
ZpL: a p-adic precision package
Xavier Caruso

CNRS, Université Rennes 1;
xavier.caruso@normalesup.org

David Roe
MIT;

roed@mit.edu

Tristan Vaccon
Université de Limoges;
tristan.vaccon@unilim.fr

ABSTRACT
We present a new package ZpL for the mathematical software sys-
tem SageMath. It implements a sharp tracking of precision on
p-adic numbers, following the theory of ultrametric precision in-
troduced in [4]. The underlying algorithms are mostly based on
automatic differentiation techniques. We introduce them, study
their complexity and discuss our design choices. We illustrate the
benefits of our package (in comparison with previous implementa-
tions) with a large sample of examples coming from linear algebra,
commutative algebra and differential equations.

CCS CONCEPTS
• Computing methodologies→ Algebraic algorithms;

KEYWORDS
Algorithms, p-adic precision, Automatic Differentiation
ACM Reference Format:
Xavier Caruso, David Roe, and Tristan Vaccon. 2018. ZpL: a p-adic precision
package. In ISSAC ’18: 2018 ACM International Symposium on Symbolic and
Algebraic Computation, July 16–19, 2018, New York, NY, USA. ACM, New
York, NY, USA, 8 pages. https://doi.org/10.1145/3208976.3208995

1 INTRODUCTION
When computing with real and p-adic fields, exact results are usu-
ally impossible, since most elements have infinite decimal or p-adic
expansions. Working with these fields thus requires an analysis
of how precision evolves through the sequence of steps involved
in carrying out a computation. Such analysis can be carried out
automatically by the software, or via theorems specific to a par-
ticular application [10, 12]. In this paper, we describe a package
for computing with p-adic rings and fields [15], based on a series
of papers by the same authors [4–7]. The core of the package is a
method for tracking precision using p-adic lattices which can yield
dramatically more precise results than traditional methods, at the
cost of increased runtime and memory usage.

The standard method for handling precision when computing
with real numbers is floating point arithmetic, which may also be
used in p-adic computation. At a given precision level, a finite set
of representable numbers are chosen, and arithmetic operations
are defined to give a representable number that is close to the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISSAC ’18, July 16–19, 2018, New York, NY, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5550-6/18/07. . . $15.00
https://doi.org/10.1145/3208976.3208995

true result [1]. Floating point arithmetic has the benefit of efficient
arithmetic operations, but users are responsible for tracking the
precision of the results. Numerically unstable algorithms can lead
to very inaccurate answers [9].

If provably correct results are desired, interval arithmetic pro-
vides an alternative to floating point. Instead of just tracking an
approximation to the answer, one also tracks a radius within which
the true result lies. This method is commonly used for p-adic com-
putations since the ultrametric property of p-adic fields frequently
keeps the radius small. Computations remain fairly efficient with
this approach, but numerical instability can still lead to dramatic
losses in precision (see §2 for many examples). Tracking the pre-
cision of multiple variables concurrently, the set of possible true
values associated to an inexact value takes the form of an ellipsoid
with axes parallel to the coordinate axes.

For better control of precision, we may allow arbitrary axes.
This change would have little utility for real numbers, since such
ellipsoids are not preserved by most functions. For p-adic fields, in
contrast, differentiable maps with surjective differential will send
sufficiently small ellipsoids to other ellipsoids. From an algebraic
perspective, these ellipsoids are just cosets of a lattice H inside a
p-adic vector space, and the main result of [4] (see also Proposition
3.1 below) describes how the image of such a coset under a map f
is given exactly by applying the differential of f to H .

In this paper, we describe an implementation of this idea in Sage-
Math [14]. Rather than attaching a precision to each element, we
store the precision of many elements together by tracking a pre-
cision module1 for the whole collection of variables. As variables
are created and destroyed, we update a matrix whose rows repre-
sent the vectors in the module. Information about the precision
of elements is extracted from the matrix as necessary. Concretely,
our package provides two new SageMath parents2, namely ZpLC
and ZpLF (and their fraction fields QpLC and QpLF). The acronyms
LC and LF stand for “lattice-cap” and “lattice-float” respectively
(see §3 for details). Our package has been included in the standard
distribution of SageMath since version 8.2.

The article is structured as follows. In §2 we provide a demon-
stration of the package, showing how it can provide more precise
answers than the traditional methods for tracking p-adic precision.
In particular, §2.1 describes elementary arithmetic and the SOMOS-
4 sequence, §2.2 gives examples from linear algebra, §2.3 examples
using polynomials, and §2.4 examples of differential equations. In
§3 we give more details on the implementation. §3.1 contains a brief
overview on the theory of p-adic precision of [4]. §3.2 is devoted
to the implementation of automatic differentiation leading to the

1Throughout the paper, the word “module” has its mathematical meaning: it denotes
an additive group endowed with an external product by scalars in Zp .
2Parents in SageMath are the analogues of container objects in computer science.
Basically a parent corresponds to an implementation of a concrete mathematical
structure, as the ring of p-adic integers.

https://doi.org/10.1145/3208976.3208995
https://doi.org/10.1145/3208976.3208995

actual computation of the module that models the precision. In
§3.3, we explain how precision on any individual number can be
recovered and discuss the validity of our results. The complexity
overhead induced by our package is analyzed in §3.4. Finally, §4
contains a discussion of how we see this package fitting into the
existing p-adic implementations. While these methods do introduce
overhead, they are well suited to exploring precision behavior when
designing algorithms, and can provide hints as to when further pre-
cision analysis would be useful.

