```
> restart:
> with(OreModules):
> with(OreMorphisms);
> with(linalg):
```

Let us consider the model of a fluid in a tank satisfying Saint-Venant's equations and subjected to a onedimensional horizontal move studied in F. Dubois, N. Petit, P. Rouchon, "Motion planning and nonlinear simulations for a tank containing a fluid", in the proceedings of the $5^{\text {th }}$ European Control Conference, Karlsruhe (Germany), 1999, and defined by the following system matrix:

$$
\begin{aligned}
& >A:=D e f i n e O r e A l g e b r a(\operatorname{diff}=[d, t], \text { dual_shift=[delta, } s], \text { polynom=[s,t]): } \\
& >\text { R:=matrix }(2,3 \text {, [delta^2, } 1,-2 * d * \operatorname{delta}, 1, \text { delta^2 },-2 * d * d e l t a]) \text {; } \\
& R:=\left[\begin{array}{ccc}
\delta^{2} & 1 & -2 d \delta \\
1 & \delta^{2} & -2 d \delta
\end{array}\right]
\end{aligned}
$$

Let us compute the endomorphism ring $E=\operatorname{end}_{A}(M)$ of the A-module $M=A^{1 \times 3} /\left(A^{1 \times 2} R\right)$, where $A=\mathbb{Q}[d, \delta]$ is the commutative polynomial ring of differential time-delay operators:

```
> Endo:=MorphismsConstCoeff(R,R,A,mult_table):
```

The A-module E is generated by the f_{i} 's defined by $f_{i}(\pi(\lambda))=\pi\left(\lambda P_{i}\right)$, where $\pi: A^{1 \times 3} \longrightarrow M$ denotes the projection onto $M, \lambda \in A^{1 \times 3}$ and the matrix $P_{i} \in A^{3 \times 3}$ is one of the following matrices:
> Endo[1];

$$
\left.\left[\begin{array}{ccc}
0 & 0 & 2 d \delta \\
0 & 0 & 2 d \delta \\
0 & 0 & \delta^{2}+1
\end{array}\right],\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right],\left[\begin{array}{ccc}
0 & 0 & 0 \\
2 d & -2 d & 0 \\
\delta & -\delta & 0
\end{array}\right],\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\right]
$$

The generators $\left\{f_{i}\right\}_{i=1, \ldots, 4}$ of the A-module E satisfy the relations $E n d o[2] F=0$, with the notation $F=\left(f_{1} \ldots f_{4}\right)^{T}$, and Endo[2] is the matrix defined by:
> Endo[2];

$$
\left[\begin{array}{cccc}
-1 & 1 & 0 & \delta^{2} \\
-1 & \delta^{2} & 0 & 1 \\
0 & 0 & \delta^{2}-1 & 0
\end{array}\right]
$$

The multiplication table T of the generators $\left\{f_{i}\right\}_{i=1, \ldots, 4}$ is defined by $F \otimes F=T F$, where \otimes denotes the Kronecker product, namely, $F \otimes F=\left(\left(f_{1} \circ F\right)^{T} \ldots\left(f_{4} \circ F\right)^{T}\right)^{T}$, and T is the matrix Endo[3] without the first column which corresponds to the indices (i, j) of the product $f_{i} \circ f_{j}$:

```
> Endo[3];
```

$$
\left[\begin{array}{ccccc}
{[1,1]} & \delta^{2}+1 & 0 & 0 & 0 \\
{[1,2]} & 1 & 0 & 0 & 0 \\
{[1,3]} & 0 & 2 d & 2 & -2 d \\
{[1,4]} & 1 & 0 & 0 & 0 \\
{[2,1]} & 1 & 0 & 0 & 0 \\
{[2,2]} & 0 & 1 & 0 & 0 \\
{[2,3]} & 0 & 0 & 1 & 0 \\
{[2,4]} & 0 & 0 & 0 & 1 \\
{[3,1]} & 0 & 0 & 0 & 0 \\
{[3,2]} & 0 & 0 & 1 & 0 \\
{[3,3]} & 0 & 0 & -2 d & 0 \\
{[3,4]} & 0 & 0 & -1 & 0 \\
{[4,1]} & 1 & 0 & 0 & 0 \\
{[4,2]} & 0 & 0 & 0 & 1 \\
{[4,3]} & 0 & 2 d & 1 & -2 d \\
{[4,4]} & 0 & 1 & 0 & 0
\end{array}\right]
$$

Let us compute idempotents of E, namely, elements $e \in E$ satisfying $e^{2}=e$:
> Idem:=IdempotentsConstCoeff(R,Endo[1], A, 0);

$$
\text { Idem }:=\left[\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right],\left[\begin{array}{ccc}
1 / 2 & 1 / 2 & 0 \\
1 / 2 & 1 / 2 & 0 \\
0 & 0 & 1
\end{array}\right],\left[\begin{array}{ccc}
1 / 2 & -1 / 2 & 0 \\
-1 / 2 & 1 / 2 & 0 \\
0 & 0 & 0
\end{array}\right]\right]
$$

