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ABSTRACT
Newton’s method is an ubiquitous tool to solve equations, both in

the archimedean and non-archimedean settings — for which it does

not really di�er. Broyden was the instigator of what is called “quasi-

Newton methods”. These methods use an iteration step where one

does not need to compute a complete Jacobian matrix nor its inverse.

We provide an adaptation of Broyden’s method in a general non-

archimedean setting, compatible with the lack of inner product, and

study its Q and R convergence. We prove that our adapted method

converges at least Q-linearly and R-superlinearly with R-order 2

1

2m

in dimensionm. Numerical data are provided.

KEYWORDS
System of equations, Broyden’s method, Quasi-Newton, p-adic

approximation, Power series, Symbolic-numeric, p-adic algorithm

ACM Reference format:
Xavier Dahan and Tristan Vaccon. 2020. On A Non-Archimedean Broyden

Method. In Proceedings of The 45th International Symposium on Symbolic
and Algebraic Computation, Kalamata, Greece, July 2020 (ISSAC’20), 9 pages.

DOI:

1 INTRODUCTION
In the numerical world. Quasi-Newton methods refer to a class of

variants of Newton’s method for solving square nonlinear systems,

with the twist that the inverse of the Jacobian matrix is “approxi-

mated” by another matrix. When compared to Newton’s method,

they bene�t from a cheaper update at each iteration (See e.g. [10,

p.49-50, 53]), but su�er from a smaller rate of convergence. They

were mainly introduced by Broyden in [6], which has sparked

numerous improvements, generalizations, and variants (see the

surveys [10, 19]). It is now a fundamental numerical tool (that �nds

its way in entry level numerical analysis textbooks [8, § 10.3]). To

some extent, this success stems from: the speci�cities of machine

precision arithmetic as commonly used in the numerical commu-

nity, the fact that Newton’s method is usually not quadratically

convergent from step one, and that the arithmetic cost of an itera-

tion is independent of the quality of the approximation reached. In

another direction, variants of Broyden’s method have known dra-

matic success for unconstrained optimization — the target system

is the gradient of the objective function, the zeros are then critical

points— where it takes advantage of the special structure of the

Hessian (see Sec. 7 of [10]). Another appealing feature of Broyden’s
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method is the possibility to design derivative-free methods gener-

alizing to the multivariate case the classical secant method (which

can be thought of as Broyden’s in dimension one). This feature is a

main motivation for this work.

Non-archimedean. It is a natural wish to transpose such a fun-

damental numerical method to the non-archimedean framework,

o�ering new tools to perform exact computations, typically for sys-

tems with p-adic or power series coe�cients. For this adaptation,

several non-trivial di�culties have to be overcome: e.g. no inner

products, a more di�cult proof of convergence, or a management of

arithmetic at �nite precision far more subtle. This article presents

satisfactory solutions for all these di�culties, which we believe can

be expanded to a broader variety of quasi-Newton methods.

Bach proved in [1] that in dimension one, the secant method

can be on an equal footing with Newton’s method in terms of com-

plexity. We investigate how this comparison is less engaging in

superior dimension (see Section 6). To our opinion, this is due to the

remarkable behavior of Newton’s method in the non-archimedean

setting. No inversion of the Jacobian is required at each iteration

(simply a matrix multiplication, this is now classical see [5, 16, 17]).

The evaluation of the Jacobian is also e�cient for polynomial func-

tions (in dimensionm, it involves only O(m) evaluations, instead

ofm2
over R, see [2]). It displays also true quadratic behavior from

step one which, when combined with the natural use of �nite pre-

cision arithmetic (against machine precision over R), o�ers a ratio

cost/precision gained that is hard to match.

And indeed, our results show that for large dimension m and

polynomials as input, there is little hope for Broyden to outperform

Newton, although it depends on the order of superlinear conver-

gence of Broyden’s method. In this respect more investigation is

necessary, but for now the interest lies more in the theoretical ad-

vances and in the situations mentioned in “Motivations” thereafter.

Relaxed arithmetic. Since the cost of one iteration of Broyden’s

method involvesm2
instead ofmω

for Newton, we should mention

the relaxed framework (a.k.a online [11]) which show essentially

the same decrease of complexity, while maintaining quadratic con-

vergence. It has been implemented e�ciently for power series [23],

and for p-adic numbers [3]. In case of a smaller m and a larger

precision of approximation required, FFT trading [24] has to be

mentioned. These techniques are however unlikely to be suited

to the Broyden iteration, since it is a priori not described by a

�xed-point equation, a necessity for the relaxed machinery.

Motivations. As explains Remark 6.4, it seems unlikely in the

non-archimedean world that with polynomials or rational fractions,

a quasi-Newton method meets the standard of Newton’s method.

The practical motivations concern:
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1/ Derivative-free method: instead of starting with the Jacobian

at precision one, use a divided-di�erence matrix. A typical applica-

tion is when the function is given by a “black-box” and there is no

direct access to the Jacobian.

2/ When computing the Jacobian does not allow shortcuts like

in the case of rational fractions [2], evaluating it may require up

to Lm2
operations, where L is the complexity of evaluation of the

input function. Regarding the complexity of Remark 6.4, Broyden’s

method then becomes bene�cial when L & m2 −mω−1
.

3/ While Newton’s method over general Banach spaces of in�nite

dimension can be made e�ective when the di�erential is e�ectively

representable (integral equations [15, § 5][14] are a typical exam-

ple), it is in general di�cult or impossible to compute it. On the

other hand, Broyden’s method or its variants have the ability to

work with approximations of the di�erential, including of �nite
rank, by considering a projection (as shown in [14, 15] and the ref-

erences therein; the dimension of the projection is increased at each

iteration). In the non-archimedean context, ODEs with parameters,

for example initial conditions, constitute a natural application.

Organization of the paper. De�nitions and notations are intro-

duced in Section 2. Section 3 explains how Broyden’s method can

be adapted to an ultrametric setting. In Section 4, we study the Q

and R-order of convergence of Broyden’s method (see De�nition

2.1), presenting our main results. It is followed by Section 5, where

are introduced developments and conjectures on Q-superlinearity.

Finally, in Section 6, we explain how our Broyden’s method can

be implemented with dynamical handling of the precision, and we

conclude with some numerical data in Section 7.

2 BROYDEN’S METHOD AND NOTATIONS
2.1 General notations
Throughout the paper, K refers to a complete, discrete valuation

�eld, val : K � Z ∪ {+∞} to its valuation, OK its ring of integers

and π a uniformizer.
1

For k ∈ N, we write O(πk ) for πkOK .
Let m ∈ Z≥1. We are interested in computing an approximation

of a non-singular zero x? of f : Km → Km
through an iterative

sequence of approximations, (xn )n∈N ∈ (Km )N. Note that all our

vectors are column-vectors. For any x ∈ Km
where it is well-

de�ned, we denote by f ′(x) ∈ Mm (K) the Jacobian matrix of f at

x .We will use the following notations (borrowed from [13]):

fn = f (xn ), yn = fn+1 − fn , sn = xn+1 − xn (1)

We denote by (e1, . . . , em ) the canonical basis of Km . In Km ,O(πk )
means O(πk )e1 + · · · +O(πk )em .

