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ABSTRACT
Let K be a field equipped with a valuation. Tropical vari-
eties over K can be defined with a theory of Gröbner bases
taking into account the valuation of K. Because of the use
of the valuation, this theory is promising for stable compu-
tations over polynomial rings over a p-adic fields.

We design a strategy to compute such tropical Gröbner
bases by adapting the Matrix-F5 algorithm. Two variants
of the Matrix-F5 algorithm, depending on how the Macaulay
matrices are built, are available to tropical computation with
respective modifications. The former is more numerically
stable while the latter is faster.

Our study is performed both over any exact field with
valuation and some inexact fields like Qp or FqJtK. In the
latter case, we track the loss in precision, and show that the
numerical stability can compare very favorably to the case
of classical Gröbner bases when the valuation is non-trivial.
Numerical examples are provided.

Categories and Subject Descriptors
I.1.2 [Computing Methodologies]: Symbolic and Alge-
braic Manipulations—Algebraic Algorithms

Keywords
Gröbner bases; tropical geometry; F5 algorithm; p-adic pre-
cision; p-adic algorithm

1. INTRODUCTION
Despite its young age, tropical geometry has revealed to

be of significant value, with applications in algebraic geome-
try, combinatorics, computer science, and non-archimedean
geometry (see [11], [5]).

Effective computation over tropical varieties make decisive
usage of Gröbner bases, but before Chan and Maclagan’s
definition of tropical Gröbner bases taking into account the
valuation in [3], [4], computations were only available over
fields with trivial valuation where standard Gröbner bases

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISSAC’15, July 6–9, 2015, Bath, United Kingdom.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3435-8/15/07 ...$15.00.
DOI: http://dx.doi.org/10.1145/2755996.2756665.

techniques applied. In this document, we show that follow-
ing this definition, Matrix-F5 algorithms can be performed
to compute tropical Gröbner bases.

Our motivations are twofold. Firstly, our result bears
promising application for computation over fields with val-
uation that are not effective, such as Qp or QJtK. Indeed, in
[14], the author studies computation of Gröbner bases over
such fields and proves that for a regular sequence and un-
der some regularity assumption (whose genericity is at best
conjectural) and with enough initial entry precision, approx-
imate Gröbner bases can be computed. Thank to the study
of Matrix-F5 algorithms, we prove that to compute a tropi-
cal Gröbner basis of the ideal generated by F = (f1, . . . , fs),
F being regular and known with enough initial precision is
sufficient. Hence, generically, approximate tropical Gröbner
bases can be computed. Moreover, for a special choice of
term order, the smallest loss in precision that can be ob-
tained by linear algebra is attained: tropical Gröbner bases
then provide a generically numerically stable alternative to
Gröbner bases.

Secondly, Matrix-F5 algorithms allow an easy study of the
complexity of the computation of tropical Gröbner bases and
are a first step toward a tropical F5 algorithm.

Related works on tropical Gröbner bases: We refer
to the book of Maclagan and Sturmfels [11] for an introduc-
tion to computational tropical algebraic geometry.

The computation of tropical varieties over Q with trivial
valuation is available in the Gfan package by Anders Jensen
(see [9]), by using standard Gröbner basis computation. Yet,
for computation of tropical varieties over general fields, with
non-trivial valuation, such techniques are not readily avail-
able. This is why Chan and Maclagan have developed in [4]
a way to extend the theory of Gröbner bases to take into ac-
count the valuation and allow tropical computation. Their
theory of tropical Gröbner bases is effective and allows, with
a suitable division algorithm, a Buchberger algorithm.

Main results: Let K be a field equipped with a valuation
val. Let ≥ be an order on the terms of K[X1, . . . , Xn] as in
Definition 2.3, defined with w ∈ Im(val)n and a monomial
ordering ≥1 . Following [4], we define tropical D-Gröbner
bases as for classical Gröbner bases.

Then, we provide with Algorithm 1 a tropical row-echelon
form computation algorithm for Macaulay matrices. We
show that the F5 criterion still holds in a tropical setting.
We therefore define the tropical Matrix-F5 algorithm (Algo-
rithm 2) as an adaptation of a näıve Matrix-F5 algorithm
with the tropical row-echelon form computation. We then
have the following result :



Proposition 1.1. Let (f1, . . . , fs) ∈ K[X1, . . . , Xn]s be a
sequence of homogeneous polynomials. Then, the tropical
Matrix-F5 algorithm computes a tropical D-Gröbner basis

of 〈f1, . . . , fs〉. Time-complexity is in O
(
s2D

(
n+D−1

D

)3)
operations in K, as D → +∞.1 If (f1, . . . , fs) is regular,

time-complexity is in O
(
sD
(
n+D−1

D

)3)
.

The Macaulay bound is also available. Furthermore, not
only does the tropical Matrix-F5 algorithm computes tropi-
calD-Gröbner bases, but it is compatible with finite-precision
coefficients, under the assumption that the entry sequence
is regular. Let us assume that K = Qp, FqJtK or QJtK. Let
(f1, . . . , fs) ∈ K[X1, . . . , Xn]s. We define a bound on the
precision, precMF5trop ((f1, . . . , fs), D,≥) , and one on the
loss in precision, lossMF5trop ((f1, . . . , fs), D,≥) , which de-
pend explicitly on the coefficients of the fi’s. Then we have
the following proposition regarding to numerical stability of
tropical Gröbner bases :

Proposition 1.2. Let F = (f1, . . . , fs) ∈ K[X1, . . . , Xn]s

be a regular sequence of homogeneous polynomials.
Let (f ′1, . . . , f

′
s) be some approximations of F, with preci-

sion l on their coefficients better than precMF5trop(F,D,≥).
Then, with the tropical Matrix-F5 algorithm, one can com-
pute an approximation g′1, . . . , g

′
t of a Gröbner basis of 〈F 〉 ,

up to precision l − lossMF5trop(F,D,≥).