[Ore_algebra, ["diff", dual_shift], $[t, s],[d, \delta],[s, t],[], 0,[],[],[t, s],[],[]$,

$$
[\text { diff }=[d, t], \text { dual_shift }=[\delta, s]]]]
$$

We obtain the two trivial idempotents 0 and id_{M} of E but also two other non-trivial idempotents e and f satisfying the relation $e+f=\operatorname{id}_{M}$. Let us consider the first non-trivial idempotent e of E defined by $e(\pi(\lambda))=\pi(\lambda P)$, for all $\lambda \in A^{3 \times 3}$, where P is the third matrix of $\operatorname{Idem}[1]$ and $Q \in A^{2 \times 2}$ is a matrix satisfying $R P=Q R$:

$$
\begin{aligned}
& >P:=\operatorname{Idem}[1,3] ; Q:=\text { Factorize }(\operatorname{Mult}(\mathrm{R}, \mathrm{P}, \mathrm{~A}), \mathrm{R}, \mathrm{~A}) ; \\
& \qquad P:=\left[\begin{array}{ccc}
1 / 2 & 1 / 2 & 0 \\
1 / 2 & 1 / 2 & 0 \\
0 & 0 & 1
\end{array}\right] \quad Q:=\left[\begin{array}{cc}
1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2
\end{array}\right]
\end{aligned}
$$

As the entries of the matrices P and Q belong to \mathbb{Q}, we can compute their Jordan normal forms:

```
> J[1]:=jordan(P,'W'); evalm(W);
```

$$
J_{1}:=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad\left[\begin{array}{ccc}
1 / 2 & 1 / 2 & 0 \\
-1 / 2 & 1 / 2 & 0 \\
0 & 1 & 1
\end{array}\right]
$$

> J[2]:=jordan(Q,'Z'); evalm(Z);

$$
J_{2}:=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] \quad\left[\begin{array}{cc}
1 / 2 & 1 / 2 \\
-1 / 2 & 1 / 2
\end{array}\right]
$$

Hence, we have $J_{1}=W^{-1} P W$ and $J_{2}=Z^{-1} Q Z$, and thus, the matrix R is equivalent to the blockmatrix $Z^{-1} R W$ defined by:
> R_dec:=simplify(Mult(inverse(Z),R,W,A));

$$
R_{-} d e c:=\left[\begin{array}{ccc}
\delta^{2}-1 & 0 & 0 \\
0 & 1+\delta^{2}-4 d \delta & -4 d \delta
\end{array}\right]
$$

We can simplify the previous matrix by post-multiplying it by the following unimodular matrix

```
> Y:=evalm(diag(1,evalm([[1,0],[-1,1]])));
```

$$
Y:=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -1 & 1
\end{array}\right]
$$

in order to obtain the following simple block-diagonal matrix:
> R_final:=Mult(R_dec, Y, A);

$$
R_{-} \text {final }:=\left[\begin{array}{ccc}
\delta^{2}-1 & 0 & 0 \\
0 & \delta^{2}+1 & -4 d \delta
\end{array}\right]
$$

Hence, we obtain that the A-module can be decomposed as $M \cong M_{1} \oplus M_{2}$, with the notations $M_{1}=$ $A /\left(A\left(\delta^{2}-1\right)\right)$ and $M_{2}=A^{1 \times 2} /\left(A\left(\delta^{2}+1-4 d \delta\right)\right)$. Hence, if \mathcal{F} denotes an A-module (e.g., $\left.\mathcal{F}=C^{\infty}(\mathbb{R})\right)$, then we have $\operatorname{ker}_{\mathcal{F}}(R.) \cong \operatorname{ker}_{\mathcal{F}}\left(\left(\delta^{2}-1\right).\right) \oplus \operatorname{ker}_{\mathcal{F}}\left(\left(\delta^{2}+1 \quad-4 d \delta\right).\right)$. We note that $\operatorname{ker}_{\mathcal{F}}\left(\left(\delta^{2}-1\right)\right.$.) is formed by the 2 -periodic functions of \mathcal{F}.
Let us study the A-module structure $A^{1 \times 4} /\left(A^{1 \times 3} E n d o[2]\right)$ of the endomorphism ring E :

```
> ext1:=Exti(Involution(Endo[2],A),A,1);
```

$$
\text { ext1 } \left.:=\left[\begin{array}{ccc}
\delta^{2}-1 & 0 & 0 \\
0 & \delta^{2}-1 & 0 \\
0 & 0 & \delta^{2}-1
\end{array}\right],\left[\begin{array}{cccc}
-1 & 0 & 0 & \delta^{2}+1 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}\right],\left[\begin{array}{c}
\delta^{2}+1 \\
1 \\
0 \\
1
\end{array}\right]\right]
$$