Newton’s iteration produces a sequence (xn )n∈N given by:

xn+1 = xn − f ′(xn )−1 · f (xn ). (N)

For quasi-Newton methods, the iteration is given by:

xn+1 = xn − B−1n · f (xn ), (⇒ sn = −B−1n · fn ) (QN)

with Bn presumably not far from f ′(xn ). More precisely, it is a

generalization of the design of the secant method over K where

one approximates f ′(xn ) by
f (xn )−f (xn−1)

xn−xn−1 . In quasi-Newton, it is

thus required that:

Bn · (xn − xn−1) = f (xn ) − f (xn−1) (⇒ Bn · sn−1 = yn−1) (2)

1
Discrete valuation is only needed in Section 6. For the rest complete and ultrametric

is enough.

By this condition alone, Bn is obviously underdetermined. To miti-

gate this issue, Bn is taken as a one-dimensional modi�cation of

Bn−1 satisfying (2). Concretely, a sequence (un )n∈N ∈ (Km )N is

introduced such that:

Bn = Bn−1 + (yn−1 − Bn−1sn−1) · un−1t . (3)

1 = un−1t · sn−1. (4)

In Broyden’s method over R, un−1 is de�ned by:

un−1 =
sn−1

sn−1t · sn−1
. (5)

The computation of the inverse of Bn can then be done using the

Sherman-Morrison formula (see [22]):

B−1n = B−1n−1 +
(sn−1 − B−1n−1yn−1) · sn−1

tB−1n−1
sn−1tB−1n−1yn−1

. (6)

This formula gives rise to the so-called “good Broyden’s method”.

Using [22] provides the following alternative formulae:

Bn = Bn−1 + fn · un−1t . (7)

B−1n = B−1n−1 −
B−1n−1 fn · un−1

tB−1n−1
un−1tB−1n−1yn−1

. (8)

2.2 Convergence
We recall some notions on convergence of sequences commonly

used in the analysis of the behavior of Broyden’s method.

Definition 2.1 ([20] Chapter 9). A sequence (xk )k ∈N ∈ (Km )N
has Q-order of convergence µ ∈ R>1 to a limit x? ∈ Km , if:

∃r ∈ R+, ∀k large enough,
‖xk+1 − x?‖
‖xk − x?‖µ

≤ r .

If we can take µ = 1 and r < 1 in the previous inequality, we say
that (xk )k ∈N has Q-linear convergence. For µ = 2, we say it has
Q-quadratic convergence. The sequence is said to have Q-superlinear
convergence if

lim

k→+∞
‖xk+1 − x?‖
‖xk − x?‖

= 0.

It is said to have R-order of convergence2 µ ∈ R≥1 if

lim sup ‖xk − x?‖1/µ
k
< 1.

Remark 2.2. For both Q and R, we write has convergence µ to mean

has convergence at least µ .

Broyden’s method satis�es the following convergence results:

Theorem 2.3. OverRm , under usual regularity assumptions, Broy-
den’s method de�ned by Eq. (5) converges locally3 Q-superlinearly
[7], exactly in 2m steps for linear systems, and with R-order at least
2

1

2m > 1 [13].

Unfortunately, for general K , Eq. (5) is not a good �t. Indeed, the

quadratic form x 7→ xtx can be isotropic over Km
, i.e. there can

be an sn , 0 such that sn
t · sn = 0. This is the case, for example if

sn = (X ,X ) in F2JX K2. Consequently, (5) has to be modi�ed. Trying

to seek for another quadratic form that would not be isotropic is

pointless, since for example there is none over Qmp form ≥ 5 [21].

2
R-convergence is a weaker notion, aimed at sequences not monotonically decreasing.

3
By locally, we mean that for any x0 and B0 in small enough balls around x?

and

f ′(x?), the following convergence property is satis�ed.
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Remark 2.4. In the sequel, all the Bi ’s will be invertible matrices.

Consequently, sn+1 = 0 if and only if f (xn ) = 0. We therefore

adopt the convention that if for some xn , we have f (xn ) = 0, then

the sequences (xv )v≥n and (Bv )v≥n will be constant, and this case

does not require any further development.

3 NON-ARCHIMEDEAN ADAPTATION
3.1 Norms
We use the following natural (non-normalized) norm on K de�ned

from its valuation: for any x ∈ K , ‖x ‖ = 2
− val(x ), except for K =

Qp , where we take the more natural p− val(x ) over Qp . Our norm
4

on K can naturally be extended to Km
: for any x = (x1, . . . ,xm ) ∈

Km , ‖x ‖ = maxi |xi |.We denote by val(x) the minimal valuation

among the val(xi )’s. It de�nes the norm of x .

Lemma 3.1. Let
g
·
g
be the norm on Mm (K) induced by ‖ · ‖.

Let us abuse notations by denoting with ‖ · ‖ the max-norm on the
coe�cients of the matrices ofMm (K). Then

g
·
g
= ‖ · ‖.

Proof. Let A ∈ Mn (K). If x ∈ Km
is such that ‖x ‖ ≤ 1, then by

ultrametricity, it is clear that ‖Ax ‖ ≤ ‖A‖, hence

g
A

g
≤ ‖A‖. If

i ∈ N is such that ‖A‖ is obtained with a coe�cient on the column

of index i , then ‖Aei ‖ = ‖A‖, whence the equality. �

Consequently, the max-norm on the coe�cients of a matrix is a

matrix norm. For rank-one matrices, the computation of the norm

can be made easy using the following corollary of Lemma 3.1.

Corollary 3.2. Let a,b ∈ Km be two vectors. Then

‖at · b‖ = ‖a‖ · ‖b‖. (9)

3.2 Constraints and optimality
For the sequence (xn )n∈N to be well de�ned, the sequence (un )n∈N
must satisfy Eqs (3)-(4) and also:

sn
tB−1n yn , 0, (10)

to ensure Eq. (6) makes sense. Many di�erent un ’s can satisfy those

conditions. Over R, Broyden’s choice of un de�ned by (5) can be

characterized by minimizing the Frobenius norm of Bn+1 − Bn .We

can proceed similarly over K .

Lemma 3.3. If Bn+1 satis�es (2), then:

‖Bn+1 − Bn ‖ ≥
‖yn − Bnsn ‖
‖sn ‖

. (11)

Proof. It is clear as in this case, (Bn+1−Bn )sn = yn −Bnsn . �

This inequality can become an equality with a suitable choice of

un as shown in the following lemma.