This contrasts with the case of classical Gröbner bases,
for a monomial order ω, over p-adics (or complete discrete
valuation fields) considered in [14]. Indeed, the structure
hypothesis H2 which requires that the ideals〈f1, . . . , fi〉 are
weakly-ω is no longer necessary (see Subsection 4.6). It is
only replaced by the (possibly stronger) assumption that the
initial precision is better than precMF5trop(F,D,≥). In the
special case of a weight w = (0, . . . , 0), the loss in precision
is the smallest linear algebra on the Macaulay matrices can
provide, and numerical evidences show that it is in average
rather low.

Finally, we show that a faster variant of Matrix-F5 algo-
rithm, where one use the Macaulay matrices in degree d to
build the Macaulay matrices in degree d+1, can be adapted
to compute tropical Gröbner bases. We first provide a trop-
ical LUP-form computation for Macaulay matrices that is
compatible with signatures, and then what we call the trop-
ical signature-based Matrix-F5 algorithm (algorithms 3 and
4). We prove the following result :

Proposition 1.3. Let (f1, . . . , fs) ∈ K[X1, . . . , Xn]s be a
sequence of homogeneous polynomials. Then, the tropical
signature-based Matrix-F5 algorithm computes a tropical D-
Gröbner basis of 〈f1, . . . , fs〉 .

Time-complexity is then in O
(
sD
(
n+D−1

D

)3)
operations

in K, as D → +∞ and O
(
D
(
n+D−1

D

)3)
when the input

polynomials form a regular sequence.
Structure of the paper: Section 2 is devoted to pro-

vide a tropical setting and definitions for tropical Gröbner
bases. In Section 3, we show that matrix algorithms can
be performed to compute such bases. To that intent, af-
ter an introduction to matrix algorithms for Gröbner bases,

1One could also write O
(
s2
(
n+D
D

)3)
.

we provide a row-reduction algorithm that will make a first
näıve Matrix-F5 algorithm available. We then prove and
analyze this tropical Matrix-F5 algorithm. In Section 4 we
analyze the stability of this algorithm over inexact fields with
valuations, such as Qp. Section 5 is devoted to numerical ex-
amples regarding the loss in precision in the computation of
tropical Gröbner bases. In Section 6, we prove that the clas-
sical signature-based Matrix-F5 algorithm is available, along
with an adapted tropical LUP algorithm for row-reduction
of Macaulay matrices. Finally, Section 7 is a glance at some
future possible developments for tropical Gröbner bases.

2. CONTEXT AND MOTIVATIONS
From now on, let K be a field equipped with a valuation

val : K∗ → R. Let R be the ring of integers of K, m its
maximal ideal, kK its residue field and let Γ = Im(val). An
example of such a field is Qp with p-adic valuation. In that
case, R = Zp, m = pZp, kK = Z/pZ and Γ = Z.

Let also n ∈ Z>0, A = K[X1, . . . , Xn], B = R[X1, . . . , Xn]
and C = kK [X1, . . . , Xn]. We write |f | for the degree of a ho-
mogeneous polynomial f ∈ A, and Ad = K[X1, . . . , Xn]d for
the K-vector space of degree d homogeneous polynomials.

2.1 Tropical varieties, tropical Gröbner bases
If I is an homogeneous ideal in A, and V (I) ⊂ Pn−1

K is the
projective variety defined by I. Then the tropical variety
defined by I, or the tropicalization of V (I), is Trop(I) =

val (V (I) ∩ (K∗)n) (closure in Rn). Trop(I) is a polyhedral
complex and acts as a combinatorial shadow of V (I) : many
properties of V (I) can be recovered combinatorially from
Trop(I).

If w ∈ Γn, we define an order on the terms ofK[X1, . . . , Xn].

Definition 2.1. If a, b ∈ K and xα, xβ are two monomials
in A, axα ≥w bxβ if val(a)+w ·α ≤ val(b)+w ·β. Naturally,
it is possible that axα 6= bxβ and val(a)+w·α = val(b)+w·β.

For any f ∈ A, we can define LT≥w (f), and then LT≥w (I),
for I ⊂ A an ideal, accordingly.

We remark that LT≥w (f) might be a polynomial (with
more than one term). For example, if we take w = [1, 2, 3]
in Q2[x, y, z] (with 2-adic valuation), then

LT≥w

(
x4 + x2y + 2y4 + 2−8z4

)
= x4 + x2y + 2−8z4.

T rop(I) is then connected to LT≥w (I):

Theorem 2.2 (Fundamental th. of tropical geometry). If
K is algebraically closed with non-trivial valuation, Trop(I)
is the closure in Rn of those w ∈ Γn such that LT≥w (I) does
not contain a monomial.

Proof. See Theorem 3.2.5 of [11].

To compute LT≥w (I) one can add a (classical) monomial
order in order to break ties when LT≥w (f) has more than
one monomial.

Definition 2.3. Let us take ≥1 a monomial order on A.
Given a, b ∈ K and xα and xβ two monomials in A, we

write axα ≥ bxβ if val(a)+w ·α < val(b)+w ·β, or val(a)+
w · α = val(b) + w · β and xα ≥1 x

β .
Let f ∈ A and A be an ideal of A. We define LT (f) and

LT (I) accordingly. We remark that LT (I) = LT≥1(LTw(I)).
We define LM(f) to be the monomial of LT (f), and LM(I)



accordingly. If G = (g1, . . . gs) ∈ As is such that its leading
monomials (LM(g1), . . . , LM(gs)) generate LM(I), we say
that G is a tropical Gröbner basis of I.

We can finally remark that to compute a generating set of
LM≥w (I), it is enough to compute a tropical Gröbner basis
of I.

