```
> restart:
> with(OreModules):
> with(OreMorphisms);
> with(linalg):
```

Let us consider another model of a tank containing a fluid and subjected to a one-dimensional horizontal move studied in N. Petit, P. Rouchon, "Dynamics and solutions to some control problems for water-tank systems", IEEE Trans. Automatic Control, 47 (2002), 595-609. The system matrix is defined by:

```
> A:=DefineOreAlgebra(diff=[d,t],dual_shift=[delta,s],polynom=[t,s],
> comm=[alpha]):
> R:=matrix(2,3,[d,-d*delta^2,alpha*d^2*delta,d*delta^2,-d,alpha*d^2*delta]);
    R:=[\begin{array}{ccc}{d}&{-d\mp@subsup{\delta}{}{2}}&{\alpha\mp@subsup{d}{}{2}\delta}\\{d\mp@subsup{\delta}{}{2}}&{-d}&{\alpha\mp@subsup{d}{}{2}\delta}\end{array}]
```

Let us consider the $A=\mathbb{Q}(\alpha)[d, \delta]$-module $M=A^{1 \times 3} /\left(A^{1 \times 2} R\right)$ finitely presented by the matrix R and let us compute the A-module structure of the endomorphism ring $E=\operatorname{end}_{A}(M)$ of M :

```
> Endo:=MorphismsConstCoeff(R,R,A):
```

The A-module E is finitely generated by the endomorphisms f_{i} 's defined by $f_{i}(\pi(\lambda))=\pi\left(\lambda P_{i}\right)$, where $\pi: A^{1 \times 3} \longrightarrow M$ denotes the projection onto $M, \lambda \in A^{1 \times 3}$ and P_{i} is one of the following matrices:
> Endo[1];

$$
\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & -1
\end{array}\right],\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
\delta^{2} & -1 & \alpha d \delta
\end{array}\right],\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right],\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
1-\delta^{2} & 1-\delta^{2} & 0
\end{array}\right]
$$

$$
\left.\left[\begin{array}{ccc}
0 & 0 & 0 \\
-1+\delta^{2} & -1+\delta^{2} & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{ccc}
0 & 0 & 0 \\
\alpha d & \alpha d & 0 \\
\delta & \delta & 0
\end{array}\right],\left[\begin{array}{ccc}
0 & 0 & \alpha d \delta \\
1 & -\delta^{2} & 0 \\
0 & 0 & -\delta^{2}-1
\end{array}\right],\left[\begin{array}{ccc}
0 & 0 & 0 \\
1 & -\delta^{2} & \alpha d \delta \\
0 & 0 & 0
\end{array}\right]\right]
$$

The generators f_{i} 's of E satisfy the following A-linear relations
> Endo[2];

$$
\left[\begin{array}{cccccccc}
-d & 0 & d \delta^{2} & 0 & 0 & 0 & d & 0 \\
d \delta^{2} & 0 & -d & 0 & 0 & 0 & -d & 0 \\
0 & d & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & d & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \delta & 0 & -1+\delta^{2} & 0 & 0 \\
0 & 0 & 0 & 0 & d & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & d
\end{array}\right]
$$

i.e., if we denote by $F=\left(f_{1} \ldots f_{8}\right)^{T}$, we then have Endo[2] $F=0$.

The multiplication table Endo[3] of the generators f_{i} 's gives us a way to rewrite the composition $f_{i} \circ f_{j}$ in terms of A-linear combinations of the f_{k} 's or, in other words, if we denote by \otimes the Kronecker product, namely, $F \otimes F=\left(\left(f_{1} \circ F\right)^{T} \ldots\left(f_{8} \circ F\right)^{T}\right)^{T}$, then the multiplication table T of the generators f_{j} 's satisfies $F \otimes F=T F$, where T is the matrix Endo[3] without the first column which corresponds to the indices (i, j) of the product $f_{i} \circ f_{j}$. We do not print here this matrix as it belongs to $A^{64 \times 8}$. We can use it for rewriting any polynomial in the f_{i} 's with coefficients in A in terms of a A-linear combination of the generators f_{j} 's.

