, $\{P_B, Q_B\}$ of $E_0[I_A^{e_A}]$, $E_0[I_b^{e_B}]$.

Alice

- $\mathbf{m}_A, \mathbf{n}_A \in \mathbb{Z}/I_A^{e_A}\mathbb{Z}$, one is inv.
- $\Phi_A : E_0 \to E_A =$ $E_0 / \langle [\mathbf{m_A}] P_A + [\mathbf{n_A}] Q_A \rangle.$
- Sends E_A , $\Phi_A(P_B)$, $\Phi_A(Q_B)$.

Bob

- $m_B, n_B \in \mathbb{Z}/I_B^{e_B}\mathbb{Z}$, one is inv.
- $\Phi_B : E_0 \to E_B =$ $E_0 / \langle [m_B] P_B + [n_B] Q_B \rangle .$
- Sends E_B , $\Phi_B(P_A)$, $\Phi_B(Q_A)$.
- $\Psi_B : E_B \to E_{AB} = E_A / \langle [m_B] \Phi_A(P_B) + [n_B] \Phi_A(Q_B) \rangle$.

Shared information

$$E_{AB} = \Psi_B \left(\Phi_A(E_0) \right) = \Psi_A \left(\Phi_B(E_0) \right),$$

and its j-invariant $j(E_{AB})$.

Some remarks

Remark

Not all elliptic curves are safe for this scheme. *e.g.* supersingularity is a requirement in De Feo-Jao-Plût.

Some remarks

Remark

Not all elliptic curves are safe for this scheme. *e.g.* supersingularity is a requirement in De Feo-Jao-Plût.

Remark

Many variants: proof of identity, public-key encryption...

Some remarks

Remark

Not all elliptic curves are safe for this scheme. *e.g.* supersingularity is a requirement in De Feo-Jao-Plût.

Remark

Many variants: proof of identity, public-key encryption...

Remark

Candidate for Post-Quantum Cryptography.

Isogeny and Differential equations (cf Schoof-Elkies-Atkin algorithm, Bostan-Morain-Salvy-Schost 08, Lercier-Sirvent 08, . . .)

Let E and \tilde{E} be two elliptic curves over $\mathbb{Z}/p\mathbb{Z}$:

$$E: y^2 = x^3 + Ax + B,$$

$$\tilde{E}$$
: $y^2 = x^3 + \tilde{A}x + \tilde{B}$.

Isogeny and Differential equations (cf Schoof-Elkies-Atkin algorithm, Bostan-Morain-Salvy-Schost 08, Lercier-Sirvent 08, ...)

Let E and \tilde{E} be two elliptic curves over $\mathbb{Z}/p\mathbb{Z}$:

$$E: y^2 = x^3 + Ax + B,$$

$$\tilde{E}$$
: $y^2 = x^3 + \tilde{A}x + \tilde{B}$.

Let us assume that there exists some normalized isogeny I between E and \tilde{E} . Then, for some rational fraction U,

$$I(x,y) = (U(x), yU'(x)),$$

Isogeny and Differential equations (cf Schoof-Elkies-Atkin algorithm, Bostan-Morain-Salvy-Schost 08, Lercier-Sirvent 08, ...)

Let E and \tilde{E} be two elliptic curves over $\mathbb{Z}/p\mathbb{Z}$:

$$E: y^2 = x^3 + Ax + B,$$

$$\tilde{E}$$
: $y^2 = x^3 + \tilde{A}x + \tilde{B}$.

Let us assume that there exists some normalized isogeny I between E and \tilde{E} . Then, for some rational fraction U,

$$I(x,y)=(U(x),yU'(x)),$$

Writing $U = \frac{1}{S(\frac{1}{\sqrt{c}})^2}$, we get :

$$(Bx^6 + Ax^4 + 1)S'^2 = 1 + \tilde{A}S^4 + \tilde{B}S^6.$$

The differential equation

Let S be such that $U = \frac{1}{S(\frac{1}{|G|})^2}$.

We have the following differential equation for ${\it S}$:

$$(Bx^6 + Ax^4 + 1)S'^2 = 1 + \tilde{A}S^4 + \tilde{B}S^6.$$

The differential equation

Let S be such that $U = \frac{1}{S(\frac{1}{|G|})^2}$.

We have the following differential equation for S:

$$(Bx^6 + Ax^4 + 1)S'^2 = 1 + \tilde{A}S^4 + \tilde{B}S^6.$$

It rewrites as:

$$y'^2 = g(x)h(y).$$

The differential equation

Let S be such that $U = \frac{1}{S(\frac{1}{-\epsilon})^2}$.

We have the following differential equation for S:

$$(Bx^6 + Ax^4 + 1)S'^2 = 1 + \tilde{A}S^4 + \tilde{B}S^6.$$

It rewrites as:

$$y'^2 = g(x)h(y).$$

Solving a differential equation in $\mathbb{Z}/p\mathbb{Z}$???

■ Not easy:

$$\int X^{p-1} = \frac{1}{p} X^p?$$

The differential equation

Let S be such that $U = \frac{1}{S(\frac{1}{-\epsilon})^2}$.

We have the following differential equation for S:

$$(Bx^6 + Ax^4 + 1)S'^2 = 1 + \tilde{A}S^4 + \tilde{B}S^6.$$

It rewrites as:

$$y'^2 = g(x)h(y).$$

Solving a differential equation in $\mathbb{Z}/p\mathbb{Z}$???

■ Not easy:

$$\int X^{p-1} = \frac{1}{p} X^p?$$

■ We would like to be in zero characteristic: let's go p-adic!

Table of contents

- 1 Background
 - Isogenies
 - Building \mathbb{Q}_p
- 2 p-adic precision: direct approach and differential precision
 - Direct analysis
 - Application in linear algebra
 - The main lemma
- 3 p-adic differential equations with separation of variables
 - Isogeny computation
 - The original scheme
 - Applying the lemma
 - A more subtle approach

Norms over a field

Definition

A norm over a field K is a mapping $|\cdot|:K\to\mathbb{R}_+,x\mapsto |x|$ such that :

(i)
$$|x| = 0 \Leftrightarrow x = 0$$
;

$$(ii) |xy| = |x||y|;$$

$$(iii) |x+y| \leqslant |x| + |y|.$$

Norms over a field

Definition

A norm over a field K is a mapping $|\cdot|:K\to\mathbb{R}_+,x\mapsto |x|$ such that :

(i)
$$|x| = 0 \Leftrightarrow x = 0$$
;

$$(ii) |xy| = |x||y|;$$

$$(iii) |x+y| \leqslant |x| + |y|.$$

It is called ultrametric if:

$$(iii') |x+y| \leqslant \sup(|x|,|y|).$$

Norms over a vector space

Definition

Let K be a normed field. A norm over a K-vector space E is a mapping $\|\cdot\|: E \to \mathbb{R}_+, x \mapsto \|x\|$ such that :

(i)
$$||x|| = 0 \Leftrightarrow x = 0$$
;

(ii)
$$\|\alpha y\| = |\alpha| \|y\|$$
;

(iii)
$$||x + y|| \le ||x|| + ||y||$$
.