2 SHORT DEMONSTRATION
The first step is to define the parents: the rings of p-adic numbers
we will work with.

In: Z2 = ZpXX(2, print_mode='digits')
Q2 = QpXX(2, print_mode='digits')

ZpXX is a generic notation for ZpCR, ZpLC and ZpLF. The first, ZpCR,
is the usual constructor for p-adic parents in SageMath. It tracks
precision using interval arithmetic. The parents ZpLC and ZpLF
provided by our package track precision differently; more details
will be provided in Section 3. In the sequel, we will compare the
outputs provided by each parent. As the results for ZpLF and ZpLC
agree on all examples in this section, we will only give those for
ZpLC.

In what follows, random elements in Zp are always picked with
respect to the Haar measure. Random elements in Qp are con-
structed as a product pV ·U where U is a random element in Zp
(distributed according to the Haar measure) andV is a random vari-
able taking values in Zwhich is independent fromU and distributed
as follows:

Prob[V=0] = 1
5 , Prob[V=v] = 2

5 |v | ·(|v |+1) , ∀v , 0.

This distribution is the default in SageMath, and the function
random_element used below picks the same element for each of
ZpCR, ZpLC and ZpLF.

2.1 Elementary arithmetic
We begin our tour of the ZpL package with some basic arithmetic.
Elements are approximated by giving a valuation and a unit, where
the unit is specified modulo a power of p determined by the global
lattice precision.

In: x = random_element(Z3, prec=5); x
ZpCR: ...11111
ZpLC: ...11111

Multiplication by p (here 3) is a shift on the digits and thus leads
to a gain of one digit in absolute precision. In the example below,
we observe that when this multiplication is split into several steps,
ZpCR does not see the gain of precision while ZpL does.

In: 3*x In: x + x + x
ZpCR: ...111110 ZpCR: ...11110
ZpLC: ...111110 ZpLC: ...111110

The same phenomenon occurs for multiplication.
In: x^3 In: x * x * x

ZpCR: ...010101 ZpCR: ...10101
ZpLC: ...010101 ZpLC: ...010101

ZpL is also well suited for working with coefficients with unbal-
anced precision.

In: x = random_element(Z2, prec=10)
y = random_element(Z2, prec=5)

In: u, v = x+y, x-y
u, v

ZpCR: (...10111, ...01111)
ZpLC: (...10111, ...01111)

Now, let us compute u + v and compare it with 2x (observe that
they should be equal).

In: u + v In: 2*x
ZpCR: ...00110 ZpCR: ...00110100110
ZpLC: ...00110100110 ZpLC: ...00110100110

Again ZpCR does not output the optimal precision when the com-
putation is split into several steps whereas ZpL does. These basic
examples illustrate situations that occur during the execution of
many algorithms. As a result, interval arithmetic frequently over-
estimates the loss of precision. The aim of our package is to reduce
this precision loss. In the next subsections, we present a bunch of
examples showing the benefit of ZpL in various contexts.

SOMOS 4. A first example is the SOMOS-4 sequence. It is defined
by the recurrence:

un+4 =
un+1un+3 + u2

n+2
un

and is known for its high numerical instability (see [4]). Neverthe-
less, the ZpL package saves precision even when using a generic
unstable implementation of the SOMOS iteration.

In: def somos4(u0, u1, u2, u3, n):
a, b, c, d = u0, u1, u2, u3
for _ in range(4, n+1):

a, b, c, d = b, c, d, (b*d + c*c) / a
return d

In: u0 = u1 = u2 = Z2(1,15); u3 = Z2(3,15)
somos4(u0, u1, u2, u3, 18)

ZpCR: ...11
ZpLC: ...100000000000111

In: somos4(u0, u1, u2, u3, 100)
ZpCR: PrecisionError: cannot divide by something

indistinguishable from zero.
ZpLC: ...001001001110001

2.2 Linear algebra
Many generic algorithms of linear algebra exhibit instability when
used with p-adic numbers. Our package ZpL frequently eliminates
this instability without having to change either the algorithm or
the implementation.

Matrix multiplication. As revealed in [5], a first simple exam-
ple where instability appears is simply matrix multiplication. This
might be surprising because no division occurs in this situation.
Observe nevertheless the difference between ZpCR and ZpLC.

In: MS = MatrixSpace(Z2,2)
M = random_element(MS, prec=5)
for _ in range(25):

M *= random_element(MS, prec=5)
M

ZpCR: [0 0]
[0 0]

ZpLC: [...100000000000 ...1000000000]
[...010000000 ...00100000]

On the aforementioned example, we notice that ZpCR is unable to
decide whether the product vanishes or not. Having good estimates
on the precision is therefore very important in such situations.

Characteristic polynomials. Characteristic polynomials are no-
toriously hard to compute [5, 7]. By default, SageMath uses a
division-free algorithm overQp , this choice is not enough to achieve
optimal precision in the QpCR case since negative valuations may ap-
pear. We illustrate the different precision behavior in the following
example.

In: M = random_element(MatrixSpace(Q2,3), prec=10)
M.determinant()

QpCR: ...010000010
QpLC: ...010000010
In: M.charpoly()

QpCR: ...00000000000000000001*x^3 +
...1001011.011*x^2 + ...0111.01*x + 0

QpLC: ...00000000000000000001*x^3 +
...1001011.011*x^2 + ...11100111.01*x +
...010000010

We observe that ZpLC can guarantee 4 more digits on the x coeffi-
cient. Moreover, it recovers the correct precision on the constant
coefficient (which is the determinant) whereas ZpCR is confused
and cannot even certify that it does not vanish.