Lemma 3.4. Let l be such that val(sn,l ) = val(sn ). Then

un = s
−1
n,lel

satis�es (4) and reaches the bound in (11).

Nevertheless, this is not enough to have Bn invertible in general,

as we can see from the Sherman-Morrison formula (8):

4
Over R, it is of course denoted by ‖ · ‖∞ , but when based on a non-archimedean

absolute value, this notation is not used since it is implicitly unambiguous: other

norms such as the ‖ · ‖p are mostly useless.

Lemma 3.5. Bn de�ned by Eq.(3) is invertible if and only if

un−1tB−1n−1yn−1 , 0. (12)

The next lemma shows how to choose l , up to the condition

(B−1n−1yn−1)l , 0, which actually never occurs after Corollary 4.3.

Lemma 3.6. Let l be the smallest index such that val(sn,l ) =
val(sn ). If

(
B−1n−1yn−1

)
l
, 0, then

un = s
−1
n,l el (13)

satis�es Eq. (4), reaches the bound in Eq. (11) and satis�es Eq.(12).

4 LOCAL CONVERGENCE
4.1 Local Linear convergence
Let E and F be two �nite-dimensional normed vector spaces over K
We denote by L(E, F ) the space of K-linear mappings from E to F .

Definition 4.1. Let U be an open subset of E. A function f :

U → F is strictly di�erentiable at x ∈ U if there exists an f ′(x) ∈
L(E, F ) satisfying the following property: for all ε > 0, there exists a
neighborhoodUx,ε ⊂ U of x , on which for any y, z ∈ Ux,ϵ :

‖ f (z) − f (y) − f ′(x) · (z−y)‖F ≤ ε · ‖z−y‖E . (14)

Note that both z and y can vary. This property is natural in

the ultrametric context (see 3.1.3 of [9]), as the counterpart of

Fréchet di�erentiability over R does not provide meaningful local

information. Polynomials and converging power series satisfy strict

di�erentiability everywhere they are de�ned.

We can then adapt Theorem 3.2 of [7] in our ultrametric setting.

Theorem 4.2. Let f : Km → Km and x? ∈ U be such that f
is strictly di�erentiable at x?, f ′(x?) is invertible and f (x?) = 0.

Then any quasi-Newton method whose choice of un yields for all
n, ‖un ‖ = ‖sn ‖−1 (which includes Broyden’s choice of Eq. (13)), is
locally Q-linearly converging to x? with ratio r for any r ∈ (0, 1).

Proof. Let r ∈ (0, 1). Let the constants γ ,δ , and λ be satisfying:

γ ≥ ‖ f ′(x?)−1‖, 0 < δ ≤ r

γ (1 + r )(3 − r ) , 0 < λ ≤ δ (1−r ). (15)

Let η > 0 be given by the strict di�erentiability at x? and such that

on the ball B(x?,η),
‖ f (z) − f (y) − f ′(x?) · (z−y)‖ ≤ λ · ‖z−y‖.

We restrict further η so as to have: η ≤ δ (1 − r ). Let us assume that

‖B0 − f ′(x?)‖ ≤ δ , ‖x0 − x?‖ < η.
We have from the condition on δ that δ γ (1+ r )(3− r ) ≤ r . Since

3 − r > 2, then 2δ γ (1 + r ) ≤ r . Consequently,

1

1 − 2δγ ≤ 1 + r ,

the denominator being non zero because δ < (2γ )−1.
Since ‖ f ′(x?)−1‖ ≤ γ and ‖B0 − f ′(x?)‖ < 2δ , the Banach

Perturbation Lemma ([20] page 45) in the Banach algebra Mm (K)
implies that B0 is invertible and:

‖B−1
0
‖ ≤ γ

1 − 2γδ ≤ (1 + r )γ .

We can now estimate what happens to x1 = x0 − B−1
0

f (x0).
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‖x1 − x?‖ = ‖x0 − x? − B−10 f (x0)‖, (16)

= ‖ − B−1
0

(
f (x0) − f (x?) − f ′(x?) · (x0 − x?)

)
− B−1

0

(
f ′(x?)(x0 − x?) − B0(x0 − x?)

)
‖,

= ‖ − B−1
0

(
f (x0) − f (x?) − f ′(x?) · (x0 − x?)

)
− B−1

0

(
(f ′(x?) − B0)(x0 − x?)

)
‖,

≤ ‖B−1
0
‖
(
λ‖x0 − x?‖ + 2δ ‖x0 − x?‖

)
,

≤ ‖B−1
0
‖(λ + 2δ )‖x0 − x?‖,

≤ γ (1 + r )(δ (1 − r ) + 2δ )‖x0 − x?‖,
≤ γ (1 + r )δ (3 − r )‖x0 − x?‖ by Eq. (15) (middle)

≤ r ‖x0 − x?‖. (17)

Consequently, ‖x1 −x?‖ ≤ r ‖x0 −x?‖ and ‖x1 −x?‖ ≤ rη < η,
i.e. x1 ∈ B(x?,η).

Eq. (3) de�nes B1 by B1 = B0 − (y1 − B0s1) · u1t for some u1
verifying ‖u1‖ = ‖s1‖−1 (see Eqs. (4), Corollary 3.2). Then:

‖B1 − B0‖ = ‖ f (x1) − f (x0) − B0(x1 − x0)‖ · ‖x1 − x0‖−1.
Therefore,

‖B1 − f ′(x?)‖ ≤ max

(
‖B0 − f ′(x?)‖ , (18)

‖ f (x1) − f (x0) − B0(x1 − x0)‖‖x1 − x0‖−1
)
,

≤ max

(
‖B0 − f ′(x?)‖ ,

‖
(
B0 − f ′(x?)

)
(x1 − x0)‖‖x1 − x0‖−1,

‖ f (x1) − f (x0) − f ′(x?)(x1 − x0)‖‖x1 − x0‖−1
)
,

≤ max(δ , λ) ≤ δ .
We can then carry on and prove by induction that for all k ,

(i) ‖xk − x?‖ ≤ rk ‖x0 − x?‖, and (ii) Bk ∈ B(f ′(x?),δ ). (19)

Heredity for Inequality (19)-(i) comes from: a same use of the

Banach Perturbation Lemma on Bk so that Bk is invertible; that

‖B−1k ‖ ≤ (1 + r )γ and by repeating the computations (16) to (17):

‖xk+1 − x?‖ ≤ ‖Bk ‖−1(λ + 2δ )‖xk − x?‖,
≤ (1 + r )γδ (3 − r )‖xk − x?‖,
≤ r ‖xk − x?‖.