Norms over a vector space

Definition

Let K be a normed field. A norm over a K-vector space E is a mapping $\|\cdot\|: E \to \mathbb{R}_+, x \mapsto \|x\|$ such that :

(i)
$$||x|| = 0 \Leftrightarrow x = 0$$
;

$$(ii) \|\alpha y\| = |\alpha| \|y\|;$$

$$(iii) ||x + y|| \leq ||x|| + ||y||.$$

It is called ultrametric if:

$$(iii') \|x + y\| \le \sup(\|x\|, \|y\|).$$

An ultrametric norm over \mathbb{Q}

Definition

For any p prime in \mathbb{N} , we define the p-adic valuation $v_p:\mathbb{Q}\to\mathbb{Z}$ by :

An ultrametric norm over $\mathbb Q$

Definition

For any p prime in \mathbb{N} , we define the p-adic valuation $v_p:\mathbb{Q} \to \mathbb{Z}$ by :

$$v_p(n) = \max \{k \in \mathbb{N}, p^k \mid n\},$$

An ultrametric norm over $\mathbb Q$

Definition

For any p prime in \mathbb{N} , we define the p-adic valuation $v_p:\mathbb{Q} \to \mathbb{Z}$ by :

$$v_p(n) = \max \left\{ k \in \mathbb{N}, \ p^k \mid n \right\},$$

 $v_p\left(\frac{a}{b}\right) = v_p(a) - v_p(b).$

An ultrametric norm over \mathbb{Q}

Definition

For any p prime in \mathbb{N} , we define the p-adic valuation $v_p:\mathbb{Q}\to\mathbb{Z}$ by :

$$v_p(n) = \max \left\{ k \in \mathbb{N}, \ p^k \mid n \right\},$$

 $v_p\left(\frac{a}{b}\right) = v_p(a) - v_p(b).$

Definition

For any $x \in \mathbb{Q}$,

$$|x|_p = p^{-\nu_p(x)}.$$

An ultrametric norm over \mathbb{Q}

Definition

For any p prime in \mathbb{N} , we define the p-adic valuation $v_p:\mathbb{Q}\to\mathbb{Z}$ by :

$$v_p(n) = \max \left\{ k \in \mathbb{N}, \ p^k \mid n \right\},$$

 $v_p\left(\frac{a}{b}\right) = v_p(a) - v_p(b).$

Definition

For any $x \in \mathbb{Q}$,

$$|x|_p = p^{-\nu_p(x)}.$$

 $|\cdot|_p$ is an **ultrametric norm** over \mathbb{Q} .

Building Qp

Norms over \mathbb{Q} .

Theorem (Ostrowski)

Theorem (Ostrowski)

Up to equivalence, the only norms over $\mathbb Q$ are $|\cdot|$ and the $|\cdot|_p$.

Theorem (Ostrowski)

Up to equivalence, the only norms over $\mathbb Q$ are $|\cdot|$ and the $|\cdot|_p$.

Remark

$$|p^k|_p = p^{-k},$$

Theorem (Ostrowski)

Up to equivalence, the only norms over $\mathbb Q$ are $|\cdot|$ and the $|\cdot|_p$.

Remark

$$|p^k|_p = p^{-k},$$

Therefore,

$$|p^k|_p \to_{k\to+\infty} 0.$$

Theorem (Ostrowski)

Up to equivalence, the only norms over \mathbb{Q} are $|\cdot|$ and the $|\cdot|_p$.

Remark

$$|p^k|_p = p^{-k},$$

Therefore,

$$|p^k|_p \to_{k\to+\infty} 0.$$

Remark

① is complete for none of these norms.

Definition

We define \mathbb{Q}_p as "the" **completion** of \mathbb{Q} for $|\cdot|_p$.

Definition

We define \mathbb{Q}_p as "the" **completion** of \mathbb{Q} for $|\cdot|_p$.

 $|\cdot|_p$ and v_p extend to \mathbb{Q}_p

Definition

We define \mathbb{Q}_p as "the" **completion** of \mathbb{Q} for $|\cdot|_p$. $|\cdot|_p$ and v_p extend to $\mathbb{Q}_p |\cdot|_p$ is still **ultrametric**.

Definition

We write:

$$\mathbb{Z}_p = \{x \in \mathbb{Q}_p, \ v_p(x) \ge 0\} = \{x \in \mathbb{Q}_p, \ |x|_p \le 1\} = B'_{\mathbb{Q}_p}(0,1).$$

Definition

We define \mathbb{Q}_p as "the" **completion** of \mathbb{Q} for $|\cdot|_p$. $|\cdot|_p$ and v_p extend to \mathbb{Q}_p $|\cdot|_p$ is still **ultrametric**.

Definition

We write:

$$\mathbb{Z}_p = \{x \in \mathbb{Q}_p, \ v_p(x) \ge 0\} = \{x \in \mathbb{Q}_p, \ |x|_p \le 1\} = B'_{\mathbb{Q}_p}(0,1).$$

 \mathbb{Z}_p is a sub-ring of \mathbb{Q}_p .

Proposition

If
$$x \in \mathbb{Z}_p$$
, we can write

$$x=\sum_{i\geq 0}^{+\infty}a_ip^i.$$

Proposition

If
$$x \in \mathbb{Z}_p$$
, we can write

If
$$x \in \mathbb{Q}_p$$
, we can write

$$x=\sum_{i\geq 0}^{+\infty}a_ip^i.$$

$$x = \frac{1}{p^k} \sum_{i>0}^{+\infty} a_i p^i.$$

Proposition

If
$$x \in \mathbb{Z}_p$$
, we can write

$$x=\sum_{i\geq 0}^{+\infty}a_ip^i.$$

If
$$x \in \mathbb{Q}_p$$
, we can write

$$x = \frac{1}{p^k} \sum_{i>0}^{+\infty} a_i p^i.$$

Let
$$x = \dots 6666666_7 = \sum_{i>0}^{+\infty} 6 \times 7^i$$
.

Proposition

If
$$x \in \mathbb{Z}_p$$
, we can write

$$x=\sum_{i\geq 0}^{+\infty}a_ip^i.$$

If
$$x \in \mathbb{Q}_p$$
, we can write

$$x = \frac{1}{p^k} \sum_{i>0}^{+\infty} a_i p^i.$$

Let
$$x=\dots 6666666_7=\sum_{i\geq 0}^{+\infty}6\times 7^i.$$
 Then $x\in\mathbb{Z}_7.$ We remark that $x+1=0.$

Proposition

If
$$x \in \mathbb{Z}_p$$
, we can write

$$x=\sum_{i\geq 0}^{+\infty}a_ip^i.$$

If
$$x \in \mathbb{Q}_p$$
, we can write

$$x = \frac{1}{p^k} \sum_{i>0}^{+\infty} a_i p^i.$$

Let
$$x = \dots 6666666_7 = \sum_{i \geq 0}^{+\infty} 6 \times 7^i$$
. Then $x \in \mathbb{Z}_7$. We remark that $x + 1 = 0$.

We also have :
$$\ldots 44445_7 = \frac{1}{3} \in \mathbb{Z}_7,$$

Proposition

If
$$x \in \mathbb{Z}_p$$
, we can write

$$x=\sum_{i\geq 0}^{+\infty}a_ip^i.$$

If
$$x \in \mathbb{Q}_p$$
, we can write

$$x = \frac{1}{p^k} \sum_{i>0}^{+\infty} a_i p^i.$$

Let
$$x = \dots$$
 66666667 = $\sum_{i \geq 0}^{+\infty} 6 \times 7^i$. Then $x \in \mathbb{Z}_7$. We remark that

$$x + 1 = 0.$$

We also have :
$$\ldots 44445_7 = \frac{1}{3} \in \mathbb{Z}_7,$$

And, ...
$$4444, 6_7 = \frac{4}{21}$$
.