2.3 Commutative algebra
Our package can be applied to computation with p-adic polynomi-
als.

Euclidean algorithm. A natural example is that of the compu-
tation of GCD in the Euclidean ring Qp [X], whose stability has
been studied in [3]. A naive implementation of the Euclidean al-
gorithm can produce different behavior depending on the type of
implementation of the field of p-adic coefficients.

In: S.<x> = PolynomialRing(Z2)
P = random_element(S, degree=10, prec=5)
Q = random_element(S, degree=10, prec=5)
D = x^5 + random_element(S, degree=4, prec=8); D

ZpCR: ...00000000000000000001*x^5 + ...11111010*x^4 +
...10000000*x^3 + ...11001111*x^2 +
...10000110*x + ...11100010

ZpLC: ...00000000000000000001*x^5 + ...11111010*x^4 +
...10000000*x^3 + ...11001111*x^2 +
...10000110*x + ...11100010

In: def euclidean(A,B):
while B != 0:

A, B = B, A % B
return A.monic()

euclidean(D*P, D*Q)
ZpCR: 0*x^9 + ...1*x^8 + 0*x^7 + 0*x^6 + 0*x^5 +

0*x^4 + 0*x^3 + ...1*x^2 + ...10*x + ...10
ZpLC: ...00000000000000000001*x^5 + ...11111010*x^4 +

...10000000*x^3 + ...11001111*x^2 +

...10000110*x + ...11100010

With high probability, P and Q are coprime, implying that the
gcd of DP and DQ is D. However, we observe that ZpCR output a
quite different result. The point is that, in the ZpCR case, Euclidean
algorithm stops prematurely because the test B != 0 fails too early
due to the lack of precision.

Gröbner bases. Our package can be applied on complex compu-
tations like that of Gröbner bases using generic Gröbner bases
algorithms.

In: R.<x,y,z> = PolynomialRing(Q2, order='invlex')
F = [Q2(2,10)*x + Q2(1,10)*z,

Q2(1,10)*x^2 + Q2(1,10)*y^2 - Q2(2,10)*z^2,
Q2(4,10)*y^2 + Q2(1,10)*y*z + Q2(8,10)*z^2]

In: from sage.rings.polynomial.toy_buchberger\
import buchberger_improved

g = buchberger_improved(ideal(F))
g.sort(); g

QpCR: [x^3, x*y + ...1100010*x^2,
y^2 + ...11001*x^2, z + ...0000000010*x]

QpLC: [x^3, x*y + ...111100010*x^2,
y^2 + ...1111111001*x^2, z + ...0000000010*x]

As we can see, some loss in precision occurs in the Buchberger
algorithm and is avoided thanks to ZpL.

2.4 p-adic differential equations
In [11], the authors studied the computation of isogenies between
elliptic curves over finite fields by applying the lattice precision
model to p-adic differential equations. Specifically, they considered
the equation y′ = д(x) × h(y) with д,h,y ∈ ZpJxK such that д(0) =
h(0) = 1 and y(0) = 0.

Their main result was that the intrinsic loss in precision when
computing the coefficient xn of y from д and h was in logp (n) even
though a naive analysis of the Newton method for solving the
equation yields a loss in logp (n)2.

We can reach this theoretical loss in precision using ZpL, while
ZpCR does not perform as well. We apply N steps of the Newton
method for y′ = д × h(y) as described in [11], using a generic
Newton_Iteration_Solver(g,h,N).

In: S.<t> = PowerSeriesRing(Q2, 16)
h = 1 + t + t^3
y = t + t^2 * random_element(S, prec=10)
g = y.derivative() / h(y)
u = Newton_Iteration_Solver(g, h, 4); u[15]

QpCR: ...1101
QpLC: ...11011101

3 BEHIND THE SCENES
In this section, we explain how our package ZpL works and an-
alyze its performance. The main theoretical result on which our
package is based is the ultrametric precision theory developed in
[4], which suggests tracking precision via lattices and differential
computations. For this reason, our approach is very inspired by
automatic differentiation techniques [13] and our implementation
follows the usual operator overloading strategy. We will introduce
two versions of our package, namely ZpLC and ZpLF: this former is
safer while the latter is faster.
Remark about the naming. The letter L, which appears in the name
of the package, comes from “lattices”. The letters C (in ZpLC) and F
(in ZpLF) stand for “cap” and “float” respectively.

3.1 The precision Lemma
In [4], we suggest the use of lattices to represent the precision of
elements in Qp -vector spaces. This approach contrasts with the

coordinate-wise method (of e.g. Zp(5)) that is traditionally used in
SageMath where the precision of an element is specified by giving
the precision of each coordinate separately and is updated after
each basic operation.

Consider a finite dimensional normed vector space E defined
over Qp . We use the notation ∥ · ∥E for the norm on E and B−E (r)
(resp. BE (r)) for the open (resp. closed) ball of radius r centered at
the origin. A lattice L ⊂ E is a sub-Zp -module which generates E
over Qp . Because of ultrametricity, the balls BE (r) and B−E (r) are
examples of lattices. Lattices can be thought of as special neighbor-
hoods of 0, and therefore are good candidates to model precision
data. Moreover, as revealed in [4], they behave quite well under
(strictly) differentiable maps:

Proposition 3.1. Let E and F be two finite dimensional normed
vector spaces overQp and f : U → F be a function defined on an open
subsetU of E. We assume that f is differentiable at some pointv0 ∈ U
and that the differential d fv0 is surjective. Then, for all ρ ∈ (0, 1],
there exists a positive real number δ such that, for all r ∈ (0,δ), any
lattice H such that B−E (ρr) ⊂ H ⊂ BE (r) satisfies:

f (v0 + H) = f (v0) + d fv0 (H). (1)

This proposition enables the lattice method of tracking precision,
where the precision of the input is specified as a lattice H and
precision is tracked via differentials of the steps within a given
algorithm. The equality sign in Eq. (1) shows that this method
yields the optimum possible precision. We refer to [4, §4.1] for a
more complete exposition.