We can deal with (19)-(ii) using a similar computation as (18):

‖Bk+1 − f ′(x?)‖ ≤ max

(
‖Bk − f ′(x?)‖, (20)

‖ f (xk+1) − f (xk ) − Bk (xk+1 − xk )‖‖xk+1 − xk ‖−1
)

≤ max

(
‖Bk − f ′(x?)‖,

‖ f (xk+1) − f (xk ) − f ′(x?)(xk+1 − xk )‖‖xk+1 − xk ‖−1
)
,

≤ max(δ , λ) ≤ δ . �

Corollary 4.3. Locally, one can take de�nition (13) to de�ne all
the un ’s and all the Bn ’s will still be invertible.

Proof. With the assumptions of the proof of Theorem 4.2, for

un de�ned by (13), ‖un−1‖ = ‖sn−1‖−1 and (4) are satis�ed, and by

the Banach Perturbation Lemma, Bn de�ned by (3) is invertible. �

Remark 4.4. The fact that Broyden’s method has locally Q-linear

convergence with ratio r for any r is not enough to prove that ithas

Q-superlinear convergence. Indeed, as xk is going closer to x?,
there is no reason for Bk to get closer to f ′(x?). Consequently, we

cannot expect from the previous result that xk and Bk enter loci of

smaller ratio of convergence as k goes to in�nity. In fact, in general,

Bk does not converge to f ′(x?).
Finally, the next lemma, consequence of the previous theorem,

will be useful in the next subsection to obtain the R-superlinear

convergence.

Lemma 4.5. Using the same notations as in the proof of Theorem

4.2, if r ≤
(
γ ‖f ′(x?) ‖

2

)−1
, and ‖B0− f ′(x?)‖ < δ and ‖x0−x?‖ < η,

then for all n ∈ N, ‖ fn+1‖ ≤ ‖ fn ‖.

Proof. Let n ∈ N. We have ‖sn ‖ ≤ r ‖sn−1‖. Indeed, from

‖xn+1 − xn ‖ ≤ max(‖xn+1 − x?‖, ‖x? − xn ‖), and ‖xn+1 − xn ‖ <
‖xn−x?‖, we see that ‖sn ‖ = ‖x?−xn ‖ ≤ r ‖x?−xn−1‖ = r ‖sn−1‖.

Then using (QN) and the Q-linear convergence with ratio r , we

get that ‖ fn+1‖ ≤ r ‖Bn+1‖‖B−1n ‖‖ fn ‖. Using (20), the de�nition of

δ , γ in (15), and the fact that 0 < r < 1,we get that ‖Bn+1‖‖B−1n ‖ ≤
2γ ‖ f ′(x?)‖, which concludes the proof. �

4.2 Local R-superlinear convergence
We �rst remark that the 2n-step convergence in the linear case

proved by Gay in [13] is still valid. Indeed, it is only a matter of

linear algebra.

Theorem 4.6 (Theorem 2.2 in [13]). If f is de�ned by f (x) =
Ax − b for some A ∈ GLm (K), then any quasi-Newton method con-
verges in at most 2m steps (i.e. f (x2m ) = 0).

With this and under a stronger di�erentiability assumption on

f , we can obtain R-superlinearity, similarly to Theorem 3.1 of [13].

The proof also follows the main steps thereof.

Theorem 4.7. Let us assume that on a neighborhood U of x?,
there is a c0 ∈ R>0 such that f satis�es5

∀x ,y ∈ U , ‖ f (x) − f (y) − f ′(x?) · (x − y)‖ ≤ c0‖x − y‖2. (21)

Then there are η, δ and Γ in R>0 such that if x0 ∈ B(x?,η) and
B0 ∈ B(f ′(x?),δ ), then for anyw ∈ Z≥0,

‖xw+2m − x?‖ ≤ Γ‖xw − x?‖2.

Proof. Step 1: Preliminaries. Condition (21) is stronger than

strict di�erentiability as stated in Theorem 4.2. From its proof

and Lemma 4.5, let r ∈ (0, 1) and γ ≥ ‖ f ′(x?)−1‖, as well as η

and δ such that: r ≤
(
γ ‖f ′(x?) ‖

2

)−1
, and if x0 ∈ B(x?,η) and

B0 ∈ B(f ′(x?),δ ), the sequences (xn )n∈N and (Bn )n∈N de�ned by

Broyden’s method (using (13)) are well de�ned and moreover the

four following inequalities are satis�ed: for any k ∈ N,
‖Bk − f ′(x?)‖ ≤ δ , ‖xk+1 − x?‖ ≤ r ‖xk − x?‖,
‖B−1k ‖ ≤ (1 + r )γ , ‖ f (xk+1)‖ ≤ ‖ f (xk )‖.

Let x0 ∈ B(x?,η), B0 ∈ B(f ′(x?),δ ), and (xn )n∈N and (Bn )n∈N
be de�ned by Broyden’s method. Letw ∈ N andh = ‖xw −x?‖.We

5
This condition is satis�ed by polynomials or converging power series.
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must show that there is a Γ, independent of w such that ‖xw+2m −
x?‖ ≤ Γh2.

Step 2: reference to a linear map. Let the linear a�ne map

ˆf (x) = f ′(x?)
(
x − x?

)
, and x̂0 = xw and B̂0 = Bw . Broyden’s

method (using �rst (13)) applied to those data produces the se-

quences (x̂n )n∈N and (B̂n )n∈N, which are constant for n ≥ 2m, as

a result of Theorem 4.2. We de�ne similarly ŝn = x̂n+1 − x̂n . We

have again for all k ∈ N the four inequalities:

‖B̂k − f ′(x?)‖ ≤ δ , ‖x̂k+1 − x?‖ ≤ r ‖x̂k − x?‖,
‖B̂−1k ‖ ≤ (1 + r )γ ‖ ˆf (xk+1)‖ ≤ ‖ ˆf (xk )‖.

The key to the proof is that x̂2m = x? and x̂k and xw+k are not too

much far apart.

Step 3: Statement of the induction. More concretely, we prove by

induction on j that there exist γ1, j and γ2, j , independent of w , such

that for 0 ≤ j ≤ 2m, we have the two inequalities:

‖Bw+j − B̂j ‖ · ‖ fw+j ‖ ≤ γ1, jh2, (E1, j )

‖xw+j − x̂ j ‖ ≤ γ2, jh2. (E2, j )

Step 4: Base case. Since Bw = B̂0 and xw = x̂0, (E1,0) and (E2,0)
are clear, with γ1,0 = γ2,0 = 0. Now, let us assume that (E

1,k ) and

(E
2,k ) are true for a given k such that 0 ≤ k < 2m.

Step 5: We �rst prove (E
2,k+1). One part of the inequality (22) is

obtained thanks to: B−1w+k − B̂
−1
k = B−1w+k (B̂k − Bw+k )B̂

−1
k .