 $\sqsubseteq_{\mathsf{Building}} \mathbb{Q}_p$

Topology and ultrametricity

Proposition

■ \mathbb{Z}_p is **both** open and closed in \mathbb{Q}_p .

Topology and ultrametricity

Proposition

■ \mathbb{Z}_p is **both** open and closed in \mathbb{Q}_p . \mathbb{Q}_p is totally discontinuous.

Topology and ultrametricity

Proposition

- \mathbb{Z}_p is **both** open and closed in \mathbb{Q}_p . \mathbb{Q}_p is totally discontinuous.
- \mathbb{Z} is a **dense** subset of \mathbb{Z}_p .

Topology and ultrametricity

Proposition

- \mathbb{Z}_p is **both** open and closed in \mathbb{Q}_p . \mathbb{Q}_p is totally discontinuous.
- \mathbb{Z} is a **dense** subset of \mathbb{Z}_p . \mathbb{Q} is a **dense** subset of \mathbb{Q}_p .

Topology and ultrametricity

Proposition

- \mathbb{Z}_p is **both** open and closed in \mathbb{Q}_p . \mathbb{Q}_p is totally discontinuous.
- \mathbb{Z} is a **dense** subset of \mathbb{Z}_p . \mathbb{Q} is a **dense** subset of \mathbb{Q}_p .

Proposition

If E is an ultrametric vector space, then **any** point in a ball of E is its **center**.

Proposition

$$\mathbb{Z}_p/p\mathbb{Z}_p=\mathbb{Z}/p\mathbb{Z}.$$

Proposition

$$\mathbb{Z}_p/p\mathbb{Z}_p=\mathbb{Z}/p\mathbb{Z}.$$

$$\forall k \in \mathbb{N}, \mathbb{Z}_p/p^k \mathbb{Z}_p = \mathbb{Z}/p^k \mathbb{Z}.$$

Proposition

$$\mathbb{Z}_p/p\mathbb{Z}_p=\mathbb{Z}/p\mathbb{Z}.$$

$$\forall k \in \mathbb{N}, \mathbb{Z}_p/p^k\mathbb{Z}_p = \mathbb{Z}/p^k\mathbb{Z}.$$

A first idea

 \mathbb{Q}_p is an extension of \mathbb{Q} where one can perform **calculus**, as simply as over \mathbb{R} .

Proposition

$$\mathbb{Z}_p/p\mathbb{Z}_p=\mathbb{Z}/p\mathbb{Z}.$$

$$\forall k \in \mathbb{N}, \mathbb{Z}_p/p^k\mathbb{Z}_p = \mathbb{Z}/p^k\mathbb{Z}.$$

A first idea

- \mathbb{Q}_p is an extension of \mathbb{Q} where one can perform **calculus**, as simply as over \mathbb{R} .
- We are **closer to arithmetic** : we can reduce modulo *p*.

Proposition

$$\mathbb{Z}_p/p\mathbb{Z}_p=\mathbb{Z}/p\mathbb{Z}.$$

$$\forall k \in \mathbb{N}, \mathbb{Z}_p/p^k\mathbb{Z}_p = \mathbb{Z}/p^k\mathbb{Z}.$$

A first idea

- \mathbb{Q}_p is an extension of \mathbb{Q} where one can perform **calculus**, as simply as over \mathbb{R} .
- We are **closer to arithmetic** : we can reduce modulo *p*.

Remark

$$\mathbb{Z}_{p} \longrightarrow \mathbb{Z}_{p}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathbb{Z}/p\mathbb{Z} \to \mathbb{Z}/p\mathbb{Z}$$

Table of contents

- 1 Background
 - Isogenies
 - Building \mathbb{Q}_p
- 2 p-adic precision: direct approach and differential precision
 - Direct analysis
 - Application in linear algebra
 - The main lemma
- 3 p-adic differential equations with separation of variables
 - Isogeny computation
 - The original scheme
 - Applying the lemma
 - A more subtle approach

Finite-precision p-adics

Elements of \mathbb{Q}_p can be written $\sum_{i=k}^{+\infty} a_i p^i$, with $a_i \in [0, p-1]$, $k \in \mathbb{Z}$ and p a prime number.

While working with a computer, we usually only can consider the beginning of this power serie expansion: we only consider elements of the

following form
$$\sum_{i=l}^{d-1} a_i p^i + O(p^d)$$
 , with $l \in \mathbb{Z}$.

Finite-precision p-adics

Elements of \mathbb{Q}_p can be written $\sum_{i=k}^{+\infty} a_i p^i$, with $a_i \in [0, p-1]$, $k \in \mathbb{Z}$ and p a prime number.

While working with a computer, we usually only can consider the beginning of this power serie expansion: we only consider elements of the

following form
$$\sum_{i=l}^{d-1} a_i p^i + O(p^d)$$
, with $l \in \mathbb{Z}$.

Finite-precision p-adics

Elements of \mathbb{Q}_p can be written $\sum_{i=k}^{+\infty} a_i p^i$, with $a_i \in [0, p-1]$, $k \in \mathbb{Z}$ and p a prime number.

While working with a computer, we usually only can consider the beginning of this power serie expansion: we only consider elements of the

following form $\left[\sum_{i=l}^{d-1} a_i p^i + O(p^d)\right]$, with $l \in \mathbb{Z}$.

Definition

The order, or the absolute precision of $\sum_{i=k}^{d-1} a_i p^i + O(p^d)$ is d.

Finite-precision p-adics

Elements of \mathbb{Q}_p can be written $\sum_{i=k}^{+\infty} a_i p^i$, with $a_i \in [0, p-1]$, $k \in \mathbb{Z}$ and p a prime number.

While working with a computer, we usually only can consider the beginning of this power serie expansion: we only consider elements of the

following form $\left[\sum_{i=l}^{d-1} a_i p^i + O(p^d)\right]$, with $l \in \mathbb{Z}$.

Definition

The **order**, or the **absolute precision** of $\sum_{i=k}^{d-1} a_i p^i + O(p^d)$ is d.

Example

The order of $3 * 7^{-1} + 4 * 7^{0} + 5 * 7^{1} + 6 * 7^{2} + O(7^{3})$ is 3.

The quintessential idea of the step-by-step analysis is the following:

Proposition (p-adic errors don't add)

Indeed,

$$(a + O(p^k)) + (b + O(p^k)) = a + b + O(p^k).$$

That is to say, if a and b are known up to precision $O(p^k)$, then so is a + b.

The quintessential idea of the step-by-step analysis is the following:

Proposition (p-adic errors don't add)

Indeed,

$$(a + O(p^{k})) + (b + O(p^{k})) = a + b + O(p^{k}).$$

That is to say, if a and b are known up to precision $O(p^k)$, then so is a + b.

The quintessential idea of the step-by-step analysis is the following:

Proposition (p-adic errors don't add)

Indeed,

$$(a + O(p^{k})) + (b + O(p^{k})) = a + b + O(p^{k}).$$

That is to say, if a and b are known up to precision $O(p^k)$, then so is a + b.

Remark

It is quite the opposite to when dealing with real numbers, because of **Round-off error**:

$$(1+5*10^{-2})+(2+6*10^{-2})=3+1*10^{-1}+1*10^{-2}.$$

That is to say, if a and b are known up to precision 10^{-n} , then a+b is known up to $10^{(-n+1)}$.