Hence, we obtain that the following torsion elements of E

$$
\left\{\begin{array}{l}
t_{1}=-f_{1}+\left(\delta^{2}+1\right) f_{4}, \\
t_{2}=f_{2}-f_{4}, \\
t_{3}=f_{3}
\end{array} \quad\left(\delta^{2}-1\right) t_{i}=0, \quad i=1,2,3,\right.
$$

generate the A-module $t(E)$. Moreover, we have $E / t(E)=A^{1 \times 4} /\left(A^{1 \times 3} \operatorname{ext1}[2]\right) \cong A^{1 \times 4} \operatorname{ext} 1[3]$, where ext1[2] (resp., ext1[3]) denotes the second (resp., third) matrix of ext1. As the matrix ext1[3] admits the following left-inverse over A

```
> LeftInverse(ext1[3],A);
```

$$
\left[\begin{array}{llll}
0 & 0 & 0 & 1
\end{array}\right]
$$

the A-module $E / t(E)$ is a free A-module of rank 1 . The short exact sequence of A-modules

$$
0 \longrightarrow t(E) \xrightarrow{\iota} E \xrightarrow{\rho} E / t(E) \longrightarrow 0,
$$

ending with a projective A-module, splits, a fact implying:

$$
E \cong t(E) \oplus E / t(E) \cong t(E) \oplus A
$$

Let us now study the A-module $t(E)=\left(A^{1 \times 4} \operatorname{ext1}[2]\right) /\left(A^{1 \times 2} E n d o[2]\right)$:

```
> L:=Factorize(Endo[2],ext1[2],A);
```

$$
L:=\left[\begin{array}{ccc}
1 & 1 & 0 \\
1 & \delta^{2} & 0 \\
0 & 0 & \delta^{2}-1
\end{array}\right]
$$

> SyzygyModule(ext1[2],A);

INJ (3)

By Lemma 3.1 of T. Cluzeau, A. Quadrat, "Factoring and decomposing a class of linear functional systems", Linear Algebra and Its Applications, 428 (2008), 324-381, we obtain

$$
t(E) \cong A^{1 \times 3} /\left(A^{1 \times 3} L\right) \cong A^{1 \times 2} /\left(A^{1 \times 2} Q\right) \oplus A /\left(A\left(\delta^{2}-1\right)\right)
$$

where the matrix $Q \in A^{2 \times 2}$ is defined by:

```
> Q:=submatrix(L,1..2,1..2);
```

$$
Q:=\left[\begin{array}{cc}
1 & 1 \\
1 & \delta^{2}
\end{array}\right]
$$

The matrix Q admits an equivalent diagonal matrix which can be computed as follows:

```
> Endo_Q:=MorphismsConstCoeff(Q,Q,A):
> Idem_Q:=IdempotentsMatConstCoeff(Q,Endo_Q[1],A,0,alpha);
```

$$
\text { Idem_ } Q:=\left[\left[\left[\begin{array}{cc}
0 & -1 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]\right],[\text { Ore_algebra, }[\text { "diff" }, \text { dual_shift }],\right.
$$

$$
[t, s],[d, \delta],[s, t],[], 0,[],[],[t, s],[],[],[\text { diff }=[d, t], \text { dual_shift }=[\delta, s]]]]
$$

> $\mathrm{F}:=$ Idem_Q[1,1];

$$
F:=\left[\begin{array}{cc}
0 & -1 \\
0 & 1
\end{array}\right]
$$

> HeuristicDecomposition(Q,F,A)[1];

$$
\left[\begin{array}{cc}
1 & 0 \\
0 & 1-\delta^{2}
\end{array}\right]
$$

Hence, we obtain that $A^{1 \times 2} /\left(A^{1 \times 2} Q\right) \cong A /(A 1) \oplus A /\left(A\left(\delta^{2}-1\right)\right) \cong A /\left(A\left(\delta^{2}-1\right)\right)$, a fact finally proving that the A-module E satisfies

$$
E \cong\left[A /\left(A\left(\delta^{2}-1\right)\right)\right]^{2} \oplus A
$$

where N^{l} denotes l direct sums of the A-module N.
Let us explicitly describe the previous isomorphism. In order to do that, let us first compute a generalized inverse of the matrix ext1[2] over A :
> U:=GeneralizedInverse(ext1[2],A);

$$
U:=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

Let us now introduce the matrix $V=I_{4}-U \operatorname{ext1[2]}$:
> V:=simplify(evalm(1-Mult(U,ext1[2],A)));