‖sw+k − ŝk ‖ = ‖B−1w+k fw+k − B̂
−1
k

ˆf (x̂k )‖

≤ max

(
‖B−1w+k ‖ · ‖B̂

−1
k ‖ · ‖Bw+k − B̂k ‖ · ‖ fw+k ‖, (22)

‖B̂−1k ‖ · ‖ fw+k − ˆf (x̂k )‖
)

≤ ‖B̂−1k ‖max

(
‖B−1w+k ‖ · ‖Bw+k − B̂k ‖ · ‖ fw+k ‖ ,

‖ fw+k − ˆf (xw+k )‖ , ‖ ˆf (xw+k ) − ˆf (x̂k )‖
)

(23)

The �rst term on the r.h.s. of (23) is upper-bounded by (1+r )2γ 2γ
1,kh

2

using (E
1,k ) and ‖B−1w+k ‖ ≤ (1 + r )γ .

For the second term of (23), using (21):

‖ fw+k − f (x?) − f ′(x?) · (xw+k − x?)‖ ≤ c0‖xw+k − x?‖2

and ‖xw+k − x?‖ ≤ ‖xw − x?‖ = h, it is upper-bounded by c0h
2.

Finally, the last term is equal to f ′(x?)(xw+k − x̂k ) whose norm is

upper-bounded by ‖ f ′(x?)‖γ
2,kh

2
thanks to (E

2,k ). This is enough

to de�ne γ
3,k such that ‖sw+k − ŝk ‖ ≤ γ3,kh2 (‡). Consequently,

with γ
2,k+1 = max(γ

3,k ,γ2,k ), we do have ‖xw+k+1 − x̂k+1‖ ≤
γ
2,k+1h

2, and (E
2,k+1) is satis�ed.

Step 6.0: We now prove (E
1,k+1). We �rst deal with some pre-

liminary cases. If sw+k = 0, (that is xw+k+1 = xw+k ) then the

property (2) sw+k = −B−1w+k fw+k implies that fw+k = 0, and the

property Bw+k+1sw+k = yw+k implies that fw+k = fw+k+1 = 0.

Thus (E
1,k+1) is satis�ed with γ

1,k+1 = 0. If ŝk = 0, then similarly

ˆf (x̂w+k ) = ˆf (x̂w+k+1) = 0. Therefore, as we have seen before,

‖ fw+k+1‖ = ‖ fw+k+1 − ˆf (xw+k+1) + ˆf (xw+k+1) − ˆf (x̂k+1)‖,
≤ max

(
c0, ‖ f ′(x?)‖γ2,k+1

)
h2.

Then, using that ‖Bw+k+1−B̂k+1‖ ≤ max(‖Bw+k+1−f ′(x?)‖, ‖B̂k+1−
f ′(x?)‖) ≤ δ , (E

1,k+1) is satis�ed with:

γ
1,k+1 = δh

2
max

(
c0, ‖ f ′(x?)‖γ2,k+1

)
.

Step 6.1 : We can now assume that both sk and ŝk are non zero.

To prove that there is a γ
1,k+1 (independent ofw) such that (E

1,k+1)
holds, then in view of the fact that ‖ fw+k+1‖ ≤ ‖ fw+k ‖ (Lemma 4.5)

of (E
1,k ) and of the de�nition (Eq. (3)) of Bk+1 and B̂k+1, it is enough

to prove that there is some γ
4,k+1 (independent of w) such that:

‖ (yw+k − Bw+ksw+k )uw+kt−(
ŷk − B̂k ŝk

)
ûk

t ‖ · ‖ fw+k+1‖ ≤ γ4,k+1h2. (24)

Using that ‖ fw+k+1‖ ≤ ‖ fw+k ‖ (by Lemma 4.5), we obtain:

‖ fw+k+1‖ · ‖ (yw+k − Bw+ksw+k )uw+kt −
(
ŷk − B̂k ŝk

)
ûk

t ‖

≤‖ fw+k ‖max

(
‖yw+k − f ′(x?)sw+k ‖ · ‖uw+kt ‖ ,

‖(f ′(x?) − Bw+k )sw+kuw+kt − (f ′(x?) − B̂k )ŝkûkt ‖
)

≤‖ fw+k ‖max

(
‖yw+k − f ′(x?)sw+k ‖ · ‖uw+kt ‖ , (25)

‖(f ′(x?) − B̂k )(sw+kuw+kt − ŝkûkt )‖, (26)

‖(Bw+k − B̂k )sw+kuw+kt ‖
)
. (27)

Step 6.2: From fw+k = −Bw+ksw+k ,we have ‖ fw+k ‖ ≤ ‖sw+k ‖ ·
max(‖Bw+k − f ′(x?)‖, ‖ f ′(x?)‖) ≤ ‖sw+k ‖ ·max(δ , ‖ f ′(x?)‖) (•).
Otoh by (21), ‖yw+k − f ′(x?)sw+k ‖ ≤ c0‖sw+k ‖2. It follows that

the �rst term (25) can be upper-bounded in the following way:

(25) ≤ c0‖sw+k ‖3‖uw+kt ‖max(δ , ‖ f ′(x?)‖) ≤ c0h
2
max(δ , ‖ f ′(x?)‖),

the rightmost inequality being obtained from ‖uw+kt ‖ = ‖sw+k ‖−1
and ‖sw+k ‖ ≤ max(‖xw+k+1 − x?‖, ‖xw+k − x?‖) = ‖xw+k −
x?‖ ≤ ‖xw − x?‖ = h.

Step 6.3: The third one (27) can be upper-bounded using (E
1,k ):

(27) ≤ ‖ fw+k ‖‖(Bw+k − B̂k )sw+kuw+kt ‖ ≤ γ1,kh2.
Step 6.4: For the second one (26), observe that:

sw+kuw+k
t − ŝkûkt = (sw+k − ŝk )uw+kt − ŝk (uw+kt − ûkt ). (28)

The �rst term is easy to manage using the previous inequality (•) on

‖ fw+k ‖, the inequality (‡) on ‖sw+k − ŝk ‖ and ‖sw+k ‖‖uw+kt ‖ = 1:

‖ fw+k ‖ · ‖(sw+k − ŝk )uw+kt ‖ ≤ max(δ , ‖ f ′(x?)‖)γ
3,kh

2. (29)

The second one of Eq. (28) is a little bit trickier. De�ne as in (13),

uw+k = s
−1
w+k,lel and ûk = ŝ

−1
k, ˆl

e
ˆl for some given l and

ˆl .

If l = ˆl , we have: (the last inequality below follows from (‡)).