3.2 Tracking precision
We now explain in more details the internal mechanisms ZpLC and
ZpLF use for tracking precision.

In what follows, it will be convenient to use a notion of discrete
time represented by the letter t . Rigorously, it is defined as follows:
t = 0 when the p-adic ring ZpLC(· · ·) or ZpLF(· · ·) is created and
increases by 1 each time a variable is created, deleted3 or updated.

Let Vt be the set of alive variables at time t . Set Et = QVt
p ;

it is a finite dimensional vector space over Qp which should be
thought of as the set of all possible values that can be taken by
the variables in Vt . For v ∈ Vt , let ev ∈ Et be the vector whose
coordinates all vanish except at position v which takes the value 1.
The family (ev)v∈Vt is obviously a basis of Et ; we will refer to it as
the canonical basis.

3.2.1 The case of ZpLC. Following Proposition 3.1, the package
ZpLC follows the precision by keeping track of a lattice Ht in Et ,
which is a global object whose purpose is to model the precision
on all the variables in Vt all together. Concretely, this lattice is
represented by a matrixMt in row-echelon form whose rows form
a set of generators. Below, we explain how the matrices Mt are
updated each time t increases.
Creating a variable. This happens whenwe encounter an instruction
having one of the two following forms:

[Computation] w = f (v_1, . . ., v_n)

[New value] w = R(value, prec)
3The deletion can be explicit (through a call to the del operator) or implicit (handled
by the garbage collector).

In both cases, w is the newly created variable. The vi ’s stand for
already defined variables and f is some n-ary builtin function (in
most cases it is just addition, subtraction, multiplication or division).
On the contrary, the terms “value” and “prec” refer to user-specified
constants or integral values which were computed earlier.

Let us first examine the first construction [Computation]. With
our conventions, if t is the time just before the execution of the
instruction we are interested in, the vi ’s lie in Vt while w does not.
MoreoverVt+1 = Vt ⊔{w}, so that Et+1 = Et ⊕Qpew. The mapping
taking the values of variables at time t to that at time t+1 is:

F : Et −→ Et+1
x 7→ x ⊕ f (x1, . . . ,xn)

where xi is the vi -th coordinate of the vector x . The Jacobian matrix
of F at x is easily computed; it is the block matrix Jx (F) =

(
I L

)
where I is the identity matrix of size CardVt and L is the column
vector whose v-th entry is ∂f

∂v (x) if v is one of the vi ’s and 0 other-
wise. Therefore, the image of Ht under dFx is represented by the
matrix Jx (F) ·Mt =

(
Mt C

)
where C is the column vector:

C =
n∑
i=1

∂ f

∂vi
(x) ·Ci (2)

where Ci is the column vector ofMt corresponding to the variable
vi . Observe that the matrix Jx (F) ·Mt is no longer a square matrix;
it has one extra column. This reflects the fact that dimEt+1 =
dimEt + 1. Rephrasing this in a different language, the image of
Ht under dFx is no longer a lattice in Et+1 but is included in an
hyperplane, violating our definition of a precision lattice.

The package ZpLC tackles this issue by introducing a cap, anal-
ogous to adding O(pN) when creating a p-adic number from an
integer. Specifically, we choose an integer Nt+1 and replace the Zp -
submodule dFx (Ht) with the lattice Ht+1 = dFx (Ht) ⊕ pNt+1Zpew.
Alternatively, one may introduce the map:

F̃ : Et ⊕ Qp −→ Et+1
x ⊕ c 7→ x ⊕

(
f (x1, . . . ,xn) + c

)
.

(3)

The lattice Ht+1 is then the image of Ht ⊕ pNt+1Zp under dF̃(x,⋆)
for any value of ⋆. In order to carry out this strategy, one must
choose Nt+1. We do so by associating two constants to each ring: a
relative cap relcap and an absolute cap abscap. We then set

Nt+1 = min
(
abscap, relcap +vp (y)

)
(4)

with y = f (x1, . . . ,xn). Larger caps mean that the precision of the
final result is less likely to be affected, but require more space. See
Remark 3.2 for more details.

In concrete terms, the lattice Ht+1 is represented by the block
matrix: (

Mt C

0 pNt+1

)
.

Performing row operations, we see then that the entries ofC can be
reduced modulo pNt+1 without changing the lattice. In order save
space, we perform this reduction and defineMt+1 by:

Mt+1 =

(
Mt C mod pNt+1

0 pNt+1

)
.

We observe in particular thatMt+1 is still in row-echelon form.

Finally, we need to explain which value is set to the newly cre-
ated variable w. We observe that it cannot be exactly f (x1, . . . ,xn)
because the latter is a priori a p-adic number which cannot be com-
puted exactly. For this reason, we have to truncate it at some finite
precision. Again we choose the precisionO(pNt+1), i.e. we define xw
as f (x1, . . . ,xn) mod pNt+1 . The congruence x̄ ⊕ f (x1, . . . ,xn) ≡
x̄ ⊕ xw (mod Ht+1) (which holds thanks to the extra generator we
have added) justifies this choice.