Comparison with notations in previous works: In
[4], K is such that there is a group homomorphism φ : Γ→
K such that for any w ∈ Γ, val(φ(w)) = w. If x ∈ R, its re-
duction modulo m is denoted by x. We define ρ : K∗ → kK
to be defined by ρ(x) = xφ(val(x)). ρ extends naturally to
A \ {0} with ρ(

∑
u aux

u) =
∑
u ρ(au)xu. ≥1 extends natu-

rally to C. Let w ∈ Γn, then, in [3], the author defines for
any f ∈ A, inw = ρ(LT≥w (f)) and lm(f) = LM≥1(inw).
Let G = (g1, . . . , gs) ∈ As. Then G is a tropical Gröb-
ner basis of I = 〈G〉 for the term order ≤ if and only if
(inw(g1), . . . , inw(gs)) is a Gröbner basis of inw(I) for ≤1 .
As a consequence, computing LM(I) and in(I) yields the
same monomials. Nevertheless, we prefer working with LM
since computations over (inexact) fields with valuations are
among our motivations.

2.2 The algorithm of Chan and Maclagan
A Buchberger-style algorithm: in their article [4],

Chan and Maclagan have proved that if one modifies the
classical division algorithm of a polynomial by a finite fam-
ily of polynomials with a variant of Mora’s tangent cone
algorithm, then one can get a division algorithm suited to
the computation of tropical Gröbner bases. Indeed, they
proved that Buchberger’s algorithm using this division algo-
rithm computes tropical Gröbner bases of ideals generated
by homogeneous polynomials. The main ideas of their divi-
sion algorithm is to allow division by previous partial quo-
tients, and choose the divisor polynomial with a suited écart
function.

Precision issues: Polynomial computation over (in-
exact) fields such as Qp or FpJtK is our main motivation.
To compute tropical Gröbner bases in such a setting, one
may want to apply Chan and Maclagan’s algorithm. Unfor-
tunately, Buchberger-style algorithms rely on zero-testing:
the termination criterion is Buchberger’s. This is definitely
not suited to finite precision. For instance, let F be (x2 +
xy+y2 +(1+O(pN ))t2, x2 +2xy+4y2 +(1+O(pN ))t2, t4) ∈
Qp[x, y, t]3, for some N ∈ N. Then the application of Chan
and Maclagan’s algorithm (e.g. for w = (0, 0, 0) and grevlex)
lead to S-polynomials that reduce to quantity of the form

O(πN
′
)xyt2, i.e. such that it is not possible to decide whether

the polynomial in remainder is zero or not. Such issues ap-
pear even with the usage of Buchberger’s criteria. Hence,
they exclude the usage of Buchberger-style algorithms for
most of the computations of Gröbner bases over fields such
as Qp.

3. A TROPICAL MATRIX-F5 ALGORITHM

3.1 Matrix algorithm
Here we show that to compute a tropical Gröbner basis

of an ideal given by a finite sequence of homogeneous poly-
nomials, a matrix algorithm can be written. The first main
idea is due to Daniel Lazard in [10], who remarked that for
an homogeneous ideal I ⊂ A, generated by homogeneous
polynomials (f1, . . . , fs), for d ∈ N, then as K-vector space:

I ∩ Ad = 〈xαfi, |α|+ |fi| = d〉 . One of the main features
of this property is that it can be given in term of matrices.
First, we define the matrices of Macaulay :

Definition 3.1. Let Bn,d be the basis of the monomials
of degree d, ordered decreasingly according to ≥ . Then for
f1, . . . , fs ∈ A homogeneous polynomials, |fi| = di, d ∈ N,
we define Macd(f1, . . . , fs) to be the matrix with coeffi-

cients in K and whose rows are xα1,1f1, . . . , x
α
1,(n+d−d1−1

n−1 ) ,

xα2,1f2, . . . , x
α
s,(n+d−ds−1

n−1 )fs, written in the basis Bn,d. The

xαi,1 < · · · < x
α
i,(n+d−di−1

n−1 ) ’s are the monomials of degree
n + d − di − 1. The i-th column of this matrix corresponds
to the i-th monomial of Bn,d.

If we identify naturally the rows vectors of k

(
n+d−1
n−1

)
with

homogeneous polynomials of degree d, then

Im(Macd(f1, . . . , fs)) = I ∩Ad,

with Im being the left image of the matrix.
When performing classical matrix algorithms to compute

Gröbner bases (see [1]), the idea is then to compute row-
echelon forms of the Macd(f1, . . . , fs) up to some D: if D
is large enough, the reduced rows forms a Gröbner basis of
I. Though, it is not easy to guess in advance up to which
D we have to perform row-reductions of Macaulay matrices.
This is why the idea of tropical D-Gröbner bases can be
introduced.

Definition 3.2. Let I be an ideal of A, Then (g1, . . . , gl) is
a D-Gröbner basis of I for ≥ if for any f ∈ I, homogeneous
of degree less than D, there exists 1 ≤ i ≤ l such that LT (gi)
divides LT (f).

3.2 Tropical row-echelon form computation
This Subsection is devoted to provide an algorithm that

can compute LM(〈f1, . . . , fi〉) ∩ Ad by computing echelo-
nized bases of the Macd(f1, . . . , fi). To track what the lead-
ing term of a row is, we add a label of monomials to the
matrices:

Definition 3.3. We define a Macaulay matrix of degree d

in A to be a couple (M,mon) where M ∈ Kr×(n+d−1
n−1 ) is

a matrix, and mon is the list of the
(
n+d−1
n−1

)
monomials of

degree d of A, in decreasing order according to ≥ . If mon
is not ordered, (M,mon) is only called a labeled matrix.

Algorithm 1 over Macaulay matrices computes by pivoting
the leading terms of their rows:

Definition 3.4. We define the tropical row-echelon form
of a Macaulay matrix M as the result of the previous al-

gorithm, and denote it by M̃. M̃ is indeed in row-echelon
form.

Correctness: ˜Macd(f1, . . . , fi) provides exactly the lead-
ing terms of 〈f1, . . . , fi〉 ∩Ad:

Proposition 3.5. Let F = (f1, . . . , fs) be homogeneous
polynomials in A. Let d ∈ Z>0 and M = Macd(f1, . . . , fs)..
Let I = {F} be the ideal generated by the fi’s.