Let us now try to compute idempotents of E defined by idempotent matrices, namely, elements $e \in E$ satisfying $e^{2}=e$ and defined by matrices $P \in A^{3 \times 3}$ and $Q \in A^{2 \times 2}$ satisfying the relations $R P=Q R$, $P^{2}=P$ and $Q^{2}=Q$:

```
> Idem:=IdempotentsMatConstCoeff(R,Endo[1],A,0);
```

$$
\begin{aligned}
& \text { Idem }:=\left[\left[\begin{array}{ccc}
1 / 2 & 1 / 2 & 0 \\
1 / 2 & 1 / 2 & 0 \\
-c 51 & \left(-1+\delta^{2}\right) & -c 51\left(-1+\delta^{2}\right) \\
0
\end{array}\right],\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right],\right. \\
& \left.\left[\begin{array}{ccc}
0 & 0 & 0 \\
-\delta^{2} & 1 & -\alpha \delta d \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{ccc}
1 & 0 & 0 \\
\delta^{2} & 0 & \alpha \delta d \\
0 & 0 & 1
\end{array}\right],\left[\begin{array}{ccc}
1 / 2 & -1 / 2 & 0 \\
-1 / 2 & 1 / 2 & 0 \\
-c 51 & \left(-1+\delta^{2}\right) & -c 51\left(-1+\delta^{2}\right) \\
1
\end{array}\right]\right],
\end{aligned}
$$

$[$ Ore_algebra, $[" d i f f "$, dual_shift $],[t, s],[d, \delta],[t, s],[\alpha, c 51], 0,[],[],[t, s],[],[],[$ diff $=[d, t]$,

$$
\text { dual_shift }=[\delta, s]]]]
$$

Let us consider the first entry P_{1} of $\operatorname{Idem}[1]$ where we have set the arbitrary constant $c 51$ to 0 and the matrix $Q_{1} \in A^{2 \times 2}$ satisfying $R P_{1}=Q_{1} R$:

$$
\begin{aligned}
& >P[1]:=\operatorname{subs}(c 51=0, \operatorname{evalm}(\operatorname{Idem}[1,1])) ; Q[1]:=\operatorname{Factorize}(\operatorname{Mult}(\mathrm{R}, \mathrm{P}[1], \mathrm{A}), \mathrm{R}, \mathrm{~A}) ; \\
& P_{1}:=\left[\begin{array}{ccc}
1 / 2 & 1 / 2 & 0 \\
1 / 2 & 1 / 2 & 0 \\
0 & 0 & 0
\end{array}\right] \quad Q_{1}:=\left[\begin{array}{cc}
1 / 2 & -1 / 2 \\
-1 / 2 & 1 / 2
\end{array}\right]
\end{aligned}
$$

As the entries of the matrices P_{1} and Q_{1} belong to \mathbb{Q}, using linear algebraic techniques, we can easily compute bases of the free A-modules $\operatorname{ker}_{A}\left(. P_{1}\right), \operatorname{ker}_{A}\left(. Q_{1}\right), \operatorname{im}_{A}\left(. P_{1}\right)=\operatorname{ker}_{A}\left(.\left(I_{3}-P_{1}\right)\right)$ and im $A\left(. Q_{1}\right)=$ $\operatorname{ker}_{A}\left(.\left(I_{2}-Q_{1}\right)\right)$:

```
> U1:=SyzygyModule(P[1],A): U2:=SyzygyModule(evalm(1-P[1]),A):
> U:=stackmatrix(U1,U2);
> V1:=SyzygyModule(Q[1],A): V2:=SyzygyModule(evalm(1-Q[1]),A):
> V:=stackmatrix(V1,V2);
```

$$
U:=\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right] \quad V:=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]
$$

We can check that $J_{1}=U P_{1} U^{-1}$ and $J_{2}=V Q_{1} V^{-1}$ are block-diagonal matrices formed by the matrices 0_{n} and I_{m} :

```
> VERIF1:=Mult(U,P,LeftInverse(U,A),A);
\(>\) VERIF2: \(=\) Mult (V,Q,LeftInverse(V,A),A);
```

$$
\text { VERIF1 }:=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \quad \text { VERIF2 }:=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