The second construction “w = R(value, prec)” is easier to
handle since, roughly speaking, it corresponds to the case n =
0. In this situation, keeping in mind the cap, the lattice Ht+1 is
defined by Ht+1 = Ht + pmin(prec,Nt+1)Zpew for the cap Nt+1 =
min

(
abscap, relcap+vp (value)

)
. The corresponding matrixMt+1

is then given by:

Mt+1 =

(
Mt 0
0 pmin(prec,Nt+1)

)
.

Deleting a variable. Let us now examine the case where a variable
w is deleted (or collected by the garbage collector). Just after the
deletion, at time t+1, we then have Vt+1 = Vt \{w}. Thus Et =
Et+1⊕Qpew. Moreover, the deletion of w is modeled by the canonical
projection f : Et → Et+1. Since f is linear, it is its own differential
(at each point) and we set Ht+1 = f (Ht). A matrix representing
Ht+1 is deduced fromMt by erasing the column corresponding to
w. However the matrix we get this way is no longer in row-echelon
form. We then need to re-echelonize it.

More precisely, the obtained matrix has this shape:©­­­­­­­« deleted
column

ª®®®®®®®¬
=

©­­­­­­­«

ª®®®®®®®¬
where a cell is colored when it can contain a non-vanishing entry.
The top part of the matrix is then already echelonized, so that we
only have to re-echelonize the bottom right corner whose size is
the distance from the column corresponding to the erased variable
to the end. Thanks to the particular shape of the matrix, the echelo-
nization can be performed efficiently: we combine the first rows (of
the bottom right part) in order to clear the first unwanted nonzero
entry and then proceed recursively.

Updating a variable. Just like for creation, this happens when the
program reaches an affectation “w = ...” where the variable w
is already defined. This situation reduces to the creation of the
temporary variable (the value of the right-hand-size), the deletion
of the old variable w and a renaming. It can then be handled using
the methods discussed previously.

3.2.2 The case of ZpLF. The way the package ZpLF tracks pre-
cision is based on similar techniques but differs from ZpLC in that
it does not introduce a cap but instead allows Ht to be a sub-Zp -
module of Et of any codimension. This point of view is nice be-
cause it implies smaller objects and consequently leads to faster
algorithms. However, it has a huge drawback; indeed, unlike lat-
tices, submodules of Et of arbitrary codimensions are not exact
objects, in the sense that they cannot be represented by integral

matrices in full generality. Consequently, they cannot be encoded
on a computer. We work around this drawback by replacing every-
where exact p-adic numbers by floating point p-adic numbers (at
some given relative precision k) [2]. In the floating point model,
we approximate all numbers in the disc pv (u +O(pk)) by a single
rational number pvu. Operations on these numbers are then not
exact, but instead produce the representative in the correct disc.

The fact that the lattice Ht can now have arbitrary codimension
translates to the fact the matrix Mt can be rectangular. Precisely,
we will maintain matricesMt of the shape:

©­­­­­­­«

ª®®®®®®®¬
(5)

where only the colored cells may contain a nonzero value and the
black cells —the so-called pivots— do not vanish. A variable whose
corresponding column contains a pivot will be called a pivot variable
at time t .

Creating a variable.We assume first that the newly created variable
is defined through a statement of the form: “w = f (v_1, . . ., v_n)”.
As already explained in the case of ZpLC, this code is modeled by
the mathematical mapping:

F : Et −→ Et+1
x 7→ x ⊕ f (x1, . . . ,xn).

Here x represents the state of memory at time t , and xi is the
coordinate of x corresponding to the variable vi .

In the ZpLF framework,Ht+1 is defined as the image ofHt under
the differential dFx . Accordingly, the matrix Mt+1 is defined as
Mt+1 =

(
Mt C

)
where C is the column vector defined by Eq. (2).

However, since operations definingMt+1 are performed with float-
ing point numbers, the matrix Mt+1 gives only an approximate
basis for Ht+1.

If w is created by the code “w = R(value, prec)”, we define
Ht+1 = Ht ⊕ pprecZpew and consequently:

Mt+1 =

(
Mt 0
0 pprec

)
If prec is +∞ (or, equivalently, not specified), we agree that Ht+1 =
Ht andMt+1 = (Mt 0).

Deleting a variable. As for ZpLC, the matrix operation implied by
the deletion of the variable w is the deletion of the corresponding
column ofMt . If w is not a pivot variable at time t , the matrixMt
keeps the form (5) after erasure; therefore no more treatment is
needed in this case.

Otherwise, we re-echelonize the matrix as follows. After the
deletion of the column Cw, we examine the first column C which
was located on the right ofCw. Two situations may occur (depending
on the fact that C was or was not a pivot column):

C

x

y

First case

C

y

Second case

In the first case, we perform row operations in order to re-
place the pair (x ,y) by (d, 0) where d is an element of valuation
min(vp (x),vp (y)). Observe thaty is necessarily nonzero in this case,
so that d does not vanish as well. After this operation, we move to
the next column and repeat the same process.

The second case is divided into two subcases. First, if y does
not vanish, it can serve as a pivot and the obtained matrix has the
desired shape. When this occurs, the echelonization stops. On the
contrary, if y = 0, we just untint the corresponding cell and move
to the next column without modifying the matrix.

3.3 Visualizing the precision
Our package implements several methods giving access to the pre-
cision structure. In the subsection, we present and discuss the most
relevant features in this direction.

Absolute precision of one element. This is the simplest acces-
sible precision datum. It is encapsulated in the notation when an
element is printed. For example, the (partial) session:

In: v = Z2(173,10); v
ZpLC: ...0010101101

indicates that the absolute precision on v is 10 since exactly 10
digits are printed. The method precision_absolute provides an
easier-to-use access to the absolute precision.