Let M̃ be the tropical row-echelon form of M . Then the

rows of M̃ form a basis of I ∩ Ad such that their LT ’s cor-
responds to LT (I) ∩Ad.



Algorithm 1: The tropical row-echelon algorithm

input : M , a Macaulay matrix of degree d in
A = K[X1, . . . , Xn], with nrow rows and
ncol columns.

output: M̃ , the tropical row-echelon form of M

M̃ ←M ;
if ncol = 1 or nrow = 0 or M has no non-zero entry
then

Return M̃ ;
else

Find i, j such that M̃i,j has the greatest term

M̃i,jx
monj (with smallest i in case of tie);

Swap the columns 1 and j of M̃ , and the 1 and j
entries of mon;

Swap the rows 1 and i of M̃ ;
By pivoting with the first row, eliminate the
first-column coefficients of the other rows ;

Proceed recursively on the submatrix M̃i≥2,j≥2;

Return M̃ ;

The fact that the rows of M̃ form a basis of I∩Ad is clear,
it forms an echelonized basis (considering the basis mon of
Ad). Considering the initial terms of I ∩ Ad, the result is a
direct consequence of the following lemma:

Lemma 3.6. if axα > b1x
β and axα > b2x

β, then axα >
(b1 + b2)xβ.

Consequence: We can find all the polynomials of a trop-
ical D-Gröbner basis of 〈f1, . . . , fs〉 by computing the trop-
ical row-echelon forms of the Macd(f1, . . . , fs) for d from 1
to D. Nevertheless, there is room for improvement: those
matrices are huge and most of the time not of full rank.

3.3 The F5 criterion
We introduce here Faugère’s F5 criterion that is enough

to discard most of the rows of the Macd(f1, . . . , fs)’s that
do not yield any meaningful information for the computa-
tion of LT (I). For any j ∈ J1, sK, we denote by Ij the ideal
〈f1, . . . , fj〉 . Then, Faugère proved in [7] that for a classical
monomial ordering, if we know which monomials xα are in
LM(Ii−1), we are able to discard corresponding rows xαfi
of the Macaulay matrices. This criterion is compatible with
our definition of LM :

Theorem 3.7 (F5-criterion). For any i ∈ J1, sK,

Ii∩Ad = Span({xαfk, s.t. 1 ≤ k ≤ i, |xαfk| = d

and xα /∈ LM(Ik−1)}).

To prove this result, one can rely on the following fact,
which can be proved inductively. Let (f1, . . . , fi) be homoge-
neous polynomials of A of degree d1, . . . , di. Let aα1x

α1 , . . . ,
aαux

αu be the initial terms of the rows of
˜Macd−di(f1, . . . , fi−1), ordered by decreasing order (regard-

ing the initial term). Let xβj denote the remaining mono-
mials of degree d − di (i.e. the monomials that are not an
initial monomial of 〈f1, . . . , fi−1〉 ∩ Ad−di). Then, for any
k, the row xαkfi of Macd(f1, . . . , fi) is a linear combination

of some rows of the form xαk+k′ fi (k′ > 0), xβjfi and xγfj
(j < i) of Macd(f1, . . . , fi).

Thus, it is now clear which rows we can remove with the
F5 criterion. The following subsection provides an effective
way of taking advantage of this criterion.

3.4 A first Matrix-F5 algorithm
The tropical MF5 algorithm: We apply Faugère’s idea

(see [1],[2], [7]) to the tropical setting and therefore provide
a tropical Matrix-F5 algorithm:

Algorithm 2: A tropical Matrix-F5 algorithm

input : F = (f1, . . . , fs) ∈ As, homogeneous with
respective degrees d1 ≤ · · · ≤ ds, and D ∈ N

output: (g1, . . . , gk) ∈ Ak, a D-tropical Gröbner
basis of {F} .

G← F
for d ∈ J0, DK do

M̃d,0 := ∅
for i ∈ J1, sK do

Md,i := M̃d,i−1

for α such that |α|+ di = d do
if xα is not the leading term of a row of

˜Md−di,i−1 then
Add xαfi to Md,i

Compute M̃d,i, the tropical row-echelon form
of Md,i

Add to G all the rows with a new leading
monomial.

Return G

Correctness: What we have to show is that for any d ∈
J0, DK and i ∈ J1, sK, Im(Md,i) = Ii∩Ad. This can be proved
by induction on d and i. We remark that there is nothing
to prove for i = 1 and any d. Now let us assume that there
exists some i ∈ J1, sK such that for any j with 1 ≤ j < i and
for any d, 0 ≤ d ≤ D, Im(Md,j) = Ij ∩ Ad. Then, i being
given, the first d such that Md,i 6= Md,i−1 is di. Let d be
such that di ≤ d ≤ D. Then, with the induction hypothesis
and corollary 3.7 :

Ii∩Ad = Im(Md,i−1)+Span ({xαfi, s.t. xα /∈ LM(Ii−1)}) .
(1)

Besides, by the induction hypothesis and the correctness
of the row-echelon algorithm (see Proposition 3.5), the lead-
ing terms of Ii−1 ∩ Ad−di are exactly the leading terms of

rows of ˜Md−di,i−1. Thus, the rows that we add to M̃d,i−1

in order to build Md,i are exactly the xαfi, such that xα /∈
LM(Ii−1). Finally, we remark that Im(Md,i) = Im(M̃d,i−1).
Therefore, Im(Md,i) contains both summands of (1), and
since it is clearly included in Ii ∩ Ad, we have proved that
Ii∩Ad = Im(Md,i). To conclude the correctness of the trop-
ical MF5 algorithm, we point out that the correctness of the
tropical row-echelon computation (see prop 3.5) show that

the leading terms of rows of M̃d,i indeed correspond to the
leading terms of Ii ∩Ad.