‖uw+k − ûk ‖ = |s−1w+k,l − ŝ
−1
k,l | =

|sw+k,l − ŝk,l |
|sw+k,l | · |ŝk,l |

=
|sw+k,l − ŝk,l |
‖sw+k ‖ · ‖ŝk ‖

≤ ‖sw+k − ŝk ‖‖sw+k ‖ · ‖ŝk ‖
≤

γ
3,kh

2

‖sw+k ‖ · ‖ŝk ‖
.

From this and from ‖ fw+k ‖ = ‖Bw+k ‖ · ‖sw+k ‖ we get:

‖ fw+k ‖ · ‖uw+k − ûk ‖ · ‖ŝk ‖ ≤ γ3,k max

(
δ , ‖ f ′(x?)‖

)
h2. (30)

If l , ˆl , then either ‖sw+k − ŝk ‖ = ‖sw+k ‖, if ‖ŝk ‖ ≤ ‖sw+k ‖, or

‖sw+k − ŝk ‖ = ‖ŝk ‖, if ‖sw+k ‖ ≤ ‖ŝk ‖. In the �rst case, we have

‖uw+k − ûk ‖ = ‖ŝk ‖−1,
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and then, the second term of (28) multiplied by ‖ fw+k ‖ veri�es:

‖ fw+k ‖ · ‖uw+k − ûk ‖ · ‖ŝk ‖ ≤ max

(
δ , ‖ f ′(x?)‖

)
‖sw+k ‖

≤ max

(
δ , ‖ f ′(x?)‖

)
γ
3,kh

2. (31)

The second case follows with the same computation. Eqs (31) (30) (29)

prove together the bound on the expression (26) in (28). In turn with

the bounds on the terms (25) and (27), prove (24). This concludes

the proof of (E
1,k+1), and �nally the induction.

Step 7: Consequently, ‖xw+2m − x̂2m ‖ ≤ γ2,2mh2. Thanks to

Theorem 4.2, x̂2m = x?, and thus, we have proved that for any w,

‖xw+2m − x?‖ ≤ γ2,2m ‖xw − x?‖2. �

Theorem 4.7 has for immediate consequence:

Theorem 4.8. Broyden’s method has locally R-order of conver-
gence 2

1

2m .

Proof. Let us take x0 and B0 as in the proof of the previous

theorem, and same constants and notations. For any w, ‖xw+2m −
x?‖ ≤ Γ‖xw − x?‖2.

Consequently, for 0 ≤ k < 2m, l ∈ N, and µ = 2
1/2m ,

‖x
2lm+k − x?‖µ

−2lm−k ≤ ‖xk − x?‖2
l µ−2lm−k Γ(2

l−1)µ−2lm−k

≤ ‖xk − x?‖2
l
2
−l− k

2m
Γ(2

l−1)2−l−
k
2m

≤ ‖xk − x?‖2
− k
2m

Γ(1−2
−l )2−

k
2m
.

For simplicity, we can assume that Γ ≥ 1. Thus,

‖x
2lm+k − x?‖µ

−2lm−k ≤ ‖xk − x?‖2
− k
2m

Γ2
− k
2m
.

≤ ‖x0 − x?‖2
− k
2m

Γ2
− k
2m
.

Therefore, for ‖x0 − x?‖ small enough, we get that for all k

such that 0 ≤ k < 2m, ‖x0 − x?‖2
− k
2m Γ2

− k
2m < 1, and hence,

lim sups ‖xs − x?‖µ
s
< 1. From 9.2.7 of [20], we then obtain that

Broyden’s method do have locally R-order of convergence 2

1

2m . �

5 QUESTIONS ON Q-SUPERLINEARITY
A Q-order of µ implies an R-order of µ . The converse is not true.

Over R, one of the most important result concerning Broyden’s

method is that it is Q-superlinear. The extension of this result to

the non-archimedean case remains an open question.

5.1 Dimension 1: secant method
In dimension one, Broyden’s method reduces to the secant method.

It is known since [1] that the p-adic secant method applied on

polynomials has order Φ, the golden ratio. Its generalization to a

general non-archimedean context is straightforward.

Proposition 5.1. Let us assume thatm = 1 and on a neighborhood
U of x?, there is a c0 ∈ R>0 such that f satis�es (21) onU . Then the
secant method has locally Q-order of convergence Φ.

Proof. Let us assume that we are in the same context as in the

proof of Theorem 4.7, with some Q-linear convergence of ratio

r < 1. Let us de�ne εk = xk − x? for k ∈ N. For all k ∈ N,
|εk+1 | < |εk |. Then by ultrametricity, |xk+1 − xk | = |εk |. Also,

we further assume that c0 |ε0 | < | f ′(x?)| so that for all k ∈ N,
| f ′(x?) × (xk+1 − xk )| > c0 |(xk+1 − xk )|2, which also implies by

ultrametricity and (21) that for all k ∈ N,

| f (xk+1) − f (xk )| = | f ′(x?) × (xk+1 − xk )|.

Similarly, | f (xk )| = | f ′(x?)| |εk |.
Now, let n ∈ Z>0. Broyden’s iteration is given by:

xn+1 = xn −
xn − xn−1

f (xn ) − f (xn−1)
.

It rewrites as:

|εn+1 | = |εn −
εn f (xn ) − εn−1 f (xn )

f (xn ) − f (xn−1)
| = | εn−1 f (xn ) − εn f (xn−1)

f (xn ) − f (xn−1)
|

≤ c0
max

(
|εn−1 | |εn |2 , |εn−1 |2 |εn |

)
| f (xn ) − f (xn−1)|

≤ c0
| f ′(x?)| |εn | |εn−1 |.

Let us write C = c0
|f ′(x?) | and vn = Cεn . Then, vn+1 ≤ vnvn−1 for

any n > 0 and consequently,

vn+1

vΦn
≤ v1−Φn vn−1 ≤

(
vn

vΦn−1

)
1−Φ

,

as Φ2 = Φ+1. If we de�ne (Yn )n∈Z≥1 byY1 =
v1

vΦ
0

andYn+1 = Y
1−Φ
n ,

then
vn+1
vΦ
n
≤ Yn . Since |1−Φ| < 1, thenYn converges to 1. Therefore,

it is bounded by some D ∈ R+, and
vn+1
vΦ
n
≤ D for all n ∈ Z≥1. This

concludes the proof. �

5.2 General case
Over R, Broyden’s method is known to converge Q-superlinearly.

The key point is that for any E ∈ Mm (R) and s ∈ Rm \ {0},

‖E
(
I − s · st
(st · s)

)
‖2F = ‖E‖

2

F −
(
‖Es ‖2
‖s‖2

)
2

, (32)

equation (5.5) of [10]. The minus sign is a blessing as it allows the

appearance of a telescopic sum which plays a key role in proving

that
‖xn+1−x? ‖
‖xn−x? ‖ converges to zero. Unfortunately, there does not

seem to be a non-archimedean analogue to this equality. Thanks to

Theorem 4.7, we nevertheless believe in the following conjecture.