In: v.precision_absolute()
ZpLC: 10

Both ZpLC and ZpLF compute the absolute precision of v (at time
t) as the smallest valuation of an entry of the column ofMt corre-
sponding to the variable v. Alternatively, it is the unique integer N
for which πv(Ht) = pN Zp where πv : Et → Qp takes a vector to
its v-coordinate. This definition of the absolute precision sounds
revelant because, if we believe that the submodule Ht ⊂ Et is sup-
posed to encode the precision on the variables inVt , Proposition 3.1
applied with the mapping πv indicates that a good candidate for
the precision on ev is πv(Ht), that is pN Zp .

About correctness.We emphasize that the absolute precision com-
puted this way is not proved, either for ZpLF or ZpLC. However,
in the case of ZpLC, one can be slightly more precise. Let Ut be
the vector space of user-defined variables before time t and Ut be
the lattice modeling the precision on them. The pair (Ut ,Ut) is
defined inductively as follows: we set U0 = U0 = 0 and Ut+1 =
Ut ⊕ Qpew, Ut+1 = Ut ⊕ pprecZpew when a new variable w is cre-
ated by “w = R(value, prec)”; otherwise, we put Ut+1 = Ut and
Ut+1 = Ut . Moreover the values entered by the user defines a vector
(with integral coordinates) ut ∈ Ut .

Similarly, in order to model the caps, we define a pair (Kt ,Kt)
by the recurrenceKt+1 = Kt ⊕Qpew, Kt+1 = Kt ⊕pNt+1Zpew each
time a new variable w is created. Here, the exponent Nt+1 is the

cap defined by Eq. (4). In case of deletion, we put Kt+1 = Kt and
Kt+1 = Kt .

Taking the composition of all the functions F̃ (cf Eq. (3)) from
time 0 to t , we find that the execution of the session until time t is
modeled by a mathematical function Φt : Ut ⊕Kt → Et . From the
design of ZpLC, we deduce further that there exists a vector kt ∈ Kt
such that:

Φt (ut ⊕ kt) = xt and dΦt (Ut ⊕ Kt) = Ht

where the differential of Φt is taken at the point ut ⊕ kt . Set
Φt,v = πv ◦ Φt ; it maps ut ⊕ kt to the v-coordinate xt,v of xt and
satisfies dΦt,v(Ut ⊕Kt) = πv(Ht) = pN Zp where N is the value re-
turned by precision_absolute. Thus, as soon as the assumptions
of Proposition 3.1 are fulfilled, we deriveΦt,v

(
(ut+Ut)⊕(kt+Kt)

)
=

xt,v + p
N Zp . Noting that kt ∈ Kt , we finally get:

Φt,v(ut +Ut) ⊂ Φt,v
(
(ut +Ut) ⊕ Kt

)
= xt,v + p

N Zp . (6)

The latter inclusion means that the computed value xt,v is accurate
at precisionO(pN), i.e. that the output absolute precision is correct.

Unfortunately, automatically checking the assumptions of Propo-
sition 3.1 in full generality is not straightforward because it requires
bounds on higher derivatives. For now, our package does not per-
form this inspection but we plan to include it in a forthcoming
release, along the lines of [4, Proposition 3.12]. Meanwhile, the
assumptions can be checked by hand using the results of [3, 4, 11].
Remark 3.2. Assuming that Proposition 3.1 applies, the absolute
precision computed as above is optimal if and only if the inclusion of
(6) is an equality. Applying again Proposition 3.1 with the restricted
mapping Φt,v : Ut → Qp and the lattice Ut , we find that this
happens if and only if dΦt,v(Ut) = pN Zp .

Unfortunately, the latter condition cannot be checked on the
matrix Mt (because of reductions). However it is possible (and
easy) to check whether the weaker condition dΦt,v(Kt) ⊊ pN Zp .
This checking is achieved by the method is_precision_capped
(provided by our package) which returns true if dΦt,v(Kt) = pN Zp .
As a consequence, when this method answers false, the absolute
precision computed by the software is likely optimal.
Precision on a subset of elements. Our package implements the
method precision_lattice through which we can have access
to the joint precision on a set of variables: it outputs a matrix
(in echelon form) whose rows generate a lattice representing the
precision on the subset of given variables.

When the variables are “independent”, the precision lattice is split
and the method precision_lattice outputs a diagonal matrix:

In: x = Z2(987,10); y = Z2(21,5)
In: # We first retrieve the precision object

L = Z2.precision()
In: L.precision_lattice([x,y])

ZpLC: [1024 0]
[0 32]

However, after some computations, the precisionmatrix evolves and
does not remain diagonal in general (though it is always triangular
because it is displayed in row-echelon form):

In: u, v = x+y, x-y
L.precision_lattice([u,v])

ZpLC: [32 2016]
[0 2048]

The fact that the precision matrix is no longer diagonal indicates
that some well-chosen linear combinations of u and v are known
with more digits thanu andv themselves. In this particular example,
the sum u + v is known at precision O(211) while the (optimal)
precision on u and v separately is only O(25).

In: u, v
ZpLC: (...10000, ...00110)
In: u + v

ZpLC: ...11110110110

Diffused digits of precision. The phenomenon observed above is
formalized by the notion of diffused digits of precision introduced
in [5]. We recall briefly its definition.

