
> restart:

> with(OreModules):

> with(OreMorphisms);

> with(linalg):

We consider the system of differential time-delay equations defining the wind tunnel model studied in
A. Manitius, “Feedback controllers for a wind tunnel model involving a delay: analytical design and
numerical simulations”, IEEE Trans. Autom. Contr., 29 (1984), 1058-1068. The system matrix is
defined by

> A:=DefineOreAlgebra(diff=[d,t],dual_shift=[delta,s],polynom=[t,s],
> comm=[a,k,omega,xi]):

> R:=matrix(3,4,[d+a,k*a*delta,0,0,0,d,-1,0,0,omega^2,d+2*xi*omega,-omega^2]);

R :=


d + a k a δ 0 0

0 d −1 0

0 ω2 d + 2 ζ ω −ω2


where a, k, ω and ζ are real parameters of the system. We introduce the A = Q(a, k, ω, ζ)[d, δ]-module
M = A1×4/(A1×3 R). Let us compute the endomorphism ring E = endA(M) of M :

> Endo:=MorphismsConstCoeff(R,R,A,mult_table);

Endo := [[


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 ,


0 −k a δ 0 0

0 a 1 0

0 −ω2 a− 2 ζ ω ω2

0 0 0 d + a

],
[

d + a −1
]
,


[1, 1] 1 0

[1, 2] 0 1

[2, 1] 0 1

[2, 2] 0 d + a

]

Hence, the A-module structure of E is defined by two generators idM and f1 defined by f1(π(λ)) =
π(λ P1), where π : A1×4 −→ M denotes the canonical projection onto M , λ ∈ A1×4, and P1 is the second
matrix of Endo[1]. The second matrix Endo[2] of Endo corresponds to the relation between the two
generators {idM , f1} of E, i.e., we have f1 = (d + a) idM . Hence, we obtain that E is a free A-module of
rank 1 generated by idM . The matrix formed by Endo[3] but the first column is the trivial multiplication
of the generators idM and f1 of E, namely:

idM ◦ idM = idM , idM ◦ f1 = f1 ◦ idM = f1, f1 ◦ f1 = (d + a) f1.

As the A-module E is generated by idM , we obtain that an endomorphism f of M has the form f = α idM ,
with α ∈ A. Hence, the relation f2 = f implies that α2 idM = α idM , and thus, α = 0 or α = 1, i.e.,
f = 0 and f = idM are the only two idempotents of E. In particular, we deduce that the A-module M
is irreducible (see, e.g., Corollary 3.1 of T. Cluzeau, A. Quadrat, “Factoring and decomposing a class of
linear functional systems”, Linear Algebra and Its Applications, 428 (2008), 324-381).

In particular, let us check that E does not have non-trivial constant idempotents:

> Idem:=IdempotentsConstCoeff(R,Endo[1],A,0,alpha);
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Idem := [[


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 ,


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

], [Ore algebra, [“diff ′′, dual shift ],

[t, s], [d, δ], [t, s], [a, k, ω, ζ], 0, [], [], [t, s], [], [], [diff = [d, t], dual shift = [δ, s]]]]

Even if the only two idempotent endomorphisms of M are the trivial ones, namely, idM and 0, we can
search for homotopies of idM or 0 which allow us to find a block-diagonal matrix equivalent to R with a
block equals to Im. If so, then we can reduce the number of equations defining the differential time-delay
linear system kerF (R.), where F denotes an A-module (e.g., F = C∞(R)). Let us first denote by P1 = I4,
Q1 = I3 and Z1 = 0:

> P[1]:=Endo[1,1]; Q[1]:=diag(1$3); Z[1]:=Factorize(diag(0$3),R,A);

P1 :=


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 Q1 :=


1 0 0

0 1 0

0 0 1

 Z1 :=


0 0 0

0 0 0

0 0 0

0 0 0


Let us compute the constant solutions of the algebraic Riccati equation Λ R Λ + Λ = 0 (for more details,
see Section 4 of T. Cluzeau, A. Quadrat, “Factoring and decomposing a class of linear functional systems”,
Linear Algebra and Its Applications, 428 (2008), 324-381):

> Mu:=RiccatiConstCoeff(R,P[1],Q[1],Z[1],A,0,alpha);
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Mu :=

[[


0 0 0

0 0 0

0 0 0

0 0 0

 ,



−b331 (b311 ab331−2 b331 b311 ζ ω+b331 ω2b411−b311)b331
b3112 − b3312

b311

0 0 0

b311 − b311 ab331−2 b331 b311 ζ ω+b331 ω2b411−b311
b311 b331

b411 − b411 (b311 ab331−2 b331 b311 ζ ω+b331 ω2b411−b311)
b3112

b411 b331
b311


,


0 b131 ω2b421 b131

0 0 0

0 0 0

0 b421 ω−2

 ,


0 0 b131

0 0 −1+ω2b431
ω2

0 0 0

0 0 b431

 ,


0 b121 0

0 0 0

0 1 0

0 b421 0

 ,


0 − b131 b331

b231 b131

0 −b331 b231

0 − b3312

b231 b331

0 − (b3312+2 b231 b331 ζ ω+ω2b2312+b231)b331
ω2b2312

b3312+2 b231 b331 ζ ω+ω2b2312+b231
ω2b231

 ,


0 0 0

0 0 0

0 0 0

b411 b421 ω−2

 ,


0 − 1

b411 ω2 0

0 0 0

0 1 0

b411 −a−2 ζ ω
ω2 ω−2

],

[Ore algebra, [“diff ′′, dual shift ], [t, s], [d, δ], [t, s], [a, k, ω, ζ, b231 , b431 , b421 , b411 ,

b331 , b311 , b131 , b121 ], 0, [], [], [t, s], [], [], [diff = [d, t], dual shift = [δ, s]]]]