Then, the matrix R is equivalent to the following block-diagonal matrix $V R U^{-1}$:

$$
\begin{aligned}
& >\text { R_dec }^{\prime}=\text { map }(\text { factor, } \text { simplify }(\operatorname{Mult}(\mathrm{V}, \mathrm{R}, \operatorname{LeftInverse}(\mathrm{U}, \mathrm{~A}), \mathrm{A}))) ; \\
& \qquad R_{-} d e c:=\left[\begin{array}{ccc}
d\left(\delta^{2}+1\right) & 2 \alpha d^{2} \delta & 0 \\
0 & 0 & -d(\delta-1)(\delta+1)
\end{array}\right]
\end{aligned}
$$

This last result can be directly obtained by means of the command HeuristicDecomposition:
$>\operatorname{map}(f$ actor, HeuristicDecomposition(R, P[1], A) [1]);

$$
\left[\begin{array}{ccc}
d\left(\delta^{2}+1\right) & 2 \alpha d^{2} \delta & 0 \\
0 & 0 & -d(\delta-1)(\delta+1)
\end{array}\right]
$$

We can use another idempotent matrix P_{2} listed in Idem[1] to obtain another decomposition of the matrix R. Let us consider the fourth one and the corresponding idempotent matrix Q_{2} :

```
> P[2]:=Idem[1, 4]; Q[2]:=Factorize(Mult(R,P[2],A),R,A);
```

$$
P_{2}:=\left[\begin{array}{ccc}
0 & 0 & 0 \\
-\delta^{2} & 1 & -\alpha \delta d \\
0 & 0 & 0
\end{array}\right] \quad Q_{2}:=\left[\begin{array}{cc}
0 & \delta^{2} \\
0 & 1
\end{array}\right]
$$

As we have $P_{2}^{2}=P_{2}$ and $Q_{2}^{2}=Q_{2}$, we know that the A-modules $\operatorname{ker}_{A}\left(. P_{2}\right), \operatorname{ker}_{A}\left(. Q_{2}\right), \operatorname{im}_{A}\left(. P_{2}\right)=$ $\operatorname{ker}_{A}\left(.\left(I_{3}-P_{2}\right)\right)$ and $\operatorname{im}_{A}\left(. Q_{2}\right)=\operatorname{ker}_{A}\left(.\left(I_{2}-Q_{2}\right)\right)$ are projective, and thus, free by the Quillen-Suslin theorem. Let us compute basis of those free A-modules:

```
> U11:=SyzygyModule(P[2],A): U21:=SyzygyModule(evalm(1-P[2]),A):
> UU:=stackmatrix(U11,U21);
> V11:=SyzygyModule(Q[2],A): V21:=SyzygyModule(evalm(1-Q[2]),A):
> VV:=stackmatrix(V11,V21);
```

$$
U U:=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
\delta^{2} & -1 & \alpha \delta d
\end{array}\right] \quad V V:=\left[\begin{array}{cc}
-1 & \delta^{2} \\
0 & 1
\end{array}\right]
$$

As previously, we can check that the idempotent matrices P_{2} and Q_{2} are equivalent to block-diagonal matrices formed by the matrices 0_{n} and I_{m} :

```
> VERIF1:=Mult(UU,P[1],LeftInverse(UU,A),A);
> VERIF2:=Mult(VV,Q[1],LeftInverse(VV,A),A);
```

$$
\text { VERIF1 }:=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \quad \text { VERIF2 }:=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

Then, the matrix R is equivalent to the following block-diagonal matrix:

$$
\begin{aligned}
& >\text { R_dec } 1:=\text { map (factor, } \operatorname{simplify}(\text { Mult (VV,R,LeftInverse }(U U, A), A))) ; \\
& \\
& R_{-} \text {dec } 1:=\left[\begin{array}{ccc}
d(\delta-1)(\delta+1)\left(\delta^{2}+1\right) & \alpha d^{2} \delta(\delta-1)(\delta+1) & 0 \\
0 & 0 & d
\end{array}\right]
\end{aligned}
$$

We can check this last result by means of the command HeuristicDecomposition:
$>\operatorname{map}($ factor,HeuristicDecomposition(R,P[2],A)[1]);

$$
\left[\begin{array}{ccc}
d(\delta-1)(\delta+1)\left(\delta^{2}+1\right) & \alpha d^{2} \delta(\delta-1)(\delta+1) & 0 \\
0 & 0 & d
\end{array}\right]
$$