The quintessential idea of the step-by-step analysis is the following:

Proposition (p-adic errors don't add)

Indeed,

$$(a + O(p^{k})) + (b + O(p^{k})) = a + b + O(p^{k}).$$

That is to say, if a and b are known up to precision $O(p^k)$, then so is a + b.

Remark

It is quite the opposite to when dealing with real numbers, because of **Round-off error**:

$$(1+5*10^{-2})+(2+6*10^{-2})=3+1*10^{-1}+1*10^{-2}.$$

That is to say, if a and b are known up to precision 10^{-n} , then a + b is known up to $10^{(-n+1)}$.

Precision formulae

Proposition (addition)

$$(x_0 + O(p^{k_0})) + (x_1 + O(p^{k_1})) = x_0 + x_1 + O(p^{min(k_0, k_1)})$$

Precision formulae

Proposition (addition)

$$(x_0 + O(p^{k_0})) + (x_1 + O(p^{k_1})) = x_0 + x_1 + O(p^{min(k_0, k_1)})$$

Proposition (multiplication)

$$(x_0 + O(p^{k_0})) * (x_1 + O(p^{k_1})) = x_0 * x_1 + O(p^{min(k_0 + v_p(x_1), k_1 + v_p(x_0))})$$

Precision formulae

Proposition (addition)

$$(x_0 + O(p^{k_0})) + (x_1 + O(p^{k_1})) = x_0 + x_1 + O(p^{min(k_0, k_1)})$$

Proposition (multiplication)

$$(x_0 + O(p^{k_0})) * (x_1 + O(p^{k_1})) = x_0 * x_1 + O(p^{min(k_0 + \nu_p(x_1), k_1 + \nu_p(x_0))})$$

Proposition (division)

$$\frac{xp^{a} + O(p^{b})}{vp^{c} + O(p^{d})} = x * y^{-1}p^{a-c} + O(p^{min(d+a-2c,b-c)})$$

In particular,
$$\frac{1}{p^c y + O(p^d)} = y^{-1} p^{-c} + O(p^{d-2c})$$

Table of contents

- 1 Background
 - Isogenies
 - \blacksquare Building \mathbb{Q}_p
- 2 p-adic precision: direct approach and differential precision
 - Direct analysis
 - Application in linear algebra
 - The main lemma
- 3 p-adic differential equations with separation of variables
 - Isogeny computation
 - The original scheme
 - Applying the lemma
 - A more subtle approach

A little warm-up on computing determinants: question

An example of determinant computation

$$\left[\begin{array}{cccc} p^5 + O(p^{10}) & 1 + O(p^{10}) & 1 + p^3 + O(p^{10}) \\ O(p^{10}) & 1 + O(p^{10}) & 1 + O(p^{10}) \\ 2p^6 + O(p^{10}) & 2p + O(p^{10}) & 2p + p^5 + O(p^{10}) \end{array} \right]$$

A little warm-up on computing determinants : question

An example of determinant computation

$$\begin{vmatrix} p^5 + O(p^{10}) & 1 + O(p^{10}) & 1 + p^3 + O(p^{10}) \\ O(p^{10}) & 1 + O(p^{10}) & 1 + O(p^{10}) \\ 2p^6 + O(p^{10}) & 2p + O(p^{10}) & 2p + p^5 + O(p^{10}) \end{vmatrix}$$

Question

What is the **precision** on the **determinant**?

A little warm-up on computing determinants : question

Another example of determinant computation

$$\begin{bmatrix} X^5 + O(X^{10}) & 1 + O(X^{10}) & 1 + X^3 + O(X^{10}) \\ O(X^{10}) & 1 + O(X^{10}) & 1 + O(X^{10}) \\ 2X^6 + O(X^{10}) & 2X + O(X^{10}) & 2X + X^5 + O(X^{10}) \end{bmatrix}$$

A little warm-up on computing determinants: question

Another example of determinant computation

$$\begin{bmatrix} X^5 + O(X^{10}) & 1 + O(X^{10}) & 1 + X^3 + O(X^{10}) \\ O(X^{10}) & 1 + O(X^{10}) & 1 + O(X^{10}) \\ 2X^6 + O(X^{10}) & 2X + O(X^{10}) & 2X + X^5 + O(X^{10}) \end{bmatrix}$$

Same question

What is the **precision** on the **determinant**?

A little warm-up on computing determinants : expansion

An example of determinant computation

$$\left[\begin{array}{ccc} p^5 + O(p^{10}) & 1 + O(p^{10}) & 1 + p^3 + O(p^{10}) \\ O(p^{10}) & 1 + O(p^{10}) & 1 + O(p^{10}) \\ 2p^6 + O(p^{10}) & 2p + O(p^{10}) & 2p + p^5 + O(p^{10}) \end{array}\right]$$

A little warm-up on computing determinants : expansion

An example of determinant computation

$$p^5 + O(p^{10})$$
 $1 + O(p^{10})$ $1 + p^3 + O(p^{10})$ $O(p^{10})$ $1 + O(p^{10})$ $1 + O(p^{10})$ $1 + O(p^{10})$ $2p^6 + O(p^{10})$ $2p + O(p^{10})$ $2p + p^5 + O(p^{10})$

Direct expansion

If we expand directly using the expression of the determinant in terms of the coefficients, we get:

A little warm-up on computing determinants : expansion

An example of determinant computation

$$\begin{bmatrix} p^5 + O(p^{10}) & 1 + O(p^{10}) & 1 + p^3 + O(p^{10}) \\ O(p^{10}) & 1 + O(p^{10}) & 1 + O(p^{10}) \\ 2p^6 + O(p^{10}) & 2p + O(p^{10}) & 2p + p^5 + O(p^{10}) \end{bmatrix}$$

Direct expansion

If we expand directly using the expression of the determinant in terms of the coefficients, we get:

$$-2p^9+O(p^{10}),$$

because of $1 \times 1 \times O(p^{10})$.

A little warm-up on computing determinants : row-echelon form computation

An example of determinant computation

$$\left[\begin{array}{ccc} \rho^5 + O(\rho^{10}) & 1 + O(\rho^{10}) & 1 + \rho^3 + O(\rho^{10}) \\ O(\rho^{10}) & 1 + O(\rho^{10}) & 1 + O(\rho^{10}) \\ O(\rho^{10}) & O(\rho^{10}) & -2\rho^4 + \rho^5 + O(\rho^{10}) \end{array} \right]$$

A little warm-up on computing determinants : row-echelon form computation

An example of determinant computation

$$\left[\begin{array}{cccc} p^5 + O(p^{10}) & 1 + O(p^{10}) & 1 + p^3 + O(p^{10}) \\ O(p^{10}) & 1 + O(p^{10}) & 1 + O(p^{10}) \\ O(p^{10}) & O(p^{10}) & -2p^4 + p^5 + O(p^{10}) \end{array} \right]$$

Row-echelon form computation

If we compute approximate row-echelon form, we still get:

A little warm-up on computing determinants : row-echelon form computation

An example of determinant computation

$$\begin{bmatrix} p^5 + O(p^{10}) & 1 + O(p^{10}) & 1 + p^3 + O(p^{10}) \\ O(p^{10}) & 1 + O(p^{10}) & 1 + O(p^{10}) \\ O(p^{10}) & O(p^{10}) & -2p^4 + p^5 + O(p^{10}) \end{bmatrix}$$

Row-echelon form computation

If we compute approximate row-echelon form, we still get:

$$-2p^9 + O(p^{10}),$$

because of $1 \times 1 \times O(p^{10})$.