Definition 3.3. Let E be a Qp -vector space endowed with a dis-
tinguished basis (e1, . . . , en) and write πi : E → Qpei for the
projections. Let H ⊂ E be a lattice. The number of diffused digits of
precision ofH is the length ofH0/H whereH0 = π1(H)⊕· · ·⊕πn (H).

If H represents the actual precision on some object, then H0 is
the smallest diagonal lattice containing H . It then corresponds to
the maximal coordinate-wise precision we can reach on the set of n
variables corresponding to the basis (e1, . . . , en).

The method diffused_digits computes the number of diffused
digits of precision on a set of variables. Observe:

In: L.diffused_digits([x,y])
ZpLC: 0
In: L.diffused_digits([u,v])

ZpLC: 6

For the last example, we recall that the relevant precision lattice H
is generated by the 2 × 2 matrix:(

25 2016
0 211

)
.

The minimal diagonal suplattice H0 of H is generated by the scalar
matrix 25 · I2 and contains H with index 26 in it. This is where the
6 digits of precision come from. There are easily visible here: the
sum u +v is known with 11 digits, that is exactly 6 more digits than
the summands u and v .

Diffused digits frequently arise in practice. In the context of the
matrix multiplication example of §2.2, we get

In: L.diffused_digits(M.list())
ZpLC: 11

3.4 Complexity
We now discuss the cost of the above operations. In what follows,
we shall count operations in Qp . Although Qp is an inexact field,
our model of complexity makes sense because the size of the p-adic
numbers we manipulate will all have roughly the same size: for
ZpLF, it is the precision we use for floating point arithmetic while,
for ZpLC, it is the absolute cap which was fixed at the beginning.

It is convenient to introduce a total order onVt : for v, w ∈ Vt ,
we say that v <t w if v was created before w. By construction,
the columns of the matrixMt are ordered with respect to <t . We
denote by rt (resp. ct) the number of rows (resp. columns) of Mt .
By construction rt is also the cardinality of Vt . We have ct ≤ rt
and the equality always holds in the ZpLC case.

For v ∈ Vt , we define the index of v, denoted by indt (v) as
the number of elements of Vt which are not greater than v. If

Dimension 2 5 10 20 50
Total 35 424 5 539 83 369 3 170 657
Simult. 17 65 225 845 5 101

Computation of characteristic polynomial

Degree 2 5 10 20 50 100
Total 54 130 332 1 036 4 110 10 578
Simult. 18 31 56 106 256 507

Naive Euclidean algorithm

Figure 1: Numbers of involved variables

we sort the elements ofVt by increasing order, v then appears in
indt (v)-th position. We also define the co-index of v by coindt (v) =
rt − indt (v).

Similarly, for any variable v ∈ Vt , we define the height (resp. the
co-height) of v at time t as the number of pivot variables w such that
w ≤t v (resp. w >t v). We denote it by hgtt (v) (resp. by cohgtt (v)).
Clearly hgtt (v) + cohgtt (v) = ct . The height of v is the height
of the significant part of the column ofMt which corresponds to
v. In the case of ZpLC, all variables are pivot variables and thus
hgtt (v) = indt (v) and cohgtt (v) = coindt (v) for all v.

Creating a variable. With the notations of §3.2, it is obvious that
creating a new variable w requires:

O

(n∑
i=1

hgti (vi)
)
⊂ O(n ct)

operations in Qp . Here, we recall that n is the arity of the operation
defining w. In most cases it is 2; thus the above complexity reduces
to O(ct).

In the ZpLF context, ct counts the number of user-defined vari-
ables. It is then expected to be constant (roughly equal to the size
of the input) while running a given algorithm.

On the contrary, in the ZpLC context, ct counts the number of
variables which are alive at time t . It is no longer expected to
be constant but evolves continuously when the algorithm runs.
The tables of Figure 1 show the total number of created variables
(which reflects the complexity) together with the maximum number
of variables alive at the same time (which reflects the memory
usage) while executing two basic computations. The first one is the
computation of the characteristic polynomial of a square matrix by
the default algorithm used by SageMath for p-adic fields (which is
a division-free algorithm of quartic complexity) while the second
one is the computation of the gcd of two polynomials using a naive
Euclidean algorithm (of quadratic complexity). We can observe that,
for both of them, the memory usage is roughly equal to the square
root of the complexity.

Deleting a variable. The deletion of the variable w induces the
deletion of the corresponding column of Mt , possibly followed
by a partial row-echelonization. In terms of algebraic complex-
ity, the deletion is free. The cost of the echelonization is within
O

(
coindt (w) · cohgtt (w)

)
operations in Qp .

In the ZpLF case, we expect that, most of the time, the deleted
variables were created after all initial variables were set by the

0 5 10 15
0

10

20

30

40

50

60

70

Figure 2: The distribution of coindt (w)

user. This means that we expect cohgtt (w) to vanish and so, the
corresponding cost to be negligible.

In the ZpLC case, we always have cohgtt (w) = coindt (w), so that
the cost becomes O

(
coindt (w)2

)
, which seems high a priori. How-

ever, the principle of temporal locality [8] asserts that coindt (w)
tends to be small: destroyed variables are often recently created
ones. As a simple example, variables which are local to a small piece
of code (e.g. a short function or a loop) have a short lifetime. The
histogram of Figure 2 shows the distribution of coindt (w) while
executing the Euclidean algorithm (naive implementation) with
two polynomials of degree 7 as input. The bias is evident: most of
the time coindt (w) ≤ 1.

Summary: Impact on complexity. We consider the case of an
algorithm with the following characteristics: its complexity is c
operations in Qp (without any tracking of precision), its memory
usage ism elements of Qp , its input and output have size sin and
sout (elements of Qp) respectively.