Hence, we obtain another decomposition of the matrix R. If we denote by

$$
\left\{\begin{array} { l }
{ T _ { 1 } = (d (\delta ^ { 2 } + 1) \quad 2 \alpha d ^ { 2 } \delta) , } \tag{1}\\
{ T _ { 2 } = d (\delta ^ { 2 } - 1) , } \\
{ T _ { 3 } = (d (\delta ^ { 2 } - 1) (\delta ^ { 2 } + 1) \quad \alpha d ^ { 2 } \delta (\delta ^ { 2 } - 1)) , } \\
{ T _ { 4 } = d , }
\end{array} \quad \left\{\begin{array}{l}
M_{1}=A^{1 \times 2} /\left(A T_{1}\right), \\
M_{2}=A /\left(A T_{2}\right), \\
M_{3}=A^{1 \times 2} /\left(A T_{3}\right), \\
M_{4}=A /\left(A T_{4}\right),
\end{array}\right.\right.
$$

then we have the following decompositions of the A-module M :

$$
\begin{equation*}
M \cong M_{1} \oplus M_{2}, \quad M \cong M_{3} \oplus M_{4} \tag{2}
\end{equation*}
$$

Let us now study the A-module structure of E defined by $A^{1 \times 8} /\left(A^{1 \times 7} E n d o[2]\right)$:
$>$ ext1:=Exti(Involution(Endo[2],A),A,1): ext1[1];

$$
\left[\begin{array}{ccccccc}
d \delta^{2}-d & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & d & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & d \delta^{2}-d & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & d & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & d & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & d \delta^{2}-d & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & d
\end{array}\right]
$$

$>$ ext1[2];

$$
\left[\begin{array}{cccccccc}
1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \delta^{2}+1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Hence, the following torsion elements of E

$$
\left\{\begin{array} { l }
{ t _ { 1 } = f _ { 1 } + f _ { 3 } , } \tag{3}\\
{ t _ { 2 } = f _ { 2 } , } \\
{ t _ { 3 } = (\delta ^ { 2 } + 1) f _ { 3 } + f _ { 7 } , } \\
{ t _ { 4 } = f _ { 4 } , } \\
{ t _ { 5 } = f _ { 5 } , } \\
{ t _ { 6 } = f _ { 6 } , } \\
{ t _ { 7 } = f _ { 8 } , }
\end{array} \quad \left\{\begin{array}{l}
d\left(\delta^{2}-1\right) t_{1}=0 \\
d t_{2}=0 \\
d\left(\delta^{2}-1\right) t_{3}=0 \\
d t_{4}=0 \\
d t_{5}=0 \\
d\left(\delta^{2}-1\right) t_{6}=0 \\
d t_{7}=0
\end{array}\right.\right.
$$

generate the A-module $t(E)$ and we have $E / t(E)=A^{1 \times 8} /\left(A^{1 \times 7} \operatorname{ext1}[2]\right)$. As the A-module $E / t(E)$ is torsion-free, it can be parametrized by means of the matrix ext1[3] defined by
$>$ ext1[3];

$$
\left[\begin{array}{c}
1 \\
0 \\
-1 \\
0 \\
0 \\
0 \\
\delta^{2}+1 \\
0
\end{array}\right]
$$

i.e., we have $E / t(E) \cong A^{1 \times 8} \operatorname{ext1}[3]$. As $\operatorname{ext1}[3]$ admits a left-inverse over A defined by

```
> LeftInverse(ext1[3],A);
[ [10 0 -1 0
```

we obtain that $A^{1 \times 8} \operatorname{ext} 1[3]=A$, i.e., $E / t(E)$ is a free A-module of rank 1 . Using that the short exact sequence of A-modules $0 \longrightarrow t(E) \xrightarrow{\iota} E \xrightarrow{\rho} E / t(E) \longrightarrow 0$ ends with a projective A-module, it splits and we get $E \cong t(E) \oplus E / t(E) \cong t(E) \oplus A$. Let us now study $t(E)$.

```
> L:=Factorize(Endo[2],ext1[2],A);
```

$$
L:=\left[\begin{array}{ccccccc}
-d & 0 & d & 0 & 0 & 0 & 0 \\
d \delta^{2} & 0 & -d & 0 & 0 & 0 & 0 \\
0 & d & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & d & 0 & 0 & 0 \\
0 & 0 & 0 & \delta & 0 & -1+\delta^{2} & 0 \\
0 & 0 & 0 & 0 & d & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & d
\end{array}\right]
$$