An example of determinant computation

$$\left[egin{array}{cccc} 1+O(
ho^{10}) & O(
ho^{10}) & O(
ho^{10}) \ O(
ho^{10}) &
ho^3+O(
ho^{10}) & O(
ho^{10}) \ O(
ho^{10}) & O(
ho^{10}) & -2
ho^6+
ho^7+O(
ho^{10}) \end{array}
ight]$$

A little warm-up on computing determinants : SNF

An example of determinant computation

$$egin{array}{lll} 1 + O(
ho^{10}) & O(
ho^{10}) & O(
ho^{10}) \ O(
ho^{10}) &
ho^3 + O(
ho^{10}) & O(
ho^{10}) \ O(
ho^{10}) & O(
ho^{10}) & -2
ho^6 +
ho^7 + O(
ho^{10}) \end{array}$$

Smith Normal Form (SNF) computation

If we compute approximate SNF, we now get:

Application in linear algebra

A little warm-up on computing determinants : SNF

An example of determinant computation

Smith Normal Form (SNF) computation

If we compute approximate SNF, we now get:

$$-2p^9 + p^{10} + O(p^{13}),$$

because of $1 \times p^3 \times O(p^{10}) = O(p^{13})$.

Summary: precision and p-adic computations

Direct method for precision

Summary: precision and p-adic computations

Direct method for precision

■ Has often been enough to get a first view of the problem.

Summary: precision and p-adic computations

Direct method for precision

- Has often been enough to get a first view of the problem.
- Depends heavily on the algorithm chosen for the computation

Summary: precision and p-adic computations

Direct method for precision

- Has often been enough to get a first view of the problem.
- Depends heavily on the algorithm chosen for the computation
- No idea on what is optimal.

Table of contents

- 1 Background
 - Isogenies
 - Building \mathbb{Q}_p
- 2 p-adic precision: direct approach and differential precision
 - Direct analysis
 - Application in linear algebra
 - The main lemma
- 3 p-adic differential equations with separation of variables
 - Isogeny computation
 - The original scheme
 - Applying the lemma
 - A more subtle approach

Lemma (CRV14)

Let $f: \mathbb{Q}_p^n \to \mathbb{Q}_p^m$ be a (strictly) **differentiable** mapping.

Lemma (CRV14)

Let $f: \mathbb{Q}_p^n \to \mathbb{Q}_p^m$ be a (strictly) **differentiable** mapping.

Let $x \in \mathbb{Q}_p^n$. We assume that f'(x) is **surjective**.

Lemma (CRV14)

Let $f: \mathbb{Q}_p^n \to \mathbb{Q}_p^m$ be a (strictly) differentiable mapping. Let $x \in \mathbb{Q}_p^n$. We assume that f'(x) is surjective. Then for any ball B = B(0,r) small enough,

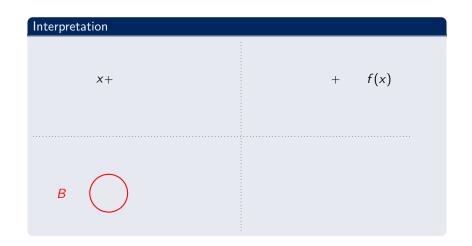
Lemma (CRV14)

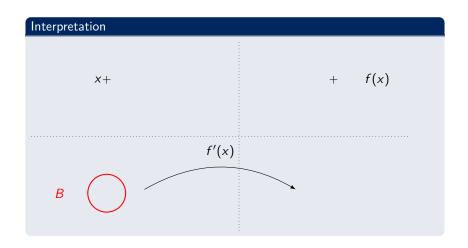
Let $f: \mathbb{Q}_p^n \to \mathbb{Q}_p^m$ be a (strictly) **differentiable** mapping.

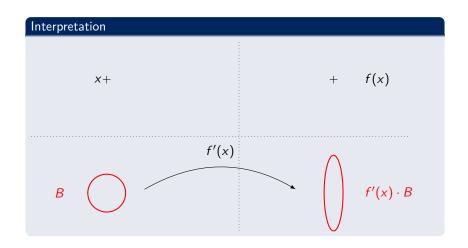
Let $x \in \mathbb{Q}_p^n$. We assume that f'(x) is **surjective**.

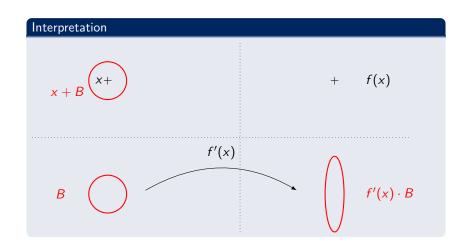
Then for any ball B = B(0, r) small enough,

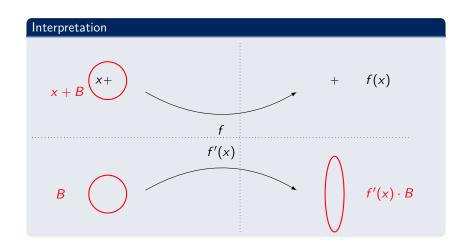
$$f(x+B)=f(x)+f'(x)\cdot B.$$

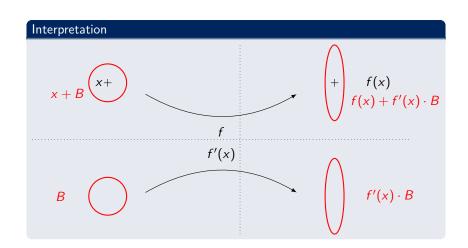












p-adic precision and isogeny computation

p-adic precision: direct approach and differential precision

The main lemma

Lattices

Lemma

Let $f: \mathbb{Q}_p^n \to \mathbb{Q}_p^m$ be a (strictly) differentiable mapping. Let $x \in \mathbb{Q}_p^n$. We assume that f'(x) is surjective. Then for any ball B = B(0, r) small enough,

$$f(x+B)=f(x)+f'(x)\cdot B.$$

Lemma

Let $f: \mathbb{Q}_p^n \to \mathbb{Q}_p^m$ be a (strictly) **differentiable** mapping.

Let $x \in \mathbb{Q}_p^n$. We assume that f'(x) is **surjective**.

Then for any ball B = B(0, r) small enough, for any open lattice $H \subset B$

$$f(x+H)=f(x)+f'(x)\cdot H.$$

Lemma

Let $f:\mathbb{Q}_p^n \to \mathbb{Q}_p^m$ be a (strictly) **differentiable** mapping.

Let $x \in \mathbb{Q}_p^n$. We assume that f'(x) is **surjective**.

Then for any ball B=B(0,r) small enough, for any open lattice $H\subset B$

$$f(x+H)=f(x)+f'(x)\cdot H.$$

Remark

This allows more models of precision, like

$$(x,y) = (1 + O(p^{10}), 1 + O(p)).$$

Lemma

Let $f: \mathbb{Q}_p^n \to \mathbb{Q}_p^m$ be a (strictly) **differentiable** mapping.

Let $x \in \mathbb{Q}_p^n$. We assume that f'(x) is **surjective**.

Then for any ball B = B(0, r) small enough, for any open lattice $H \subset B$

$$f(x+H)=f(x)+f'(x)\cdot H.$$

Remark

This allows more models of precision, like

$$(x,y) = (1 + O(p^{10}), 1 + O(p)).$$

Remark

Our framework can be extended to **(complete) ultrametric** K-vector spaces (e.g. being $\mathbb{F}_p((X))^n$, $\mathbb{Q}((X))^m$, $\mathbb{R}((\varepsilon))^s$).