We find 8 constant solutions of the previous algebraic Riccati equation. Let us take the last one where
we set the arbitrary constant b411 to 1:

> Lambda:=subs(b411=1,Mu[1,8]);

Λ :=


0 −ω−2 0

0 0 0

0 1 0

1 −a−2 ζ ω
ω2 ω−2


We can consider the homotopy of idM defined by the pair of matrices P2 = P1 + Λ R and Q2 = Q1 + R Λ
defined by:

> P[2]:=simplify(evalm(P[1]+Mult(Lambda,R,A)));
> Q[2]:=simplify(evalm(Q[1]+Mult(R,Lambda,A)));

P2 :=


1 − d

ω2 ω−2 0

0 1 0 0

0 d 0 0

d + a −−ω2−k a δ ω2+d a−2 d ζ ω
ω2

d+a
ω2 0

 Q2 :=


1 −d+a

ω2 0

0 0 0

−ω2 d + a 0


We can now check that we have R P2 = Q2 R, P 2

2 = P2 and Q2
2 = Q2:
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> VERIF1:=simplify(evalm(Mult(R,P[2],A)-Mult(Q[2],R,A)));
> VERIF2:=simplify(evalm(Mult(P[2],P[2],A)-P[2]));
> VERIF3:=simplify(evalm(Mult(Q[2],Q[2],A)-Q[2]));

VERIF1 :=


0 0 0 0

0 0 0 0

0 0 0 0

 VERIF2 :=


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 VERIF3 :=


0 0 0

0 0 0

0 0 0


In particular, the endomorphism e ∈ E defined by e(π(λ)) = π(λ P1), where λ ∈ A1×4, satisfies e2 =
e, i.e., defines an idempotent of E. As e was obtained from idM by means of a homotopy, we have
e = idM . However, as we have P 2

2 = P2 and Q2
2 = Q2, we know that the A-modules kerA(.P2),

imA(.P2) = kerA(.(I4 − P2)), kerA(.Q2) and imA(.Q2) = kerA(.(I3 − Q2)) are projective, and thus, free
by the Quillen-Suslin theorem. Let us compute bases of those free A-modules:

> U1:=SyzygyModule(P[2],A): U2:=SyzygyModule(evalm(1-P[2]),A):
> U:=stackmatrix(U1,U2);
> V1:=SyzygyModule(Q[2],A); V2:=SyzygyModule(evalm(1-Q[2]),A):
> V:=stackmatrix(V1,V2);

U :=


d ω2 + ω2 a ω2 + k a δ ω2 d + 2 ζ ω −ω2

0 d −1 0

ω2 0 1 0

0 1 0 0

 V :=


ω2 0 1

0 1 0

−ω2 d + a 0


The matrices U ∈ GL4(A) and V ∈ GL3(A) are such that U P2 U−1 and V Q2 V −1 are two block-diagonal
matrices formed by the diagonal matrices 0n and Im:

> VERIF1:=Mult(U,P[2],LeftInverse(U,A),A);
> VERIF2:=Mult(V,Q[2],LeftInverse(V,A),A);

VERIF1 :=


0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1

 VERIF2 :=


0 0 0

0 0 0

0 0 1


Hence, the matrix R is equivalent to the block-diagonal matrix S = V R U−1 defined by:

> S:=Mult(V,R,LeftInverse(U,A),A);

S :=


1 0 0 0

0 1 0 0

0 0 −d− a d2 − k a δ ω2 + d a


Hence, we have M ∼= A1×2/(A (−(d + a) d2 + a d− k aω2 δ)). This result can be obtained by means of
the command HeuristicDecomposition:

> HeuristicDecomposition(R,P[1],A)[1];
1 0 0 0

0 1 0 0

0 0 −d− a d2 − k a δ ω2 + d a


We note that we can simplify again the last row of S by means of elementary column operations:

> X:=diag(diag(1$2),evalm([[-1,d],[0,1]]));
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X :=


1 0 0 0

0 1 0 0

0 0 −1 d

0 0 0 1


The new matrix S X has then the simple form:

> Mult(S,X,A); 
1 0 0 0

0 1 0 0

0 0 d + a −k a δ ω2


Hence, if we denote by Y = X−1 U ∈ GL4(A)

> Y:=Mult(LeftInverse(X,A),U,A);

Y :=


d ω2 + ω2 a ω2 + k a δ ω2 d + 2 ζ ω −ω2

0 d −1 0

−ω2 d −1 0

0 1 0 0


then we obtain that R is equivalent to the block-diagonal matrix T = V R Y −1 defined by:

> T:=Mult(V,R,LeftInverse(Y,A),A);

T :=


1 0 0 0

0 1 0 0

0 0 d + a −k a δ ω2


If F denotes an A-module (e.g., F = C∞(R)), then the linear differential time-delay system kerF (R.) is
equivalent to the linear system kerF (S.) defined by the sole first order equation:

ẏ(t) + a y(t)− k aω2 v(t− h) = 0.
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