> SyzygyModule(ext1[2],A);

$$
I N J(7)
$$

Lemma 3.1 of T. Cluzeau, A. Quadrat, "Factoring and decomposing a class of linear functional systems", Linear Algebra and Its Applications, 428 (2008), 324-381, we obtain that $t(E) \cong A^{1 \times 7} /\left(A^{1 \times 7} L\right)$. From the structure of the full row rank matrix L, we obtain that

$$
t(E) \cong[A /(A d)]^{3} \oplus A^{1 \times 2} /\left(A^{1 \times 2} S_{1}\right) \oplus A^{1 \times 2} /\left(A^{1 \times 2} S_{2}\right),
$$

where where N^{l} denotes l direct sums of N and the matrices S_{1} and S_{2} are defined by:

```
> S[1]:=submatrix(L,1..2,[1,3]);
```

$$
S_{1}:=\left[\begin{array}{cc}
-d & d \\
d \delta^{2} & -d
\end{array}\right]
$$

$>$ S[2]:=submatrix(L, 4..5, $[4,6])$;

$$
S_{2}:=\left[\begin{array}{cc}
d & 0 \\
\delta & -1+\delta^{2}
\end{array}\right]
$$

Let us check whether or not the matrix S_{1} is equivalent to a block-diagonal matrix:

```
> E[1]:=MorphismsConstCoeff(S[1],S[1],A):
> Idem[1]:=IdempotentsMatConstCoeff(S[1],E[1][1],A,0,alpha);
```

Idem $_{1}:=\left[\left[\left[\begin{array}{ll}c 31 & -c 31+1 \\ c 31 & -c 31+1\end{array}\right],\left[\begin{array}{cc}c 31 & -c 31 \\ c 31-1 & -c 31+1\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\right],[\right.$ Ore_algebra,
["diff", dual_shift], $[t, s],[d, \delta],[t, s],[\alpha, c 31], 0,[],[],[t, s],[],[],[$ diff $=[d, t]$, dual_shift $=[\delta, s]]]]$
> X[1]:=subs(c31=0, evalm(Idem[1][1,1]));

$$
X_{1}:=\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right]
$$

We obtain that the matrix S_{1} is equivalent to the following block diagonal matrix:

```
> map(factor,HeuristicDecomposition(S[1],X[1],A)[1]);
```

$$
\left[\begin{array}{cc}
-d & 0 \\
0 & d(\delta-1)(\delta+1)
\end{array}\right]
$$

Hence, we have $A^{1 \times 2} /\left(A^{1 \times 2} S_{1}\right) \cong A /(A d) \oplus A /\left(A d\left(\delta^{2}-1\right)\right)$.
Let us check whether or not the matrix S_{2} is equivalent to a block-diagonal matrix:

$$
\begin{aligned}
> & \mathrm{E}[2]:=M o r p h i s m s C o n s t C o e f f \\
> & \text { Idem[2] [2] , } \mathrm{S}[2], \mathrm{A}): \\
& \text { IdempotentsMatConstCoeff (S [2] , E [2] [1] , A, 0, alpha) ; } \\
& \text { Idem }_{2}:=\left[\left[\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right]\right],[\text { Ore_algebra, ["diff"', dual_shift }]\right. \\
& {[t, s],[d, \delta],[t, s],[\alpha], 0,[],[],[t, s],[],[],[\text { diff }=[d, t], \text { dual_shift }=[\delta, s]]]] }
\end{aligned}
$$

$>\quad X[2]:=\operatorname{Idem}[2][1,1] ; \quad Y[2]:=\operatorname{diag}(0 \$ 2) ; \quad Z:=\operatorname{diag}(0 \$ 2) ;$

$$
X_{2}:=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \quad Y_{2}:=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \quad Z:=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

$>$ Lambda:=RiccatiConstCoeff(S[2],X[2],Y[2], Z, A, 1, alpha)[1];

$$
\Lambda:=\left[\left[\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{cc}
0 & \delta \\
0 & -1
\end{array}\right]\right]\right]
$$

$>$ X_bar[2]:=simplify (evalm(X[2]+Mult (Lambda[2], S[2],A)));

$$
X_{-} b a r_{2}:=\left[\begin{array}{cc}
\delta^{2} & \left(-1+\delta^{2}\right) \delta \\
-\delta & 1-\delta^{2}
\end{array}\right]
$$

