- > restart:
- > with(OreModules):
- > with(OreMorphisms);
- > with(linalg):

We consider the system of differential time-delay equations defining the wind tunnel model studied in A. Manitius, "Feedback controllers for a wind tunnel model involving a delay: analytical design and numerical simulations", *IEEE Trans. Autom. Contr.*, 29 (1984), 1058-1068. The system matrix is defined by

- > A:=DefineOreAlgebra(diff=[d,t],dual_shift=[delta,s],polynom=[t,s], > comm=[a,k,omega,xi]):
- > comm=[a,k,omega,xi])
- > R:=matrix(3,4,[d+a,k*a*delta,0,0,0,d,-1,0,0,omega²,d+2*xi*omega,-omega²]);

 $R := \left[\begin{array}{cccc} d + a & k \, a \, \delta & 0 & 0 \\ 0 & d & -1 & 0 \\ 0 & \omega^2 & d + 2 \, \zeta \, \omega & -\omega^2 \end{array} \right]$

where a, k, ω and ζ are real parameters of the system. We introduce the $A = \mathbb{Q}(a, k, \omega, \zeta)[d, \delta]$ -module $M = A^{1 \times 4}/(A^{1 \times 3} R)$. Let us compute the endomorphism ring $E = \text{end}_A(M)$ of M:

> Endo:=MorphismsConstCoeff(R,R,A,mult_table);

$$Endo := \left[\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & -k a \delta & 0 & 0 \\ 0 & a & 1 & 0 \\ 0 & -\omega^2 & a - 2 \zeta \omega & \omega^2 \\ 0 & 0 & 0 & d + a \end{bmatrix} \right], \begin{bmatrix} d + a & -1 \end{bmatrix}, \\ \begin{bmatrix} 1, 1 \end{bmatrix}, \begin{bmatrix} 1, 2 \end{bmatrix}, \begin{bmatrix} 1, 1 \end{bmatrix}, \begin{bmatrix} 1, 2 \end{bmatrix}, \begin{bmatrix} 2, 2$$

Hence, the A-module structure of E is defined by two generators id_M and f_1 defined by $f_1(\pi(\lambda)) = \pi(\lambda P_1)$, where $\pi : A^{1\times 4} \longrightarrow M$ denotes the canonical projection onto M, $\lambda \in A^{1\times 4}$, and P_1 is the second matrix of Endo[1]. The second matrix Endo[2] of Endo corresponds to the relation between the two generators $\{\operatorname{id}_M, f_1\}$ of E, i.e., we have $f_1 = (d+a)\operatorname{id}_M$. Hence, we obtain that E is a free A-module of rank 1 generated by id_M . The matrix formed by Endo[3] but the first column is the trivial multiplication of the generators id_M and f_1 of E, namely:

$$\operatorname{id}_M \circ \operatorname{id}_M = \operatorname{id}_M, \quad \operatorname{id}_M \circ f_1 = f_1 \circ \operatorname{id}_M = f_1, \quad f_1 \circ f_1 = (d+a) f_1.$$

As the A-module E is generated by id_M , we obtain that an endomorphism f of M has the form $f = \alpha \mathrm{id}_M$, with $\alpha \in A$. Hence, the relation $f^2 = f$ implies that $\alpha^2 \mathrm{id}_M = \alpha \mathrm{id}_M$, and thus, $\alpha = 0$ or $\alpha = 1$, i.e., f = 0 and $f = \mathrm{id}_M$ are the only two idempotents of E. In particular, we deduce that the A-module M is irreducible (see, e.g., Corollary 3.1 of T. Cluzeau, A. Quadrat, "Factoring and decomposing a class of linear functional systems", *Linear Algebra and Its Applications*, 428 (2008), 324-381).

In particular, let us check that E does not have non-trivial constant idempotents:

> Idem:=IdempotentsConstCoeff(R,Endo[1],A,0,alpha);

Even if the only two idempotent endomorphisms of M are the trivial ones, namely, id_M and 0, we can search for homotopies of id_M or 0 which allow us to find a block-diagonal matrix equivalent to R with a block equals to I_m . If so, then we can reduce the number of equations defining the differential time-delay linear system $\ker_{\mathcal{F}}(R)$, where \mathcal{F} denotes an A-module (e.g., $\mathcal{F} = C^{\infty}(\mathbb{R})$). Let us first denote by $P_1 = I_4$, $Q_1 = I_3$ and $Z_1 = 0$:

```
> P[1]:=Endo[1,1]; Q[1]:=diag(1$3); Z[1]:=Factorize(diag(0$3),R,A);
```

$P_1 :=$	1	0	0	0	$Q_1 :=$	Гı	0	0 7		0	0	0]	
	0	1	0	0		$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	7	0	0	0			
	0	0	1	0			$z_1 :=$	0	0	0			
	0	0	0	1			0	Ţ]	0	0	0	

Let us compute the constant solutions of the algebraic Riccati equation $\Lambda R \Lambda + \Lambda = 0$ (for more details, see Section 4 of T. Cluzeau, A. Quadrat, "Factoring and decomposing a class of linear functional systems", *Linear Algebra and Its Applications*, 428 (2008), 324-381):

> Mu:=RiccatiConstCoeff(R,P[1],Q[1],Z[1],A,0,alpha);

 $[\mathit{Ore_algebra}, [``diff'', \mathit{dual_shift}], [t, s], [d, \delta], [t, s], [a, k, \omega, \zeta, b231, b431, b421, b411, b421, b421, b411, b421, b421, b421, b411, b421, b$

 $b331, b311, b131, b121], 0, [], [], [t, s], [], [], [diff = [d, t], dual_shift = [\delta, s]]]]$

We find 8 constant solutions of the previous algebraic Riccati equation. Let us take the last one where we set the arbitrary constant b411 to 1:

> Lambda:=subs(b411=1,Mu[1,8]);

$$\Lambda := \begin{bmatrix} 0 & -\omega^{-2} & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & -\frac{a-2\,\zeta\,\omega}{\omega^2} & \omega^{-2} \end{bmatrix}$$

We can consider the homotopy of id_M defined by the pair of matrices $P_2 = P_1 + \Lambda R$ and $Q_2 = Q_1 + R \Lambda$ defined by:

$$P[2]:=simplify(evalm(P[1]+Mult(Lambda,R,A)));
P[2]:=simplify(evalm(Q[1]+Mult(R,Lambda,A)));
P_2:=\begin{bmatrix} 1 & -\frac{d}{\omega^2} & \omega^{-2} & 0\\ 0 & 1 & 0 & 0\\ 0 & d & 0 & 0\\ d+a & -\frac{-\omega^2-ka\delta\omega^2+da-2d\zeta\omega}{\omega^2} & \frac{d+a}{\omega^2} & 0 \end{bmatrix} \quad Q_2:=\begin{bmatrix} 1 & -\frac{d+a}{\omega^2} & 0\\ 0 & 0 & 0\\ -\omega^2 & d+a & 0 \end{bmatrix}$$

We can now check that we have $R P_2 = Q_2 R$, $P_2^2 = P_2$ and $Q_2^2 = Q_2$:

> VERIF1:=simplify(evalm(Mult(R,P[2],A)-Mult(Q[2],R,A)));

VERIF2:=simplify(evalm(Mult(P[2],P[2],A)-P[2])); VERIF3:=simplify(evalm(Mult(Q[2],Q[2],A)-Q[2])); >

```
>
```

In particular, the endomorphism $e \in E$ defined by $e(\pi(\lambda)) = \pi(\lambda P_1)$, where $\lambda \in A^{1 \times 4}$, satisfies $e^2 =$ *e*, i.e., defines an idempotent of *E*. As *e* was obtained from id_M by means of a homotopy, we have $e = \mathrm{id}_M$. However, as we have $P_2^2 = P_2$ and $Q_2^2 = Q_2$, we know that the *A*-modules ker_A(.*P*₂), $\mathrm{im}_A(.P_2) = \mathrm{ker}_A(.(I_4 - P_2)), \mathrm{ker}_A(.Q_2)$ and $\mathrm{im}_A(.Q_2) = \mathrm{ker}_A(.(I_3 - Q_2))$ are projective, and thus, free by the Quillen-Suslin theorem. Let us compute bases of those free A-modules:

- > U1:=SyzygyModule(P[2],A): U2:=SyzygyModule(evalm(1-P[2]),A):
- > U:=stackmatrix(U1,U2);
- V1:=SyzygyModule(Q[2],A); V2:=SyzygyModule(evalm(1-Q[2]),A): >
- > V:=stackmatrix(V1,V2);

$$U := \begin{bmatrix} d\omega^2 + \omega^2 a & \omega^2 + k a \delta \omega^2 & d + 2\zeta \omega & -\omega^2 \\ 0 & d & -1 & 0 \\ \omega^2 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \quad V := \begin{bmatrix} \omega^2 & 0 & 1 \\ 0 & 1 & 0 \\ -\omega^2 & d + a & 0 \end{bmatrix}$$

The matrices $U \in GL_4(A)$ and $V \in GL_3(A)$ are such that $UP_2 U^{-1}$ and $VQ_2 V^{-1}$ are two block-diagonal matrices formed by the diagonal matrices 0_n and I_m :

- > VERIF1:=Mult(U,P[2],LeftInverse(U,A),A);
- > VERIF2:=Mult(V,Q[2],LeftInverse(V,A),A);

Hence, the matrix R is equivalent to the block-diagonal matrix $S = V R U^{-1}$ defined by:

> S:=Mult(V,R,LeftInverse(U,A),A);

$$S := \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -d - a & d^2 - k \, a \, \delta \, \omega^2 + d \, a \end{bmatrix}$$

Hence, we have $M \cong A^{1\times 2}/(A(-(d+a) d^2 + a d - k a \omega^2 \delta))$. This result can be obtained by means of the command *HeuristicDecomposition*:

> HeuristicDecomposition(R,P[1],A)[1];

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -d - a & d^2 - k \, a \, \delta \, \omega^2 + d \, a \end{bmatrix}$$

We note that we can simplify again the last row of S by means of elementary column operations:

> X:=diag(diag(1\$2),evalm([[-1,d],[0,1]]));

$$X := \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & d \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

The new matrix S X has then the simple form:

> Mult(S,X,A);

Hence, if we denote by $Y = X^{-1} U \in \operatorname{GL}_4(A)$

> Y:=Mult(LeftInverse(X,A),U,A);

$$Y := \begin{bmatrix} d\,\omega^2 + \omega^2 \,a & \omega^2 + k\,a\,\delta\,\omega^2 & d + 2\,\zeta\,\omega & -\omega^2 \\ 0 & d & -1 & 0 \\ -\omega^2 & d & -1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

then we obtain that R is equivalent to the block-diagonal matrix $T = V R Y^{-1}$ defined by:

> T:=Mult(V,R,LeftInverse(Y,A),A);

$$T := \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & d + a & -k \, a \, \delta \, \omega^2 \end{bmatrix}$$

If \mathcal{F} denotes an A-module (e.g., $\mathcal{F} = C^{\infty}(\mathbb{R})$), then the linear differential time-delay system ker $_{\mathcal{F}}(R)$ is equivalent to the linear system ker $_{\mathcal{F}}(S)$ defined by the sole first order equation:

$$\dot{y}(t) + a y(t) - k a \omega^2 v(t-h) = 0.$$