Conjecture 5.2. In the same setting as Theorem 4.7, Broyden’s
method has locally Q-superlinear convergence.

6 FINITE PRECISION
6.1 Design and notations
One remarkable feature of Newton’s method in an ultrametric

context is the way it can handle precision. For example, if π is

a uniformizer, if we assume that ‖ f ′(x?)−1‖ = 1, xn known at

precision O(π 2n ) is enough to obtain xn+1 at precision O(π 2n+1 ).
To that intent, it thus su�ces to double the precision at each new

iteration. Hence the working precision of Newton’s method can be

taken to grow at the same rate as the rate of convergence.

The handling of precision is more subtle in Broyden. This is

however crucial to design e�cient implementations. Note that in

the real numerical setting, most works using Broyden’s methods

are employing �xed �nite precision arithmetic, and do not address
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precision. Additionally, the lack of a knowledge of a precise expo-

nent of convergence requires special care, and the presence of a

division also complicates the matter. We explain hereafter how to

cope with those issues.

For simplicity, we will make the following hypotheses through-

out this section, which correspond to the standard ones in the

Newton-Hensel method. They are that the starting x0 and B0 are

in a basin of convergence at least linear. This allows us to replace

any encountered xn by its lift x̃n to a higher precision (and same

for Bn ). Indeed, x̃n will still be in the basin of convergence and

then follows the same convergence property. These liftings allow

to mitigate the fact that some divisions are reducing the amount of

precision so that only arbitrary added digits are destroyed by the

divisions.
6

Assumption 6.1. We assume that x0 and x? are in OK , and
that ‖ f ′(x?)‖ = ‖ f ′(x?)−1‖ = ‖B0‖ = ‖B−1

0
‖ = 1. We also as-

sume that some ρ1 ≤ 1 and ρ2 ≤ 1 are given such that B(x?, ρ1) ×
B(f ′(x?), ρ2), is a basin of convergence at least linear and for any
x ∈ B(x?, ρ1), and ρ ≤ ρ1, f (x + B(0, ρ)) = f (x) + f ′(x?) · B(0, ρ)
(see the Precision Lemma 3.16 of [9])

The assumption on B0 and f ′(x?) states that they are unimodu-

lar, which is the best one can assume regarding to conditioning and

precision. Indeed if M ∈ GLm (K) is unimodular (‖M ‖ = ‖M−1‖ =
1), then for any x ∈ Km , ‖Mx ‖ = ‖x ‖. Over Qp , M ∈ Mm (Zp )
is unimodular if and only if its reduction in Mm (Z/pZ) is invert-

ible (and idem for QJT K and Q). The last assumption is there to

provide the precision on the evaluations f (xk )’s. It is satis�ed if

f ∈ OK [X1, . . . ,Xm ].
Precision and complexity settings. Let M(N ) be a superadditive

upper-bound on the arithmetic complexity over the residue �eld of

OK for the computation of the product of two elements in OK at

precision O(πN ), and L be the size of a straight-line program that

computes the system f . One can take M(N ) ∈ O ˜(N ).
Working over K with zealous arithmetic, the ultrametric coun-

terpart of interval arithmetic [9, § 2.1], the interval of integers

[[a, b[[ indicates the coe�cients of an element x ∈ K represented

in the computer as x =
∑b−1
i=a xiπ

i
, with xi ∈ OK /〈π 〉. In this way

val(x) = a, its absolute precision is abs(x) = b, and its relative preci-
sion is rel(x) = b − a. We recall the usual precision formulae, and

assume in the algorithm below that it is how the software manages

zealous arithmetic (as in Magma, SageMath, Pari). See loc. cit. for

more details.

[[a, b[[×[[c, d[[ = [[a + c, min(a + d, b + c)[[
[[a, b[[/[[c, d[[ = [[a − c, min(a + d − 2c, b − c)[[ (P)

The cost of multiplying two elements of relative precision a and

b is within M(max(a, b)), and to divide one by the other is in

4M(max(a, b)) +max(a, b) [25, Thm 9.4].

To perform changes in the precision, we use the same notation

as Magma’s function for doing so. If x has interval [[a, b[[, the

(destructive) procedure “ChangePrec(~x , c)” either truncates x to

absolute precision c if c ≤ b, or lifts with zero coe�cients 0πb +
· · · + 0πc−1 to �t the interval [[a, c[[, if c > b. The non-destructive

counterpart is denoted “ChangePrec(x , c)” without ~.

6
This an example of an adaptive method, which can also be used in Newton’s method

when divisions occur.

6.2 E�ective Broyden’s method
We start from an initial approximation x0 at precision one, for ex-

ample given by a modular method. The inverse of the Jacobian at

precision one provides B−1
0

. It yields a cost of O(mω ), but the com-

plexity analysis of Remark 6.4 shows that it is negligible. Obtaining

these data is not always obvious [12], but is the standard hypothesis

in the context of modular methods. We write vk = val(fk ),
In an ideal situation. Assume an oracle provides the valuations

v0,v1,v2, . . . ,vn , . . . (computed by a Broyden method at arbitrarily

large precision). From this ideal situation, we derive the simple and

costless modi�cations required in reality. This analysis allows us to

know how e�cient can a Broyden method be, which is noteworthy

for comparing it to Newton’s. The implementation of Iteration n
(n = 0 included) follows the lines hereunder. The rightmost inter-

val indicates the output interval precision of the object computed

(following (P)), while the middle indicates a complexity estimate.

Input: (1) B−1n has interval [[0, vn [[ and is unimodular.

(2) xn has interval [[0, vn +vn+1[[ (non-zero entries in [[0, vn−1 +vn [[).
(3) fn has interval [[vn , vn +vn+1[[.

Output: (i) B−1n+1 with interval [[0, vn+1[[, (val(det(B−1n )) = 0).

(ii) xn+1 in the interval [[0, vn+1+vn+2[[ (non-zero entries in [[0, vn+vn+1[[).
(iii) fn+1 in the interval [[0, vn+1 +vn+2[[.