We obtain that the matrix S_{2} is equivalent to the following block-diagonal one:
$>\operatorname{map}\left(f a c t o r, H e u r i s t i c D e c o m p o s i t i o n\left(S[2], X _b a r[2], A\right)[1]\right) ;$

$$
\left[\begin{array}{cc}
d(\delta-1)(\delta+1) & 0 \\
0 & 1
\end{array}\right]
$$

In particular, we have $A^{1 \times 2} /\left(A^{1 \times 2} S_{2}\right) \cong A /\left(A d\left(\delta^{2}-1\right)\right)$, which shows that:

$$
t(E) \cong[A /(A d)]^{4} \oplus\left[A /\left(A d\left(\delta^{2}-1\right)\right)\right]^{2}
$$

Hence, we obtain the following decomposition of the A-module E :

$$
\begin{equation*}
E \cong[A /(A d)]^{4} \oplus\left[A /\left(A d\left(\delta^{2}-1\right)\right)\right]^{2} \oplus A \tag{4}
\end{equation*}
$$

We now explicitly describe the previous isomorphism. Let us first compute a generalized inverse of the matrix ext1[2] over A :

```
> W:=GeneralizedInverse(ext1[2],A);
```

$$
W:=\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

We now introduce the matrix $H=I_{6}-W e x t 1[2]$ defined by:
> $H:=$ simplify (evalm(1-Mult(W,ext1[2],A)));

$$
H:=\left[\begin{array}{cccccccc}
0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -\delta^{2}-1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Using the fact that $\operatorname{ext} 1[2] H=0$, we obtain that the A-morphism $\sigma: E / t(E) \longrightarrow E$ defined by $\sigma\left(\pi^{\prime}(\lambda)\right)=\pi(\lambda H)$, where $\pi: A^{1 \times 8} \longrightarrow E$ (resp., $\left.\pi^{\prime}: A^{1 \times 8} \longrightarrow E / t(E)\right)$ denotes the canonical projection onto E (resp., $E / t(E)$) and $\lambda \in A^{1 \times 8}$, satisfies $\rho \circ \sigma=\operatorname{id}_{E / t(E)}$. For more details, see Theorem 4 of A. Quadrat, D. Robertz, "Parametrizing all solutions of uncontrollable multidimensional linear systems", Proceedings of $16^{\text {th }}$ IFAC World Congress, Prague (Czech Republic), 04-08/07/05. If we denote by $\left\{g_{i}=\rho\left(f_{i}\right)\right\}_{i=1, \ldots, 8}$ a set of generators of the A-module $E / t(E)$, then the A-morphism $\sigma: E / t(E) \longrightarrow E$ is defined by:

$$
\left\{\begin{array}{l}
\sigma\left(g_{1}\right)=-f_{3}, \\
\sigma\left(g_{2}\right)=0, \\
\sigma\left(g_{3}\right)=f_{3}, \\
\sigma\left(g_{4}\right)=0, \\
\sigma\left(g_{5}\right)=0, \\
\sigma\left(g_{6}\right)=0, \\
\sigma\left(g_{7}\right)=-\left(\delta^{2}+1\right) f_{3}, \\
\sigma\left(g_{8}\right)=0 .
\end{array}\right.
$$

Using (3), the A-morphism $\chi: \operatorname{id}_{E}-\sigma \circ \rho: E \longrightarrow E$ is then defined by:

$$
\left\{\begin{array}{l}
\chi\left(f_{1}\right)=f_{1}+f_{3}=t_{1} \\
\chi\left(f_{2}\right)=f_{2}=t_{2} \\
\chi\left(f_{3}\right)=f_{3}-f_{3}=0 \\
\chi\left(f_{4}\right)=f_{4}=t_{4} \\
\chi\left(f_{5}\right)=f_{5}=t_{5} \\
\chi\left(f_{6}\right)=f_{6}=t_{6} \\
\chi\left(f_{7}\right)=f_{7}+\left(\delta^{2}+1\right) f_{3}=t_{3} \\
\chi\left(f_{8}\right)=f_{8}=t_{7}
\end{array}\right.
$$

