```
> restart:
> with(OreModules):
> with(OreMorphisms);
> with(linalg):
```

We consider the system of differential time-delay equations defining the wind tunnel model studied in A. Manitius, "Feedback controllers for a wind tunnel model involving a delay: analytical design and numerical simulations", IEEE Trans. Autom. Contr., 29 (1984), 1058-1068. The system matrix is defined by

```
> A:=DefineOreAlgebra(diff=[d,t],dual_shift=[delta,s],polynom=[t,s],
> comm=[a,k,omega,xi]):
> R:=matrix(3,4,[d+a,k*a*delta,0,0,0,d,-1,0,0,omega^2,d+2*xi*omega,-omega^2]);
```


where a, k, ω and ζ are real parameters of the system. We introduce the $A=\mathbb{Q}(a, k, \omega, \zeta)[d, \delta]$-module $M=A^{1 \times 4} /\left(A^{1 \times 3} R\right)$. Let us compute the endomorphism ring $E=\operatorname{end}_{A}(M)$ of M :

$$
\begin{aligned}
&>\text { Endo }:=\text { MorphismsConstCoeff (R,R,A,mult_table) } \\
& \text { Endo }:=\left[\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right.,\left[\begin{array}{ccc}
0 & -k a \delta & 0 \\
0 & a & 1 \\
0 & -\omega^{2} & a-2 \zeta \omega \\
0 & 0 & 0
\end{array}\right] \\
& {\left.\left[\begin{array}{ccc}
{[1,1]} & 1 & 0 \\
{[1,2]} & 0 & 1 \\
{[2,1]} & 0 & 1 \\
{[2,2]} & 0 & d+a
\end{array}\right]\right] }
\end{aligned}
$$

Hence, the A-module structure of E is defined by two generators id_{M} and f_{1} defined by $f_{1}(\pi(\lambda))=$ $\pi\left(\lambda P_{1}\right)$, where $\pi: A^{1 \times 4} \longrightarrow M$ denotes the canonical projection onto $M, \lambda \in A^{1 \times 4}$, and P_{1} is the second matrix of Endo[1]. The second matrix Endo[2] of Endo corresponds to the relation between the two generators $\left\{\operatorname{id}_{M}, f_{1}\right\}$ of E, i.e., we have $f_{1}=(d+a) \operatorname{id}_{M}$. Hence, we obtain that E is a free A-module of rank 1 generated by id_{M}. The matrix formed by Endo[3] but the first column is the trivial multiplication of the generators id_{M} and f_{1} of E, namely:

$$
\operatorname{id}_{M} \circ \operatorname{id}_{M}=\operatorname{id}_{M}, \quad \operatorname{id}_{M} \circ f_{1}=f_{1} \circ \operatorname{id}_{M}=f_{1}, \quad f_{1} \circ f_{1}=(d+a) f_{1}
$$

As the A-module E is generated by id_{M}, we obtain that an endomorphism f of M has the form $f=\alpha \operatorname{id}_{M}$, with $\alpha \in A$. Hence, the relation $f^{2}=f$ implies that $\alpha^{2} \operatorname{id}_{M}=\alpha \operatorname{id}_{M}$, and thus, $\alpha=0$ or $\alpha=1$, i.e., $f=0$ and $f=\operatorname{id}_{M}$ are the only two idempotents of E. In particular, we deduce that the A-module M is irreducible (see, e.g., Corollary 3.1 of T. Cluzeau, A. Quadrat, "Factoring and decomposing a class of linear functional systems", Linear Algebra and Its Applications, 428 (2008), 324-381).

In particular, let us check that E does not have non-trivial constant idempotents:

```
> Idem:=IdempotentsConstCoeff(R,Endo[1],A,0,alpha);
```

$$
\begin{aligned}
& \text { Idem }:=\left[\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right],\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]\right],[\text { Ore_algebra, ["diff", dual_shift }], \\
& [t, s],[d, \delta],[t, s],[a, k, \omega, \zeta], 0,[],[],[t, s],[],[],[\text { diff }=[d, t], \text { dual_shift }=[\delta, s]]]]
\end{aligned}
$$

Even if the only two idempotent endomorphisms of M are the trivial ones, namely, id_{M} and 0 , we can search for homotopies of id_{M} or 0 which allow us to find a block-diagonal matrix equivalent to R with a block equals to I_{m}. If so, then we can reduce the number of equations defining the differential time-delay linear system $\operatorname{ker}_{\mathcal{F}}(R$.$) , where \mathcal{F}$ denotes an A-module (e.g., $\mathcal{F}=C^{\infty}(\mathbb{R})$). Let us first denote by $P_{1}=I_{4}$, $Q_{1}=I_{3}$ and $Z_{1}=0$:

$$
\begin{aligned}
& >P[1]:=\operatorname{Endo}[1,1] ; Q[1]:=\operatorname{diag}(1 \$ 3) ; \mathrm{Z}[1]:=\operatorname{Factorize}(\operatorname{diag}(0 \$ 3), \mathrm{R}, \mathrm{~A}) ; \\
& P_{1}:=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad Q_{1}:=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad Z_{1}:=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Let us compute the constant solutions of the algebraic Riccati equation $\Lambda R \Lambda+\Lambda=0$ (for more details, see Section 4 of T. Cluzeau, A. Quadrat, "Factoring and decomposing a class of linear functional systems", Linear Algebra and Its Applications, 428 (2008), 324-381):

```
> Mu:=RiccatiConstCoeff(R,P[1],Q[1],Z[1],A,0,alpha);
```

$$
\begin{aligned}
& M u:= \\
& {\left[\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{ccc}
-b 331 & \frac{\left(b 311 a b 331-2 b 331 b 311 \zeta \omega+b 331 \omega^{2} b 411-b 311\right) b 331}{b 311^{2}} & -\frac{b 331^{2}}{b 311} \\
0 & 0 & 0 \\
b 311 & -\frac{b 311 a b 331-2 b 331 b 311 \zeta \omega+b 331 \omega^{2} b 411-b 311}{b 311} & b 331 \\
b 411 & -\frac{b 411\left(b 311 a b 331-2 b 331 b 311 \zeta \omega+b 331 \omega^{2} b 411-b 311\right)}{b 311^{2}} & \frac{b 411 b 331}{b 311}
\end{array}\right],\right.} \\
& {\left[\begin{array}{ccc}
0 & b 131 \omega^{2} b 421 & b 131 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & b 421 & \omega^{-2}
\end{array}\right],\left[\begin{array}{ccc}
0 & 0 & b 131 \\
0 & 0 & \frac{-1+\omega^{2} b 431}{\omega^{2}} \\
0 & 0 & 0 \\
0 & 0 & b 431
\end{array}\right],\left[\begin{array}{ccc}
0 & b 121 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & b 421 & 0
\end{array}\right],} \\
& {\left[\begin{array}{ccc}
0 & -\frac{b 131 b 331}{b 231} & b 131 \\
0 & -b 331 & b 231 \\
0 & -\frac{b 331^{2}}{b 231} & b 331 \\
0 & -\frac{\left(b 331^{2}+2 b 231 b 331 \zeta \omega+\omega^{2} b 231^{2}+b 231\right) b 331}{\omega^{2} b 231^{2}} & \frac{b 331^{2}+2 b 231 b 331 \zeta \omega+\omega^{2} b 231^{2}+b 231}{\omega^{2} b 231}
\end{array}\right],} \\
& \left.\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
b 411 & b 421 & \omega^{-2}
\end{array}\right],\left[\begin{array}{ccc}
0 & -\frac{1}{b 411 \omega^{2}} & 0 \\
0 & 0 & 0 \\
0 & 1 & 0 \\
b 411 & -\frac{a-2 \zeta \omega}{\omega^{2}} & \omega^{-2}
\end{array}\right]\right],
\end{aligned}
$$

[Ore_algebra, ["diff", dual_shift], $[t, s],[d, \delta],[t, s],[a, k, \omega, \zeta, b 231, b 431, b 421, b 411$, b331, b311, b131, b121], 0, [], [], [t, s], [], [], [diff $=[d, t]$, dual_shift $=[\delta, s]]]]$
We find 8 constant solutions of the previous algebraic Riccati equation. Let us take the last one where we set the arbitrary constant $b 411$ to 1 :
$>$ Lambda: $=$ subs $(\mathrm{b} 411=1, \mathrm{Mu}[1,8])$;

$$
\Lambda:=\left[\begin{array}{ccc}
0 & -\omega^{-2} & 0 \\
0 & 0 & 0 \\
0 & 1 & 0 \\
1 & -\frac{a-2 \zeta \omega}{\omega^{2}} & \omega^{-2}
\end{array}\right]
$$

We can consider the homotopy of id_{M} defined by the pair of matrices $P_{2}=P_{1}+\Lambda R$ and $Q_{2}=Q_{1}+R \Lambda$ defined by:

$$
\begin{aligned}
& \text { > P[2]:=simplify(evalm(P[1]+Mult(Lambda, R,A))); } \\
& >Q[2]:=\operatorname{simplify}(\operatorname{evalm}(Q[1]+M u l t(R, L a m b d a, A))) \text {; } \\
& P_{2}:=\left[\begin{array}{cccc}
1 & -\frac{d}{\omega^{2}} & \omega^{-2} & 0 \\
0 & 1 & 0 & 0 \\
0 & d & 0 & 0 \\
d+a & -\frac{-\omega^{2}-k a \delta \omega^{2}+d a-2 d \zeta \omega}{\omega^{2}} & \frac{d+a}{\omega^{2}} & 0
\end{array}\right] \quad Q_{2}:=\left[\begin{array}{ccc}
1 & -\frac{d+a}{\omega^{2}} & 0 \\
0 & 0 & 0 \\
-\omega^{2} & d+a & 0
\end{array}\right]
\end{aligned}
$$