In the case of ZpLF, creating a variable has a costO(sin) whereas
deleting a variable is free. Thus when executed with the ZpLFmech-
anism, the complexity of our algorithm becomes O(sinc).

In the ZpLC framework, creating a variable has a cost O(m). The
case of deletion is more difficult to handle. However, by the temporal
locality principle, it seems safe to assume that it is not the bottleneck
(which is the case in practice). Therefore, when executed with
the ZpLF mechanism, the cost of our algorithm is expected to be
roughly O(mc). Going further in speculation, we might estimate
the magnitude ofm as about s +

√
c with s = max(sin, sout), leading

to a complexity of O(c3/2 + sc). For quasi-optimal algorithms, the
term sc ≃ c2 dominates. However, as soon as the complexity is at
least quadratic in s , the dominant term is c3/2 and the impact on
the complexity is then limited.

4 CONCLUSION
The package ZpL provides powerful tools (based on automatic dif-
ferentiation) to track precision in the p-adic setting. It frequently
outperforms standard interval arithmetic in terms of the precision

of the output, as shown in §2. The impact on complexity is con-
trolled but nevertheless non-negligible (see §3.4). For this reason, it
is unlikely that a fast algorithm will rely directly on the machinery
proposed by ZpL, though it might do so for a specific part of a com-
putation. At least for now, bringing together rapidity and stability
still requires a substantial human contribution and a careful study
of all parameters.

Nevertheless, we believe that ZpL can be extremely helpful to
anyone designing a fast and stable p-adic algorithm for a couple
of reasons. First, it provides mechanisms to automatically detect
which steps of a given algorithm are stable and which ones are
not. In this way, it highlights the parts of the algorithm on which
the researcher has to concentrate their effort. Second, recall that a
classical strategy to improve stability consists of working internally
at higher precision. Finding the internal increase in precision that
best balances efficiency and accuracy is not an easy task in general.
Understanding the diffused precision gives very useful hints in
this direction. For example, when there are no diffused digits of
precision then the optimal precision completely splits over the
variables and there is no need to internally increase the precision.
On the contrary, when there are many diffused digits of precision,
a large increment is required. Since ZpL gives a direct access to the
number of diffused digits of precision, it can be very useful to the
designer who is concerned with the balance between efficiency and
accuracy.

REFERENCES
[1] 754-2008 - IEEE Std. for Floating-Point Arithmetic. IEEE, 2008.
[2] Xavier Caruso. Computations with p-adic numbers. pages 1–83, 2017.

arxiv:1701.06794.
[3] Xavier Caruso. Numerical stability of euclide algorithm over ultrametric fields.

J. Number Theor. Bordeaux, 29:503–534, 2017.
[4] Xavier Caruso, David Roe, and Tristan Vaccon. Tracking p-adic precision. LMS

Journal of Computation and Mathematics, 17(A):274–294, 2014.
[5] Xavier Caruso, David Roe, and Tristan Vaccon. p-Adic Stability In Linear Algebra.

In Proceedings of the 2015 ACM on International Symposium on Symbolic and
Algebraic Computation, ISSAC ’15, pages 101–108, New York, NY, USA, 2015.
ACM.

[6] Xavier Caruso, David Roe, and Tristan Vaccon. Division and Slope Factorization
of p-Adic Polynomials. In Proceedings of the ACM on International Symposium on
Symbolic and Algebraic Computation, ISSAC ’16, pages 159–166, New York, NY,
USA, 2016. ACM.

[7] Xavier Caruso, David Roe, and Tristan Vaccon. Characteristic Polynomials of
P-adic Matrices. In Proceedings of the 2017 ACM on International Symposium on
Symbolic and Algebraic Computation, ISSAC ’17, pages 389–396, New York, NY,
USA, 2017. ACM.

[8] Peter Denning. The locality principle. Commun. ACM, 48:19–24, 2005.
[9] Nicholas Higham. Accuracy and Stability of Numerical Algorithms. SIAM, Philadel-

phia, 2nd ed. edition, 2002.
[10] Kiran S. Kedlaya. Counting points on hyperelliptic curves using Monsky–

Washnitzer cohomology. J. Ramanujan Math. Soc., 16:323–338, 2001.
[11] Pierre Lairez and Tristan Vaccon. On p-adic differential equations with separation

of variables. In Proceedings of the ACM on International Symposium on Symbolic
and Algebraic Computation, ISSAC 2016, Waterloo, ON, Canada, July 19-22, 2016,
pages 319–323, 2016.

[12] Alan Lauder. Deformation theory and the computation of zeta functions. Proc.
London Math. Soc. (3), 88(3):565–602, 2004.

[13] Louis Rall. Automatic Differentiation: Techniques and Applications, volume 120 of
Lecture Notes in Computer Science. Springer, Berlin, 1981.

[14] The Sage Developers. SageMath, the Sage Mathematics Software System (Version
8.1), 2018. http://www.sagemath.org.

[15] Trac #23505: Lattice precision for p-adics. http://trac.sagemath.org/ticket/23505,
2018.

http://www.sagemath.org
http://trac.sagemath.org/ticket/23505

	Abstract
	1 Introduction
	2 Short demonstration
	2.1 Elementary arithmetic
	2.2 Linear algebra
	2.3 Commutative algebra
	2.4 p-adic differential equations

	3 Behind the scenes
	3.1 The precision Lemma
	3.2 Tracking precision
	3.3 Visualizing the precision
	3.4 Complexity

	4 Conclusion
	References