Hence, if we define the A-morphism $\kappa: E \longrightarrow t(E)$ by

$$
\left\{\begin{array}{l}
\kappa\left(f_{1}\right)=t_{1} \\
\kappa\left(f_{2}\right)=t_{2} \\
\kappa\left(f_{3}\right)=0 \\
\kappa\left(f_{4}\right)=t_{4} \\
\kappa\left(f_{5}\right)=t_{5} \\
\kappa\left(f_{6}\right)=t_{6} \\
\kappa\left(f_{7}\right)=t_{3} \\
\kappa\left(f_{8}\right)=t_{7}
\end{array}\right.
$$

then we get the identity $\operatorname{id}_{E}=\sigma \circ \rho+\iota \circ \kappa$. Therefore, we obtain:

$$
\left\{\begin{array}{l}
f_{1}=t_{1}-\mathrm{id}_{M} \\
f_{2}=t_{2} \\
f_{3}=\mathrm{id}_{M} \\
f_{4}=t_{4} \\
f_{5}=t_{5} \\
f_{6}=t_{6} \\
f_{7}=t_{3}-\left(\delta^{2}+1\right) \mathrm{id}_{M} \\
f_{8}=t_{7}
\end{array}\right.
$$

We find that $\left\{t_{1}, \ldots, t_{7}, \operatorname{id}_{M}\right\}$ is the same set of generators of the A-module E as $\left\{f_{i}\right\}_{i=1, \ldots, 8}$. Hence, the family of generators $\left\{t_{1}, \ldots, t_{7}, \mathrm{id}_{M}\right\}$ admits the same multiplication table Endo $[3]$.

Let us show how to find again (4) from (2). Using the fact that $M \cong M_{1} \oplus M_{2}$, we get:

$$
E=\operatorname{end}_{A}(M) \cong \operatorname{end}_{A}\left(M_{1}\right) \oplus \operatorname{hom}_{A}\left(M_{1}, M_{2}\right) \oplus \operatorname{hom}_{A}\left(M_{2}, M_{1}\right) \oplus \operatorname{end}_{A}\left(M_{2}\right)
$$

Using the fact that $M_{2}=A /\left(\operatorname{Ad}\left(\delta^{2}-1\right)\right)$, we have $\operatorname{end}_{A}\left(M_{2}\right)=A /\left(A d\left(\delta^{2}-1\right)\right)$. With the notations (1)

```
> T[1]:=submatrix(R_dec,1..1,1..2);
    T1:=[\begin{array}{ll}{d(\mp@subsup{\delta}{}{2}+1)}&{2\alpha\mp@subsup{d}{}{2}\delta}\end{array}]
```

$>\mathrm{T}[2]:=$ submatrix $\left(\mathrm{R}_{-}\right.$dec $\left., 2 \ldots 2,3 . .3\right)$;
$T_{2}:=[-d(\delta-1)(\delta+1)]$
we have $\operatorname{hom}_{A}\left(M_{1}, M_{2}\right)=A^{1 \times 3} /\left(A^{1 \times 3} \operatorname{Morph}[1][2]\right)$, where $\operatorname{Morph}[1][2]$ is defined by:

```
> Morph[1]:=MorphismsConstMorphCoeff(T[1],T[2],A): Morph[1][2];
```

$$
\left[\begin{array}{ccc}
-1+\delta^{2} & -\delta & 0 \\
0 & d & 0 \\
0 & 0 & d
\end{array}\right]
$$

Using the structure of the matrix $\operatorname{Morph}[1][2]$ and the previous decomposition of S_{2}, we obtain:

$$
\operatorname{hom}_{A}\left(M_{1}, M_{2}\right) \cong A /\left(d\left(\delta^{2}-1\right)\right) \oplus A /(A d) .
$$

Let us now compute hom $A_{A}\left(M_{2}, M_{1}\right)$:
> Morph[2]:=MorphismsConstCoeff(T[2],T[1],A);

$$
\text { Morph }_{2}:=\left[\left[\left[\begin{array}{ll}
\delta^{2}+1 & 2 \alpha d \delta
\end{array}\right],\left[\begin{array}{l}
d]
\end{array}\right]\right.\right.
$$