3.5 Regular sequences and complexity
Principal syzygies and regularity: The behavior of

this algorithm with respect to principal syzygies is the same



as the classical Matrix-F5 algorithm. See [1] for a precise
description of the link between syzygies and row-reduction.
We instead only prove the main result connecting principal
syzygies and tropical row-reduction of Macaulay matrices.

Proposition 3.8. If a row reduces to zero during the trop-
ical row-echelon form computation of the tropical MF5 al-
gorithm, then the syzygy it yields is not in the module of
principal syzygies.

Proof. Let
∑i
j=1 ajfj with aj ∈ A be a syzygy of (f1, . . . , fi).

If aj 6= 0 and if this this syzygy is principal, then ai ∈ Ii−1

and LM(ai) ∈ LM(Ii−1). Since because of the F5 criterion,
there is no row of the form xαfi with xα ∈ LM(Ii−1) in the
operated Md,i, then no such syzygy can be produced during
the reduction of Md,i.

Corollary 3.9. If the sequence (f1, . . . , fs) is regular, then
no row of a Macaulay matrix in the tropical MF5 algorithm
reduces to zero. In other words, the Md,i are all injective,
and have non-strictly less rows than columns.

Proof. For a regular sequence of homogeneous polynomials,
all syzygies are principal. See [6] page 69.

Complexity: The complexity to compute tropical row-
echelon form of a matrix of rank r with nrows rows and ncols
columns can be expressed as O(r×nrows×ncols) operations
in K. This yields the following complexities for Algorithm
2:

• O
(
s2D

(
n+D−1

D

)3)
operations in K, as D → +∞.

• O
(
sD
(
n+D−1

D

)3)
operations in K, as D → +∞, in

the special case where (f1, . . . fs) is regular, because of
corollary 3.9.

Compared to the classical case, for which we refer to [2],
complexity gets essentially an extra factor s. This comes
from the fact that we need to compute the tropical row-
echelon form from start for each new Md,i. In other words,
we do not take into account the fact that, after building

Md,i, M̃d,i−1 was already under row-echelon form.
Bound on D: Regarding bounds on a sufficient D for D-

Gröbner bases to be Gröbner bases, we might not hope bet-
ter bounds than in the classical case (i.e. with trivial valua-
tion) exist. Chan has proved in [3] (Theorem 3.3.1) thatD =

2(d2/2 +d)2
n−2

, with d = maxi di, is enough. If (f1, . . . , fn)
is a regular sequence, we remark that all monomials of de-
gree greater than the Macaulay bound

∑
i(di − 1) + 1 are

in LM(I). This is a consequence of the fact that we know
what is the Hilbert function of a regular sequence. Hence,

Proposition 3.10. If (f1, . . . , fn) ∈ An is a regular se-
quence of homogeneous polynomials, all D-Gröbner bases are
Gröbner bases for D ≥

∑
i(|fi| − 1) + 1.

4. THE CASE OF FINITE-PRECISION CDVF

4.1 Setting
Throughout this section, we further assume that K is a

complete discrete valuation field. We refer to Serre [13] for
an introduction to such fields. Let π ∈ R be a uniformizer
for K and let SK ⊂ R be a system of representatives of kK =

R/m. All numbers of K can be written uniquely under its
π-adic power series development form :

∑
k≥l akπ

k for some
l ∈ Z, ak ∈ SK . We assume that K is not an exact field, but
kK is, and symbolic computation can only be performed on
truncation of π-adic power series development. We denote
by finite-precision CDVF such a field. An example of such a
CDVF is K = Qp, with p-adic valuation. We are interested
in the computation of tropical Gröbner bases over finite-
precision CDVF and its comparison with that of classical
Gröbner bases.

4.2 Precision issues with leading terms
For any m ∈ Z, let O(πm) = πmR. In a finite-precision

CDVF K, we are interested in computation over approxima-
tions x of elements of K which take the form
x =

∑m−1
k≥l akπ

k + O(πm). m is called the precision over
x.

If the precision on the coefficients of f ∈ A is not enough,
then one can not determine what the leading term of f is.
For example, on Qp[X1, X2], with w = (0, 4) and lexico-
graphical order, then one can not compare O(p2)X1 and
X2. Yet, with enough precision, such an issue does not occur
when computing tropical row-echelon form. The following
proposition provides a bound on the precision needed on f
to determine its leading term.

Proposition 4.1. Let f ∈ A be an homogeneous polyno-
mial, and let aXα be its leading term.

Then precision val(a) + max|β|=d ((α− β) · w) on the co-
efficients of f is enough to determine which term of f is
LT (f).

Proof. We only have to remark that O(pn)Xβ < aXα if and
only if n > val(a) + (α− β) · w.

4.3 Row-echelon form computation
Regular sequences: As we have already seen, when

dealing with finite-precision coefficients, a crucial issue is
that one can not decide whether a coefficient O(πk) is zero
or not. Fortunately, thanks to Corollary 3.9, when the in-
put polynomials form a regular sequence, all matrices in the
tropical MF5 algorithm are injective. It means that if the
precision is enough, the tropical row-echelon form computa-
tion performed over these matrices will have no issue with
finding pivots and deciding what the leading terms of the
rows are. In other words, if the precision is enough, there
is no zero-testing issue.

We then estimate which precision is enough in order to be
able to compute D-Gröbner bases of such a sequence.

A sufficient precision:

Proposition 4.2. Let M be an injective tropical Macaulay
matrix with coefficients in R, of degree d. Let a1, . . . , au be
the pivots chosen during the computation of its tropical row-
echelon form. Let xαk be the corresponding monomials. Let
prec be :

prec =
∑
k

val(ak) + max
k

val(ak) + max
k,|β|=d

(αk − β) · w.

Then, if the coefficients of the rows are known up to the
same precision O(πprec), the tropical row-echelon form com-
putation of M can be computed, and the loss in precision is∑
k val(ak).