We can now check that we have $R P_{2}=Q_{2} R, P_{2}^{2}=P_{2}$ and $Q_{2}^{2}=Q_{2}$:

```
> VERIF1:=simplify(evalm(Mult(R,P[2],A)-Mult(Q[2],R,A)));
> VERIF2:=simplify(evalm(Mult(P[2],P[2],A)-P[2]));
> VERIF3:=simplify(evalm(Mult(Q[2],Q[2],A)-Q[2]));
```

$$
\text { VERIF1 }:=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \quad \text { VERIF2 }:=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \quad \text { VERIF3 }:=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

In particular, the endomorphism $e \in E$ defined by $e(\pi(\lambda))=\pi\left(\lambda P_{1}\right)$, where $\lambda \in A^{1 \times 4}$, satisfies $e^{2}=$ e, i.e., defines an idempotent of E. As e was obtained from id_{M} by means of a homotopy, we have $e=\operatorname{id}_{M}$. However, as we have $P_{2}^{2}=P_{2}$ and $Q_{2}^{2}=Q_{2}$, we know that the A-modules $\operatorname{ker}_{A}\left(. P_{2}\right)$, $\operatorname{im}_{A}\left(. P_{2}\right)=\operatorname{ker}_{A}\left(.\left(I_{4}-P_{2}\right)\right), \operatorname{ker}_{A}\left(. Q_{2}\right)$ and $\operatorname{im}_{A}\left(. Q_{2}\right)=\operatorname{ker}_{A}\left(.\left(I_{3}-Q_{2}\right)\right)$ are projective, and thus, free by the Quillen-Suslin theorem. Let us compute bases of those free A-modules:

```
> U1:=SyzygyModule(P[2],A): U2:=SyzygyModule(evalm(1-P [2]),A):
> U:=stackmatrix(U1,U2);
> V1:=SyzygyModule(Q[2],A); V2:=SyzygyModule(evalm(1-Q[2]),A):
> V:=stackmatrix(V1,V2);
\[
U:=\left[\begin{array}{cccc}
d \omega^{2}+\omega^{2} a & \omega^{2}+k a \delta \omega^{2} & d+2 \zeta \omega & -\omega^{2} \\
0 & d & -1 & 0 \\
\omega^{2} & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right] \quad V:=\left[\begin{array}{ccc}
\omega^{2} & 0 & 1 \\
0 & 1 & 0 \\
-\omega^{2} & d+a & 0
\end{array}\right]
\]
```

The matrices $U \in \mathrm{GL}_{4}(A)$ and $V \in \mathrm{GL}_{3}(A)$ are such that $U P_{2} U^{-1}$ and $V Q_{2} V^{-1}$ are two block-diagonal matrices formed by the diagonal matrices 0_{n} and I_{m} :

```
> VERIF1:=Mult(U,P[2],LeftInverse(U,A),A);
> VERIF2:=Mult(V,Q[2],LeftInverse(V,A),A);
```

$$
\text { VERIF1 }:=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \text { VERIF2 }:=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Hence, the matrix R is equivalent to the block-diagonal matrix $S=V R U^{-1}$ defined by:
> S:=Mult(V,R,LeftInverse(U,A),A);

$$
S:=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -d-a & d^{2}-k a \delta \omega^{2}+d a
\end{array}\right]
$$

Hence, we have $M \cong A^{1 \times 2} /\left(A\left(-(d+a) \quad d^{2}+a d-k a \omega^{2} \delta\right)\right)$. This result can be obtained by means of the command HeuristicDecomposition:
> HeuristicDecomposition(R,P[1],A)[1];

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -d-a & d^{2}-k a \delta \omega^{2}+d a
\end{array}\right]
$$

We note that we can simplify again the last row of S by means of elementary column operations:

```
> X:=diag(diag(1$2),evalm([[-1,d],[0,1]]));
```

$$
X:=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & d \\
0 & 0 & 0 & 1
\end{array}\right]
$$

The new matrix $S X$ has then the simple form:
> Mult(S,X,A);

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & d+a & -k a \delta \omega^{2}
\end{array}\right]
$$

Hence, if we denote by $Y=X^{-1} U \in \operatorname{GL}_{4}(A)$
> Y:=Mult(LeftInverse (X,A), U, A);

$$
Y:=\left[\begin{array}{cccc}
d \omega^{2}+\omega^{2} a & \omega^{2}+k a \delta \omega^{2} & d+2 \zeta \omega & -\omega^{2} \\
0 & d & -1 & 0 \\
-\omega^{2} & d & -1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]
$$

then we obtain that R is equivalent to the block-diagonal matrix $T=V R Y^{-1}$ defined by:
> $\mathrm{T}:=\mathrm{Mult}(\mathrm{V}, \mathrm{R}, \operatorname{LeftInverse}(\mathrm{Y}, \mathrm{A}), \mathrm{A})$;

$$
T:=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & d+a & -k a \delta \omega^{2}
\end{array}\right]
$$

If \mathcal{F} denotes an A-module (e.g., $\mathcal{F}=C^{\infty}(\mathbb{R})$), then the linear differential time-delay system $\operatorname{ker}_{\mathcal{F}}(R$.) is equivalent to the linear system $\operatorname{ker}_{\mathcal{F}}(S$.) defined by the sole first order equation:

$$
\dot{y}(t)+a y(t)-k a \omega^{2} v(t-h)=0 .
$$