We obtain that $\operatorname{hom}_{A}\left(M_{2}, M_{1}\right)$ is generated by one generator h satisfying the relation $d h=0$, i.e., we have $\operatorname{hom}_{A}\left(M_{2}, M_{1}\right) \cong A /(A d)$.
We now need to characterize the A-module $\operatorname{end}_{A}\left(M_{1}\right)$:
> Morph[3]:=MorphismsConstCoeff(T[1],T[1],A): Morph[3] [2];

$$
\left[\begin{array}{ccc}
d & 0 & 0 \\
0 & d \delta^{2}+d & d
\end{array}\right]
$$

Hence, we obtain $\operatorname{end}_{A}\left(M_{1}\right) \cong A /(A d) \oplus A^{1 \times 2} /(A J)$, where $J \in A^{1 \times 2}$ is defined by:

```
> J:=submatrix (Morph[3] [2],2..2,2..3);
```

$$
J:=\left[\begin{array}{ll}
d \delta^{2}+d & d
\end{array}\right]
$$

Let us study the A-module $N=A^{1 \times 2} /(A J)$:
$>$ Extension1:= Exti(Involution(J, A$), \mathrm{A}, 1$);

$$
\text { Extension1 }:=\left[\left[\begin{array}{l}
d
\end{array}\right],\left[\begin{array}{ll}
\delta^{2}+1 & 1
\end{array}\right],\left[\begin{array}{c}
-1 \\
\delta^{2}+1
\end{array}\right]\right]
$$

We get that $t(N)=\left(A\left(\left(\delta^{2}+1\right) 1\right)\right) /(A J) \cong A /(A d)$ and $N / t(N)=A^{1 \times 2} /\left(A\left(\left(\delta^{2}+1\right) \quad 1\right)\right)$. The A-module $N / t(N)$ is free as its parametrization Extension $1[3]$ admits a left-inverse over A :

```
> LeftInverse(Extension1[3],A);
```

$$
\left[\begin{array}{ll}
-1 & 0
\end{array}\right]
$$

Therefore, the short exact sequence $0 \longrightarrow t(N) \longrightarrow N \longrightarrow N / t(N) \longrightarrow 0$ splits and we obtain that $N \cong t(N) \oplus N / t(N) \cong A /(A d) \oplus A$, a fact proving that $\operatorname{end}_{A}\left(M_{1}\right) \cong[A /(A d)]^{2} \oplus A$ and:

$$
\begin{aligned}
E & \cong \operatorname{end}_{A}\left(M_{1}\right) \oplus \operatorname{hom}_{A}\left(M_{1}, M_{2}\right) \oplus \operatorname{hom}_{A}\left(M_{2}, M_{1}\right) \oplus \operatorname{end}_{A}\left(M_{2}\right) \\
& \cong[A /(A d)]^{2} \oplus A \oplus A /\left(A d\left(\delta^{2}-1\right)\right) \oplus A /(A d) \oplus A /(A d) \oplus A /\left(A d\left(\delta^{2}-1\right)\right) \\
& \cong[A /(A d)]^{4} \oplus\left[A /\left(A d\left(\delta^{2}-1\right)\right)\right]^{2} \oplus A .
\end{aligned}
$$

We can also use the second decomposition $M \cong M_{3} \oplus M_{4}$ obtained in (2) to find again the previous result. Indeed, we have:

$$
E=\operatorname{end}_{A}(M) \cong \operatorname{end}_{A}\left(M_{3}\right) \oplus \operatorname{hom}_{A}\left(M_{3}, M_{4}\right) \oplus \operatorname{hom}_{A}\left(M_{4}, M_{3}\right) \oplus \operatorname{end}_{A}\left(M_{4}\right) .
$$

Using similar techniques as the previous ones, we can prove that

$$
\left\{\begin{array}{l}
\operatorname{end}_{A}\left(M_{3}\right) \cong\left[A /\left(A d\left(\delta^{2}-1\right)\right)\right]^{2} \oplus A, \\
\operatorname{hom}_{A}\left(M_{3}, M_{4}\right) \cong[A /(A d)]^{2}, \\
\operatorname{hom}_{A}\left(M_{4}, M_{3}\right) \cong A /(A d), \\
\operatorname{end}_{A}\left(M_{4}\right) \cong A /(A d),
\end{array}\right.
$$

which finally shows again that $E \cong[A /(A d)]^{4} \oplus\left[A /\left(A d\left(\delta^{2}-1\right)\right)\right]^{2} \oplus A$.