Proof. We begin with a matrix M with coefficients all known
with precision O(πl), and we first assume that there is no
issue with finding the pivots. Thus, we first analyze what
the loss in precision is when we pivot. That is, we wish to
put a “real zero” on the coefficient Mi,j = επn1 + O(πn),
by pivoting with a pivot piv = µπn0 + O(πn) on row L,
with n0, n1 < n be integers, and ε =

∑n−n1−1
k=0 akπ

k, µ =∑n−n0−1
k=0 bkπ

k, with ak, bk ∈ SK , and a0, b0 6= 0. We remark
that by definition of the pivot, necessarily, n0 ≤ n1. Now,
this can be performed by the following operation on the i-th
row Li :

Li ← Li −
Mi,j

piv
L = Li + (εµ−1πn1−n0 +O(πn−n0))L,

along with the symbolic operation Mi,j ← 0. Indeed,
Mi,j

piv
=

επn1+O(πn)
µπn+O(πm0 )

, therefore
Mi,j

piv
= εµ−1πn1−n0 + O(πn−n0). As

a consequence, after the first pivot is chosen and other coeffi-
cient of the first column have been reduced to zero, the coeffi-

cients of the submatrix M̃i≥2,j≥2 are known up to

O(πl−val(a1)). We can then proceed inductively to prove that
after the termination of the tropical row-echelon form com-

putation, coefficients of M̃ are known up to
O(πl−val(a1×···×au)). Since we have to be able to determine
what the leading terms of the rows are in order to determine
what the pivots are, then, with Proposition 4.1, it is enough
that l−val(a1×· · ·×, au) is bigger than maxk,|β|=d (α− β) ·
w, which concludes the proof.

4.4 Tropical MF5 algorithm
We apply this study of the row-echelon computation to

prove Proposition 1.2 concerning the tropical Matrix-F5 al-
gorithm over CDVF. To facilitate this investigation, and

only for section 4, the step Md,i := M̃d,i−1 in algorithm
2 is replaced with Md,i := Md,i−1. This is harmless since
both matrices have same dimension and image. We first
define bounds on the initial precision and loss in precision.
Let (f1, . . . , fs) ∈ Bs be a regular sequence of homogeneous
polynomials.

Definition 4.3. Let d ≥ 1 and 1 ≤ i ≤ s. Let xα1 , . . . , xαu

be the monomials of the leading terms of 〈f1, . . . , fi〉 ∩Ad.
Let ∆d,i be the minor over the columns corresponding to

the xαl that achieves smallest valuation. Let

2d,i = 2∆d,i + max
k,|β|=d

(αk − β) · w.

We define precMF5trop((f1, . . . , fs), D,≥) = maxd≤D,i 2d,i,
and lossMF5trop((f1, . . . , fs), D,≥) = maxd≤D,i ∆d,i.

As a consequence of Proposition 4.2, these bounds are
enough for Proposition 1.2.

Furthermore, we can precise the special case of w = 0 :

Proposition 4.4. If w = 0, then the loss in precision corre-
sponds to the maximal minors of the Md,i with the smallest
valuation. In particular, w = 0 corresponds to the smallest
lossMF5trop and a straight-forward precMF5trop.

4.5 Precision versus time-complexity
We might remark that if one want to achieve a smaller

loss in precision, one might want to drop the F5 criterion
and use the tropical row-reduction algorithm on the whole
Macaulay matrices until enough linearly-free rows are found.

The required number of rows can be computed thanks to the
F5-criterion and corollary 3.7 if Macaulay matrices are op-
erated iteratively in d and i. This way, one would be assured
that its pivots will yield the smallest loss of precision possi-
ble over Macd(f1, . . . , fs). Yet, such an algorithm would be
more time-consuming because of the huge number of useless

rows, and would be in O
(
s2D

(
n+D−1

D

)3)
operations in K

even for regular sequences.

4.6 Comparison with classical Gröbner bases
We compare here the results over finite-precision CDVF

for computation of tropical Gröbner bases and for computa-
tion of classical Gröbner bases, as it was performed in [14].

We recall the main result of [14] :

Definition 4.5. Let ω be a monomial order on A. Let
F = (f1, . . . , fs) ∈ Bs be homogeneous polynomials. Let
Md,i be the Macaulay matrix in degree d for (f1, . . . , fi),
without the rows discarded by the F5-criterion. Let ld,i be
the maximum of the l ∈ Z≥0 such that the l-first columns
of Md,i are linearly free. We define

∆d,i = min (val ({minor over the ld,i-first columns of Md,i})) .

We define the Matrix-F5 precision of F regarding to ω
and D as :

precMF5(F,D, ω) = max
d≤D, 1≤i≤s

val (∆d,i) .

Then, precMF5(F,D, ω) is enough to compute approxi-
mate D-Gröbner bases :

Theorem 4.6. Let (f ′1, . . . , f
′
s) be approximations of the ho-

mogeneous polynomials F = (f1, . . . , fs) ∈ Bs, with pre-
cision better than precMF5 = precMF5(F,D,w). We as-
sume that (f1, . . . , fs) is a regular sequence (H1) and all
the 〈f1, . . . , fi〉 are weakly-ω-ideals (H2). Then, the weak
Matrix-F5 algorithm computes an approximate D-Gröbner
basis of (f ′1, . . . , f

′
s), with loss in precision upper-bounded by

precMF5. The complexity is in O
(
sD
(
n+D−1

D

)3)
operations

in K, as D → +∞.

We remark that for tropical Gröbner bases, the structure
hypothesis H2 is compensated by the precision requirement
for the tropical row-echelon computation : maxk val(ak) +
maxk,|β|=d (αk − β) · w so that there is no position prob-
lem for the leading terms when a tropical Gröbner basis is
computed. This leads to a bound on the required precision,
precMF5trop(F,D,≥), that might be bigger than precMF5

but with no position problem and no requirement for H2.
Thus, for tropical Gröbner bases over a CDVF (where the

valuation is non-trivial), the only structure hypothesis is the
regularity H1, and is clearly generic, whereas for classical
Gröbner bases, H1 and H2 might be generic only in special
cases, like for the grevlex ordering if Moreno-Socias’ conjec-
ture holds. Therefore, tropical Gröbner bases computation
may require a bigger precision on the input than classical
Gröbner bases, but it can be performed generically, while it
is not clear for classical Gröbner bases.