(1) ChangePrec(~B−1n , vn+1) ; [[0, vn+1[[
(2) sn ← −B−1n · fn ; m2M(vn+1) [[vn , vn +vn+1[[
(3) xn+1 ← xn + sn ; [[0, vn +vn+1[[
(4) ChangePrec(~xn+1, vn+1 +vn+2) ; [[0, vn+1 +vn+2[[
(5) fn+1 ← f (xn+1) ;

. L ·M(vn+1 +vn+2) [[vn+1, vn+1 +vn+2[[
(6) fn+1 ← ChangePrec(fn+1, vn +vn+1) ; [[vn+1, vn+1+vn [[
(7) hn ← B−1n · fn+1 ; m2M(vn+1) [[vn+1, vn +vn+1[[
(8) un ← Eq.(13) ; (negligible) [[−vn , vn+1 −vn [[
(9) rn ← uTn · ChangePrec(B−1n , vn ) ; m2M(vn+1) [[−vn, 0[[

(10) ChangePrec(~fn+1, 2vn ) ; [[vn+1, 2vn [[
(11) den← 1 + rn · fn+1 ; mM(vn+1) [[0, vn [[
(12) Num← hn · rn ; m2M(vn ) [[vn+1 −vn , vn+1[[
(13) Nn ← Num/den ; 4m2M(vn ) [[vn+1 −vn , vn+1[[
(14) B−1n+1 ← B−1n − Nn ; [[0, vn+1[[
(15) return B−1n+1, xn+1, fn+1
We emphasize again that thanks to the careful changes of pre-

cision undertaken, the precisions are automatically managed by

the software, would it have zealous arithmetic implemented. It is

then immediate to check that the output veri�es the speci�cations.

Moreover from the positive valuation of Nn it is clear that Bn+1 is

unimodular. Thus Iteration n+1 can be initiated with these outputs.

Complexity of the ideal situation. The arithmetic cost of Itera-

tion n is within (3m2+m)M(vn+1)+5m2M(vn )+L ·M(vn+2+vn+1).
If we assume an exponent of convergence α > 1, i.e. vn+1 ≈ αvn
for “not too small” n, then the total cost to reach a precision N ≈
α `+1 ≈ v`+1 (` steps, including a 0-th one) is upper-bounded by

(5m2 + (3m2 +m)α2 + L(1 + α)2α2)M(N /(α − 1)) (33)

In reality. Using the same notations and inputs at Iteration n
as in the ideal situation above, what changes in reality is that

while vn is known vn+1 and vn+2 are not, but are approximated by
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αvn ≥ vn+1 and α2vn ≥ vn+2 respectively, where α is �xed by the

user. Precisely, B−1n and xn are known at the correct precision, but

fn has an approximated interval [[0, vn + αvn [[. To minimize the

overhead cost it induces compared to the ideal situation, once we

know vn+1 (Line 5) we insert some intermediate corrective steps

denoted (5.1)-(5.5) thereafter, between Line (5) and Line (6); they

require no arithmetic operations.

(5.1) ChangePrec(~B−1n , vn+1)

(5.2) ChangePrec(~sn , vn +vn+1)

(5.3) Tune α if necessary using the new ratio
vn+1
vn

(5.4) ChangePrec(~xn , vn+1 + αvn+1)

(5.5) ChangePrec(~fn+1, vn+1 + αvn+1)

Most importantly, the remaining Lines (6)-(15) are not impacted

since these computations involve now the known vn+1 (and not

the unknown vn+2): the intervals, and thus costs obtained are

the same as in the ideal situation. On the other hand, Lines (1)-

(5) are performed as such with an overhead cost. Among them,

only Lines (2), (5) have a non negligible cost. At Line (2), B−1n has

approximated interval [[0, αvn [[, yielding a cost ofm2M(αvn ). At

Line (5) xn+1 has approximated interval [[0, vn (α + α2)[[, yielding

a cost of LM(vn (α(1 + α))). Thus the overhead cost “ovhn” at

Iteration n is:

m2(M(αvn )−M(vn+1))+L(M(vnα(1+α))−M(vn+1+vn+2)) (34)

This quantity depends on the gaps αvn − vn+1 and α2vn − vn+2.

These gaps increase with n, but, thanks to the tuning of Step (5.3),
reasonably at a linear rate:

Assumption 6.2. The “error gap” |αvn −vn+1 | = O(n).
Under this assumption it is easy to (crudely) bound

∑`+1
n=0 ovhn

of Eq. (34) by (L +m2)O(N log(N )). Being independent on α this

is negligible in front of O(L +m2)M( N
α−1 ) for α < 2. The theorem

below wraps up the considerations made above with Eq. (33):

Theorem 6.3. If Broyden’s method has Q-order of convergence α
on B(x?, ρ1) ×B(f ′(x?), ρ2), then under Assumption 6.1 and 6.2, the

cost of computing x? +O(πN ) is in O
(
(m2 + L)

)
M

(
N
α−1

)
.

Remark 6.4. Understanding the Q-order of convergence is a major

and notoriously di�cult problem in the numerical analysis com-

munity. Numerical evidence shows it deteriorates with m, and is

larger than 2
1/2m

(Theorems 4.7-4.8). Some experiments suggest

that taking α ≈ 2
1/m

is not unreasonable. We then get a cost

in O
(
(m2 + L)M

(
N
α−1

))
≈ O

(
(m2 + L)M (Nm)

)
. For comparison,

denotingω < 3 the exponent of the cost of matrix product, the stan-

dard analysis of Newton’s method for rational fractions would lead

to O ((mω +mL)M (N )). Consequently, in this setting, for largem,

there is little hope that Broyden’s method can outperform New-

ton’s when both are available. Remember though other worthwile

applications in the paragraph “Motivations” in Introduction.

7 NUMERICAL DATA
An implementation of our ultrametric Broyden method in Magma

[4] with more data is available at http://xdahan.sakura.ne.jp/broyden20.

html. We report the data obtained using the three families of sys-

tems, derived from page 36 of [18]. The families are indexed by

t ∈ πOK :

• F1 =
(
(x1−1)2+(x2−1)2−4−tx1x2−t 2x1, (x1+1)2+(x2+1)2−4−tx1

)
in K [x1, x2].

• F2 =
(
(x1 − 1)2 + (x2 − 1)2 + (x3 − 1)2 − 5− t − t 2, (x1 + 1)2 + (x2 + 1)2 +

(x3 + 1)2 − 5 − t, 2x 2

1
+ x 2

2
+ x 2

3
− 3 − t 2

)
in K [x1, x2, x3].

• F3 =
(
(x1 − 1)2 + (x2 − 1)2 + (x3 − 1)2 + (x4 − 1)2 − 8 − t − t 2, (x1 +

1)2 + (x2 + 1)2 + (x3 + 1)2 + (x4 + 1)2 − 8 − t, 2 x 2

1
+ x 2

2
+ x 2

3
+ x 2

4
− 5 −

t 2, 2 x1 x2 + x3 x2 − 2 x3 x4 + 2 x4 x1 + 3 − t 2
)

in K [x1, x2, x3, x4].

Valuation of f (xk ) and numerical estimation of the order of Q-

convergence for QJT K are compiled in the following graphic. For

K = Qp , and FpJtK with p = 17 we experienced the same behaviour.
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