What is small enough?

How can we determine when the lemma applies ?

What is small enough?

How can we determine when the lemma applies ? When f is locally analytic, it essentially corresponds to

$$\sum_{k=2}^{+\infty} \frac{1}{k!} f^{(k)}(x) \cdot H^k \subset f'(x) \cdot H.$$

What is small enough?

How can we determine when the lemma applies ? When f is locally analytic, it essentially corresponds to

$$\sum_{k=2}^{+\infty} \frac{1}{k!} f^{(k)}(x) \cdot H^k \subset f'(x) \cdot H.$$

This can be determined with **Newton-polygon** techniques.

Differential of the determinant

It is well known:

$$\det'(M): dM \mapsto \mathsf{Tr}(\mathsf{Com}(M) \cdot dM).$$

Differential of the determinant

It is well known:

$$\det'(M): dM \mapsto \mathsf{Tr}(\mathsf{Com}(M) \cdot dM).$$

Consequence on precision

• Loss in precision: coefficient of Com(M) with smallest valuation.

Differential of the determinant

It is well known:

$$\det'(M): dM \mapsto \mathsf{Tr}(\mathsf{Com}(M) \cdot dM).$$

Consequence on precision

- Loss in precision: coefficient of Com(M) with smallest valuation.
- Corresponds to the products of the n-1-first invariant factors.

Differential of the determinant

It is well known:

$$\det'(M): dM \mapsto \mathsf{Tr}(\mathsf{Com}(M) \cdot dM).$$

Consequence on precision

- Loss in precision: coefficient of Com(M) with smallest valuation.
- Corresponds to the products of the n-1-first invariant factors.
- Approximate SNF is optimal.

Table of contents

- 1 Background
 - Isogenies
 - Building \mathbb{Q}_p
- 2 p-adic precision: direct approach and differential precision
 - Direct analysis
 - Application in linear algebra
 - The main lemma
- 3 p-adic differential equations with separation of variables
 - Isogeny computation
 - The original scheme
 - Applying the lemma
 - A more subtle approach

Isogeny and Differential equations (cf Schoof-Elkies-Atkin algorithm, Bostan-Morain-Salvy-Schost 08, Lercier-Sirvent 08, . . .)

Let E and \tilde{E} be two elliptic curves over $\mathbb{Z}/p\mathbb{Z}$:

$$E: y^2 = x^3 + Ax + B,$$

$$\tilde{E}$$
: $y^2 = x^3 + \tilde{A}x + \tilde{B}$.

Isogeny and Differential equations (cf Schoof-Elkies-Atkin algorithm, Bostan-Morain-Salvy-Schost 08, Lercier-Sirvent 08, ...)

Let E and \tilde{E} be two elliptic curves over $\mathbb{Z}/p\mathbb{Z}$:

$$E: y^2 = x^3 + Ax + B,$$

$$\tilde{E}$$
: $y^2 = x^3 + \tilde{A}x + \tilde{B}$.

Let us assume that there exists some normalized isogeny I between E and \tilde{E} . Then, for some rational fraction U,

$$I(x,y) = (U(x), yU'(x)),$$

Isogeny and Differential equations (cf Schoof-Elkies-Atkin algorithm, Bostan-Morain-Salvy-Schost 08, Lercier-Sirvent 08, ...)

Let E and \tilde{E} be two elliptic curves over $\mathbb{Z}/p\mathbb{Z}$:

$$E : y^2 = x^3 + Ax + B,$$

$$\tilde{E}$$
: $y^2 = x^3 + \tilde{A}x + \tilde{B}$.

Let us assume that there exists some normalized isogeny I between E and \tilde{E} . Then, for some rational fraction U,

$$I(x,y)=(U(x),yU'(x)),$$

Writing $U = \frac{1}{S(\frac{1}{\sqrt{c}})^2}$, we get :

$$(Bx^6 + Ax^4 + 1)S'^2 = 1 + \tilde{A}S^4 + \tilde{B}S^6.$$

Change of variable and the differential equation

The differential equation

Let S be such that

$$U=\frac{1}{S(\frac{1}{\sqrt{x}})^2}.$$

Then if $A, B, \tilde{A}, \tilde{B}$ are in \mathbb{Z}_p ,

$$S \in \mathbb{Z}_p[[t]]$$

We have the following differential equation for S:

$$(Bx^6 + Ax^4 + 1)S'^2 = 1 + \tilde{A}S^4 + \tilde{B}S^6.$$

Computing the isogeny

Given E and \widetilde{E} , the goal is to compute the isogeny I via the differential equation:

$$\begin{cases} S(0) = 0, \\ (Bx^6 + Ax^4 + 1)S'^2 = 1 + \tilde{A}S^4 + \tilde{B}S^6. \end{cases}$$

Going through \mathbb{Z}_p

Not easy to solve a differential equation in $\mathbb{Z}/p\mathbb{Z}$.

Computing the isogeny

Given E and \widetilde{E} , the goal is to compute the isogeny I via the differential equation:

$$\begin{cases} S(0) = 0, \\ (Bx^6 + Ax^4 + 1)S'^2 = 1 + \tilde{A}S^4 + \tilde{B}S^6. \end{cases}$$

Going through \mathbb{Z}_p

Not easy to solve a differential equation in $\mathbb{Z}/p\mathbb{Z}$. Consequently:

Computing the isogeny

Given E and \widetilde{E} , the goal is to compute the isogeny I via the differential equation:

$$\begin{cases} S(0) = 0, \\ (Bx^6 + Ax^4 + 1)S'^2 = 1 + \tilde{A}S^4 + \tilde{B}S^6. \end{cases}$$

Going through \mathbb{Z}_p

Not easy to solve a differential equation in $\mathbb{Z}/p\mathbb{Z}$. Consequently:

1 Lift (consistently) from $\mathbb{Z}/p\mathbb{Z}$ to \mathbb{Z}_p .

Computing the isogeny

Given E and \widetilde{E} , the goal is to compute the isogeny I via the differential equation:

$$\begin{cases} S(0) = 0, \\ (Bx^6 + Ax^4 + 1)S'^2 = 1 + \tilde{A}S^4 + \tilde{B}S^6. \end{cases}$$

Going through \mathbb{Z}_p

Not easy to solve a differential equation in $\mathbb{Z}/p\mathbb{Z}$. Consequently:

- **1** Lift (consistently) from $\mathbb{Z}/p\mathbb{Z}$ to \mathbb{Z}_p .
- 2 Solve the differential equation in \mathbb{Z}_p .

Computing the isogeny

Given E and \widetilde{E} , the goal is to compute the isogeny I via the differential equation:

$$\begin{cases} S(0) = 0, \\ (Bx^6 + Ax^4 + 1)S'^2 = 1 + \tilde{A}S^4 + \tilde{B}S^6. \end{cases}$$

Going through \mathbb{Z}_p

Not easy to solve a differential equation in $\mathbb{Z}/p\mathbb{Z}$. Consequently:

- **1** Lift (consistently) from $\mathbb{Z}/p\mathbb{Z}$ to \mathbb{Z}_p .
- 2 Solve the differential equation in \mathbb{Z}_p .
- **3** Reduce mod p to get the solution in $\mathbb{Z}/p\mathbb{Z}$.