Finally, when the weight w is zero, thanks to Proposi-
tion 4.4, the smallest loss in precision defined by minors of
Macaulay matrices is attained.



5. IMPLEMENTATION
A toy implementation in Sage [12] of the previous algo-

rithm is available at http://perso.univ-rennes1.fr/tristan.
vaccon/toy_F5.py. The purpose of this implementation
was the study of the precision. It is therefore not opti-
mized regarding to time-complexity. We have applied the
tropical Matrix-F5 algorithm to homogeneous polynomials
with varying degrees and random coefficients in Zp (regard-
ing to the Haar measure): f1, . . . , fs, of degree d1, . . . , ds
in Zp[X1, . . . , Xs], known up to initial precision 30, with
a given weight w and the grevlex ordering to break the
ties, and up to D the Macaulay bound. We have done
this experiment 20 times for each setting and noted max-
imal loss, mean loss in precision and the number of fail-
ures (i.e. the computation can not be completed due to
precision). We have compared with the weak-MF5 of [14]
with grevlex on the same setting (the ”grevlex” cases in
the array). We present the results in the following array :

d = w D p maximal loss mean loss failure

[3,4,7] grevlex 12 2 9 0.1 0
[3,4,7] [1,-3,2] 12 2 11 0.1 0
[3,4,7] [0,0,0] 12 2 0 0 0
[3,4,7] [1,-3,2] 12 7 3 .02 0
[3,4,7] [0,0,0] 12 7 0 0 0

[2,3,4,5] grevlex 11 2 9 1.6 2
[2,3,4,5] [1,4,1,-1] 11 2 13 0.2 0
[2,3,4,5] [0,0,0,0] 11 2 0 0 0
[2,3,4,5] [1,4,1,1] 11 7 5 0.02 0
These results suggest that the loss in precision is less when

working with bigger primes. It seems reasonable since the
loss in precision comes from pivots with positive valuation,
whereas the probability that val(x) = 0 for x ∈ Zp is p−1

p
.

Those results also corroborate the facts that w = [0, . . . , 0]
lead to significantly smaller loss in precision.

6. A FASTER TROPICAL MF5 ALGORITHM
In this section, we show that one can perform in a trop-

ical setting an adaptation of the classical, signature-based,
Matrix-F5 algorithm presented in [2]. This variant of the
Matrix-F5 algorithm is characterized by the usage of the

fact that M̃d,i is under echelon form to build a Md,i closer
to its echelon-form.

To that intent, we introduce labels and signatures for poly-
nomials, and a tropical LUP-form computation.

6.1 Label and signature
Definition 6.1. Given (f1, . . . , fs) ∈ As, a labeled polyno-
mial is a couple (u, p) with u = (l1, . . . , ls) ∈ As, p ∈ A and∑s
i=1 lifi = p.
u is called the label of the labeled polynomial. We write

(e1, . . . , es) to be the canonical basis of As.
If u = (l1, . . . , li, 0, . . . , 0) with li 6= 0, then the signature

of the labeled polynomial (u, p), denoted by sign((u, p)), is
(HM(li), i), with the following definition : HM(li) is the
highest monomial, regarding to ≤, that appears in li with a
non-zero coefficient.

Remark 6.2. We must point out that in the definition of the
signature, we do not take into account the valuations of the
coefficients in the label, hence the HM(li) instead of LT (li)
or LM(li). HM(li) is not, in general, the monomial of the
leading term of li.

Definition 6.3. We define a total order on the set of sig-
natures {monomials in R} × {1, . . . , s} with the following
definition : (xα, i) ≤ (xβ , k) if i < k, or xα ≤ xβ and i = k.

Signatures are compatible with operations over labeled
polynomials :

Proposition 6.4. Let (u, p) be a labeled polynomial, (xα, i) =
sign((u, l)) and let xβ be a monomial in A. Then

sign((xβu, xβp)) = (xαxβ , i).

If (v, q) is another labeled polynomial such that
sign((v, q)) < sign((u, p)), and if µ ∈ K, then sign((u +
µv, p+ µq)) = sign((u, p)).

6.2 Signature-preserving LUP-form computa-
tion

From now on throughout this subsection, an additional
datum will be attached to the rows of the Macaulay matri-
ces: its label and signature. We make the further assump-
tion that the rows are ordered with increasing signature.
Such a matrix will be called a labeled Macaulay matrix.
When adding a row, both its label and its signature will be
noted, and all the operations on the rows are carried on to
the labels of these rows.

The algorithm: We provide a tropical LUP algorithm
for labeled Macaulay matrices to compute the leading term
of the Macaulay matrices while preserving signatures.

Algorithm 3: The tropical LUP algorithm

input : M , a labeled Macaulay matrix of degree d
in A, with nrow rows and ncol columns.

output: M̃ , the U of the tropical LUP-form of M

M̃ ←M ;
if ncol = 1 or nrow = 0 or M has no non-zero entry
then

Return M̃ ;
else

for i = 1 to nrow do

Find j such that M̃i,j has the greatest term

M̃i,jx
monj over the row;

Swap the columns 1 and j of M̃ , and the 1
and j entries of mon;
By pivoting with the first row, eliminates the
coefficients of the other rows on the first
column;
Proceed recursively on the submatrix

M̃i≥2,j≥2;

Return M̃ ;

We remark that at the end of the algorithm, there exists a
unipotent lower-triangular matrix L, a permutation matrix

P , such that M̃ = LMP, M̃ is under row-echelon form up
to permutation, and since we only add to a row Li a linear
combination of rows that are above Li, those rows have a
strictly lower signature than Li, and therefore the operations
performed on the rows (and on the columns) preserve the
signature. Furthermore,

Proposition 6.5. For any 1 ≤ i ≤ nrow(M), if j is the

index of the i-th row of M̃ , then M̃i,jx
monj is the leading

term of the polynomial corresponding to this row.

http://perso.univ-rennes1.fr/tristan.vaccon/toy_F5.py
http://perso.univ-rennes1.fr/tristan.vaccon/toy_F5.py


Those remarks justify the name of tropical LUP algo-
rithm, and the facts that this algorithm computes the lead-
ing terms of Span(rows(M)). Finally, since signature re-
mains unchanged throughout the tropical LUP reduction,
we can omit the labels and only handle Macaulay matrices
on which the signatures of the rows are marked.