Table of contents

- 1 Background
 - Isogenies
 - Building \mathbb{Q}_p
- 2 p-adic precision: direct approach and differential precision
 - Direct analysis
 - Application in linear algebra
 - The main lemma
- 3 p-adic differential equations with separation of variables
 - Isogeny computation
 - The original scheme
 - Applying the lemma
 - A more subtle approach

The original scheme

Change of equation

When $p \neq 2$, we can replace $y'^2 \times G = H(y)$ by $y' = g \times h(y)$ with $g, h \in \mathbb{Z}_p^{\times}$.

The original scheme

Change of equation

When $p \neq 2$, we can replace $y'^2 \times G = H(y)$ by $y' = g \times h(y)$ with $g, h \in \mathbb{Z}_p^{\times}$.

Direct analysis

Newton scheme to solve $y' = g \times h(y)$:

The original scheme

Change of equation

When $p \neq 2$, we can replace $y'^2 \times G = H(y)$ by $y' = g \times h(y)$ with $g, h \in \mathbb{Z}_p^{\times}$.

Direct analysis

Newton scheme to solve $y' = g \times h(y)$:

$$N_{g,h}(u) \leftarrow u - h(u) \int \left(\frac{u'}{h(u)} - g\right).$$

Change of equation

When $p \neq 2$, we can replace $y'^2 \times G = H(y)$ by $y' = g \times h(y)$ with $g, h \in \mathbb{Z}_p^{\times}$.

Direct analysis

Newton scheme to solve $y' = g \times h(y)$:

$$N_{g,h}(u) \leftarrow u - h(u) \int \left(\frac{u'}{h(u)} - g\right).$$

Remark

$$\int O(p^m)x^k = \frac{O(p^m)}{k+1}x^{k+1}.$$

Change of equation

When $p \neq 2$, we can replace $y'^2 \times G = H(y)$ by $y' = g \times h(y)$ with $g, h \in \mathbb{Z}_p^{\times}$.

Direct analysis

Newton scheme to solve $y' = g \times h(y)$:

$$N_{g,h}(u) \leftarrow u - h(u) \int \left(\frac{u'}{h(u)} - g\right).$$

Remark

$$\int O(p^m)x^k = \frac{O(p^m)}{k+1}x^{k+1}.$$

One loses O(N) digits at each step, for N the order of truncation.

Change of equation

When $p \neq 2$, we can replace $y'^2 \times G = H(y)$ by $y' = g \times h(y)$ with $g, h \in \mathbb{Z}_p^{\times}$.

Direct analysis

Newton scheme to solve $y' = g \times h(y)$:

$$N_{g,h}(u) \leftarrow u - h(u) \int \left(\frac{u'}{h(u)} - g\right).$$

Remark

$$\int O(p^m)x^k = \frac{O(p^m)}{k+1}x^{k+1}.$$

One loses O(N) digits at each step, for N the order of truncation. To compute $y \mod x^{2^N+1}$, we need an initial precision of $O(N^2)$ digits.

Table of contents

- 1 Background
 - Isogenies
 - Building \mathbb{Q}_p
- 2 p-adic precision: direct approach and differential precision
 - Direct analysis
 - Application in linear algebra
 - The main lemma
- 3 p-adic differential equations with separation of variables
 - Isogeny computation
 - The original scheme
 - Applying the lemma
 - A more subtle approach

Differential and differential equation

Theorem

Let
$$\Phi$$
: $(g,h) \mapsto y$ such that $y(0) = 0$ and $y' = gh(y)$. Then,

$$\Phi'(g,h)\cdot(\delta g,\delta h)=h(y)\int\delta g+\frac{g\delta h(y)}{h(y)}.$$

Differential and differential equation

Theorem

Let
$$\Phi: (g,h) \mapsto y$$
 such that $y(0) = 0$ and $y' = gh(y)$. Then,

$$\Phi'(g,h)\cdot(\delta g,\delta h)=h(y)\int\delta g+\frac{g\delta h(y)}{h(y)}.$$

Proposition

In our case,
$$p \neq 2$$
, $y, g, h \in \mathbb{Z}_p[\![x]\!]$, $g(0) = h(0) = 1$. If $\delta g = \delta h = O(p^k)$, then

Differential and differential equation

Theorem

Let
$$\Phi:(g,h)\mapsto y$$
 such that $y(0)=0$ and $y'=gh(y)$. Then,

$$\Phi'(g,h)\cdot(\delta g,\delta h)=h(y)\int\delta g+\frac{g\delta h(y)}{h(y)}.$$

Proposition

In our case,
$$p \neq 2$$
, $y, g, h \in \mathbb{Z}_p[\![x]\!]$, $g(0) = h(0) = 1$. If $\delta g = \delta h = O(p^k)$, then

$$\Phi'(y) \cdot (\delta g, \delta h) \mod x^{2^N+1} \in \frac{O(p^k)}{p^N} \mathbb{Z}_p[\![x]\!].$$

First conclusion on the application of the lemma

Proposition

 $\Phi(g,h) \mod (p,t^{2^n})$ is determined by $g,h \mod (p^{1+\log_p 2^n},t^{2^n})$. In other words, we have a logarithmic loss in precision.

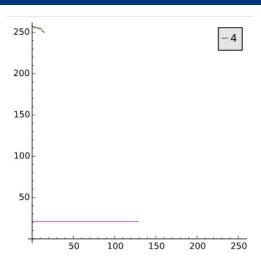


Figure: Precision over the output

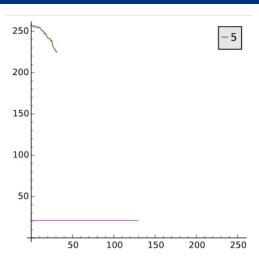


Figure: Precision over the output

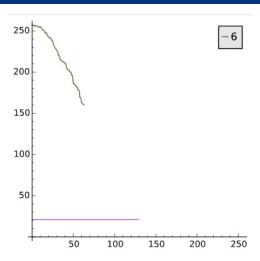


Figure: Precision over the output

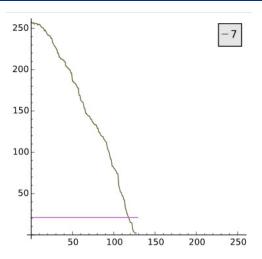


Figure: Precision over the output

Table of contents

- 1 Background
 - Isogenies
 - Building \mathbb{Q}_p
- 2 p-adic precision: direct approach and differential precision
 - Direct analysis
 - Application in linear algebra
 - The main lemma
- 3 p-adic differential equations with separation of variables
 - Isogeny computation
 - The original scheme
 - Applying the lemma
 - A more subtle approach

Another take on the computation $% \left\{ \left(1\right) \right\} =\left\{ \left(1\right$

Another take on the computation

■ In the previous computation, we start with some given approximations of g, h, u0 and try **to follow** the algorithm for the exact counterparts of g, h, u0.

Another take on the computation

■ In the previous computation, we start with some given approximations of g, h, u_0 and try **to follow** the algorithm for the exact counterparts of g, h, u_0 . This is somehow **much stronger** than our desire: computing a good approximate solution.

Another take on the computation

- In the previous computation, we start with some given approximations of g, h, u0 and try **to follow** the algorithm for the exact counterparts of g, h, u0. This is somehow **much stronger** than our desire: computing a good approximate solution.
- Another way is then to modify the current g, h, u0 at each step, in a consistent way, so as to keep on getting better approximate solutions.

Another take on the computation

- In the previous computation, we start with some given approximations of g, h, u_0 and try **to follow** the algorithm for the exact counterparts of g, h, u_0 . This is somehow **much stronger** than our desire: computing a good approximate solution.
- Another way is then to modify the current g, h, u0 at each step, in a consistent way, so as to keep on getting better approximate solutions.
- A third way here will be to work entirely in $\mathbb{Z}/p^{\kappa}\mathbb{Z}$.

New framework

In this new computation, we consider h as given, and not varying for the lemma.

Lemma

Let
$$Y : g \mapsto y$$
 such that $y(0) = 0$ and $y' = gh(y)$. Then,

$$Y'(g)\cdot(\delta g)=h(y)\int\delta g.$$

$$u_0' = g_0 h(u_0) \mod (p^k, t^1)$$

$$g_0 = g \mod p^k$$

$$u_0' = g_0 h(u_0) \mod (p^k, t^1)$$

$$u_1' = g_1 h(u_1) \mod (p^k, t^2)$$

$$g_0 = g \mod p^k$$

$$g_1 = g_0 \mod p^k$$

$$u_0' = g_0 h(u_0) \mod (p^k, t^1)$$

$$u_1' = g_1 h(u_1) \mod (p^k, t^2)$$

$$u_2' = g_2 h(u_2) \mod (p^k, t^4)$$

$$g_0 = g \mod p^k$$

$$g_1 = g_0 \mod p^k$$

$$g_2 = g_1 \mod p^k$$

A new take on the iteration

$$u_0' = g_0 h(u_0) \mod (p^k, t^1)$$

$$u_1' = g_1 h(u_1) \mod (p^k, t^2)$$

$$u_2' = g_2 h(u_2) \mod (p^k, t^4)$$

. .

$$g_0 = g \mod p^k$$

$$g_1 = g_0 \mod p^k$$

$$g_2 = g_1 \mod p^k$$

. . . .

$$u_0' = g_0 h(u_0) \mod (p^k, t^1)$$

$$u_1' = g_1 h(u_1) \mod (p^k, t^2)$$

$$u_2' = g_2 h(u_2) \mod (p^k, t^4)$$

$$g_0 = g \mod p^k$$

$$g_1 = g_0 \mod p^k$$

$$g_2 = g_1 \mod p^k$$

$$u_0' = g_0 h(u_0) \mod (p^k, t^1)$$

$$u_1' = g_1 h(u_1) \mod (p^k, t^2)$$

$$u_2' = g_2 h(u_2) \mod (p^k, t^4)$$

$$u_I' = g_I h(u_I) \mod (p^k, t^{2^l})$$

$$g_0 = g \mod p^k$$

$$g_1 = g_0 \mod p^k$$

$$g_2 = g_1 \mod p^k$$

$$g_l = g_{l-1} \mod p^k$$

A new take on the iteration

$$u_0' = g_0 h(u_0) \mod (p^k, t^1)$$

$$u_1' = g_1 h(u_1) \mod (p^k, t^2)$$

$$u_2' = g_2 h(u_2) \mod (p^k, t^4)$$

. . . .

. . . .

$$u_I' = g_I h(u_I) \mod (p^k, t^{2^l})$$

$$g_0 = g \mod p^k$$

$$g_1 = g_0 \mod p^k$$

$$g_2 = g_1 \mod p^k$$

$$g_l = g_{l-1} \mod p^k$$

In the end

$$u_l' = gh(u_l) \mod (p^k, t^{2^l})$$

$$g_l = g \mod p^k$$

Final take on the Newton scheme

As a consequence, we can prove that it is harmless to work in $\mathbb{Z}/p^k\mathbb{Z}$ for our computation.

Proposition

We can obtain the solution $\Phi(g,h) \mod (p,t^{n+1})$ knowing $g,h \mod (p^{\lfloor \log_p n \rfloor + 1},t^{n+1})$ and applying the following iteration:

$$N_{g,h}(u) \leftarrow u - h(u) \int \left(\frac{u'}{h(u)} - g\right),$$

Final take on the Newton scheme

As a consequence, we can prove that it is harmless to work in $\mathbb{Z}/p^k\mathbb{Z}$ for our computation.

Proposition

We can obtain the solution $\Phi(g,h) \mod (p,t^{n+1})$ knowing $g,h \mod (p^{\lfloor \log_p n \rfloor + 1},t^{n+1})$ and applying the following iteration:

$$N_{g,h}(u) \leftarrow u - h(u) \int \left(\frac{u'}{h(u)} - g\right),$$

modulo $p^{\lfloor \log_p n \rfloor + 1}$ and growing order of truncation.

Timings

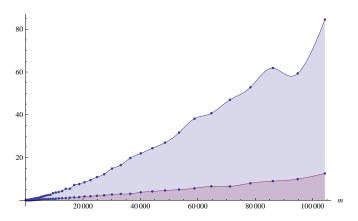


Figure: Timings in seconds, measured on a laptop, of our Algorithm run at precision λ_{old} (upper curve) and λ_{new} (lower curve) in order to compute an approximation modulo $(5, t^{4m+1})$ of some given *m*-isogenies.

Speedup

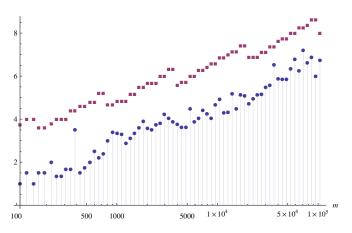


Figure: Practical speedup obtained with the new precision analysis compared with the theoretical improvement (m-axis in logarithmic scale). (\blacksquare) is the ratio on precisions, (\bullet) is the actual speedup.

On *p*-adic precision

On p-adic precision

■ Step-by-step analysis: as a first step. Can show differentiability and naïve loss in precision during the computation.

On p-adic precision

- Step-by-step analysis: as a first step. Can show differentiability and naïve loss in precision during the computation.
- Differential calculus : intrinsic and can handle both gain and loss.

On p-adic precision

- Step-by-step analysis: as a first step. Can show differentiability and naïve loss in precision during the computation.
- Differential calculus : intrinsic and can handle both gain and loss.
- Can stabilize and attain optimal precision, even though naïve computation lose too much precision.

On p-adic precision

- Step-by-step analysis: as a first step. Can show differentiability and naïve loss in precision during the computation.
- Differential calculus : intrinsic and can handle both gain and loss.
- Can stabilize and attain optimal precision, even though naïve computation lose too much precision.

On differential equations

On p-adic precision

- Step-by-step analysis: as a first step. Can show differentiability and naïve loss in precision during the computation.
- Differential calculus : intrinsic and can handle both gain and loss.
- Can stabilize and attain optimal precision, even though naïve computation lose too much precision.

On differential equations

Can attain optimal loss in precision for differential equations with separation of variables.

On p-adic precision

- Step-by-step analysis: as a first step. Can show differentiability and naïve loss in precision during the computation.
- Differential calculus : **intrinsic** and can handle both **gain** and **loss**.
- Can stabilize and attain optimal precision, even though naïve computation lose too much precision.

On differential equations

- Can attain optimal loss in precision for differential equations with separation of variables.
- Future works: higher order and p = 2.

References

Initial article

■ XAVIER CARUSO, DAVID ROE AND TRISTAN VACCON Tracking *p*-adic precision, ANTS XI, 2014.

Linear Algebra

■ XAVIER CARUSO, DAVID ROE AND TRISTAN VACCON *p*-adic stability in linear algebra, ISSAC 2015.

Differential equations

 PIERRE LAIREZ AND TRISTAN VACCON On p-adic differential equations with separation of variables, ISSAC 2016.

Thank you for your attention