6.3 A signature-based tropical MF5 algorithm
We show that with LUP-reduction we can adapt the clas-

sical Matrix-F5 algorithm.
The signature-based F5 criterion is still available:

Proposition 6.6. Let (u, f) be a labeled homogeneous poly-
nomial of degree d, such that sign(u) = xαei, with 1 < i ≤ s
and xα ∈ Ii−1. Then,

xα ∈ Span
({
xβfk, |xβfk| = d, and (xβ , k) < (xα, i)

})
.

As a consequence, if (u, f) is a labeled homogeneous poly-
nomial of degree d with sign(u) = xαei and xα /∈ LM(Ii−1).
Then f can be written f = xαfi + g, with

g ∈ Span
({
xβfk, |xβfk| = d, and (xβ , k) < (xα, i)

})
.

A faster tropical Matrix-F5 algorithm:

Algorithm 4: The tropical signature-based Matrix-
F5 algorithm

input : F = (f1, . . . , fs) ∈ As, with respective
degrees d1, . . . , ds, and D ∈ N

output: (g1, . . . , gk) ∈ Ak, a D-tropical Gröbner
basis of 〈F 〉, if D is large enough.

G← F
for d ∈ J0, DK do

M̃d,0 := ∅
for i ∈ J1, sK do

Md,i := M̃d,i−1

for L a row of M̃d−1,i do
for x ∈ {X1, . . . , Xn} do

xαek := sign(xL)
if k = i, xα is not the leading term of

a row of ˜Md−di,i−1, and Md,i has not
already a row with signature xαei
then

Add xL to Md,i.

Compute M̃d,i, the tropical LUP-form of
Md,i.
Add to G all the rows with a new leading
monomial.

Return G

Correctness: This algorithm indeed computes a tropi-
cal D-Gröbner basis. The first thing to prove is that with
the building of the Macaulay matrices suggested in the algo-
rithm, the two following properties are satisfied : Im(Md,i) =
Ii ∩Ad and for any monomial xα of degree d− di such that
xα /∈ LM(Ii−1), Md,i has a row with signature xαei. This
can be proved by induction on d and i.

Now, since the tropical LUP reduction indeed computes
an echelon-basis of the Md,i, as in the previous tropical MF5

algorithm, the signature-based tropical MF5 algorithm com-
putes tropical D-Gröbner bases.

Complexity: The main difference in complexity between
Algorithm 2 and Algorithm 4 is that for the latter, the com-
putation of the tropical LUP-form of the Md,i+1 takes into
account the fact that it was previously done on Md,i, i.e. the
first rows of Md,i+1 are already under row-echelon form with
the right leading terms. As a consequence, the complexity
to compute a tropical D-Gröbner basis of (f1, . . . , fs) is the

same as in the classical case, that is to say, O
(
sD
(
n+D−1

D

)3)
operations in K, as D → +∞. If (f1, . . . , fs) is a regular se-

quence, then the complexity is in O
(
D
(
n+D−1

D

)3)
.

7. FUTURE WORKS
Since both Buchberger and Matrix-F5 algorithms are avail-

able, we conjecture that the F5 algorithm can be adapted
to the tropical setting. It would probably reduce to adapt
properly the TopReduction of [7].

The numerical stability of Proposition 1.2 and the fact
that tropical Gröbner bases provide normal forms, suggest
investigating the FGLM ([8]) algorithm to pass from a tropi-
cal order (with w = (0, . . . , 0)) to a classical one, with a view
toward stable computations over finite-precision CDVF.
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tropical varieties, available at
http://home.imf.au.dk/jensen/software/gfan/gfan.html

[10] Lazard, Daniel Gaussian Elimination and Resolution of
Systems of Algebraic Equations, in Proc. EUROCAL 83,
volume 162 of LNCS, p.146-157, 1983

[11] Maclagan, Diane & Sturmfels, Bernd Introduction to Tropical
Geometry, Book in preparation.

[12] Stein, W.A. et al. Sage Mathematics Software (Version 4.7.2),
The Sage Development Team, 2011, http://www.sagemath.org.

[13] Serre, J.-P. Local Fields, Graduate Texts in Mathematics, 67,
Springer-Verlag, 1995

[14] Vaccon, Tristan Matrix-F5 algorithms over finite-precision
complete discrete valuation fields, Proceedings of the 39th
International Symposium on Symbolic and Algebraic
Computation, ISSAC ’14, pages 397-404, Kobe, Japan, ACM.


	Introduction
	Context and motivations
	Tropical varieties, tropical Gröbner bases
	The algorithm of Chan and Maclagan

	A tropical Matrix-F5 algorithm
	Matrix algorithm
	Tropical row-echelon form computation
	The F5 criterion
	A first Matrix-F5 algorithm
	Regular sequences and complexity

	The case of finite-precision CDVF
	Setting
	Precision issues with leading terms
	Row-echelon form computation
	Tropical MF5 algorithm
	Precision versus time-complexity
	Comparison with classical Gröbner bases

	Implementation
	A faster tropical MF5 algorithm
	Label and signature
	Signature-preserving LUP-form computation
	A signature-based tropical MF5 algorithm

	Future works
	References
	References