$$
V:=\left[\begin{array}{cccc}
0 & 0 & 0 & \delta^{2}+1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Using the fact that ext $1[2] V=0$, we obtain that the A-morphism $\sigma: E / t(E) \longrightarrow E$ defined by $\sigma\left(\pi^{\prime}(\lambda)\right)=$ $\pi(\lambda V)$, where $\pi: A^{1 \times 4} \longrightarrow E$ (resp., $\left.\pi^{\prime}: A^{1 \times 4} \longrightarrow E / t(E)\right)$ denotes the canonical projection onto E (resp., $E / t(E))$ and $\lambda \in A^{1 \times 4}$, satisfies $\rho \circ \sigma=\mathrm{id}_{E / t(E)}$. For more details, see Theorem 4 of A. Quadrat, D. Robertz, "Parametrizing all solutions of uncontrollable multidimensional linear systems", Proceedings of $16^{\text {th }}$ IFAC World Congress, Prague (Czech Republic), 04-08/07/05. If we denote by $\left\{g_{i}=\rho\left(f_{i}\right)\right\}_{i=1, \ldots, 4}$ a set of generators of the A-module $E / t(E)$, then the A-morphism $\sigma: E / t(E) \longrightarrow E$ is defined by:

$$
\left\{\begin{array}{l}
\sigma\left(g_{1}\right)=\left(\delta^{2}+1\right) f_{4} \\
\sigma\left(g_{2}\right)=f_{4} \\
\sigma\left(g_{3}\right)=0 \\
\sigma\left(g_{4}\right)=f_{4}
\end{array}\right.
$$

Using the relations Endo $[2] F=0$ between the generators f_{i} 's of the A-module E, we obtain that the A-morphism $\chi: \operatorname{id}_{E}-\sigma \circ \rho: E \longrightarrow E$ is defined by:

$$
\left\{\begin{array}{l}
\chi\left(f_{1}\right)=f_{1}-\left(\delta^{2}+1\right) f_{4}=-t_{1}=t_{2} \\
\chi\left(f_{2}\right)=f_{2}-f_{4}=t_{2} \\
\chi\left(f_{3}\right)=f_{3}=t_{3} \\
\chi\left(f_{4}\right)=f_{4}-f_{4}=0
\end{array}\right.
$$

Hence, if we define the A-morphism $\kappa: E \longrightarrow t(E)$ by

$$
\left\{\begin{array}{l}
\kappa\left(f_{1}\right)=t_{2}, \\
\kappa\left(f_{2}\right)=t_{2}, \\
\kappa\left(f_{3}\right)=t_{3}, \\
\kappa\left(f_{4}\right)=0,
\end{array}\right.
$$

then we get that $\mathrm{id}_{E}=\sigma \circ \rho+\iota \circ \kappa$. Therefore, we obtain

$$
\left\{\begin{array}{l}
f_{1}=t_{2}+\left(\delta^{2}+1\right) f_{4} \tag{1}\\
f_{2}=t_{2}+f_{4} \\
f_{3}=t_{3} \\
f_{4}=f_{4}
\end{array}\right.
$$

which shows that the generators f_{i} 's of E can be expressed in terms of the elements $t_{2}=f_{2}-f_{4}=-t_{1}$, $t_{3}=f_{3}$ and f_{4}, a fact proving that $\left\{t_{2}, t_{3}, f_{4}\right\}$ is also a family of generators of the A-module E. Using the multiplication table Endo[3] and (1), we can easily obtain the following multiplication table for the
new family of generators $\left\{t_{2}, t_{3}, f_{4}\right\}$ of E :

$$
\left\{\begin{array}{l}
t_{2} \circ t_{2}=2 t_{2} \\
t_{2} \circ t_{3}=-2 d t_{2} \\
t_{2} \circ f_{4}=-t_{2} \\
t_{3} \circ t_{2}=2 t_{3} \\
t_{3} \circ t_{3}=-2 d t_{3} \\
t_{3} \circ f_{4}=-t_{3} \\
f_{4} \circ t_{2}=-t_{2} \\
f_{4} \circ t_{3}=2 d t_{2}+t_{3} \\
f_{4} \circ f_{4}=t_{2}+f_{4}
\end{array}\right.
$$

We have previously shown that $M \cong M_{1} \oplus M_{2}$. Hence, we have:

$$
E=\operatorname{end}_{A}(M) \cong \operatorname{end}_{A}\left(M_{1}\right) \oplus \operatorname{hom}_{A}\left(M_{1}, M_{2}\right) \oplus \operatorname{hom}_{A}\left(M_{2}, M_{1}\right) \oplus \operatorname{end}_{A}\left(M_{2}\right)
$$

Using the fact that $M_{1}=A /\left(A\left(\delta^{2}-1\right)\right)$, we have $\operatorname{end}_{A}\left(M_{1}\right) \cong A /\left(A\left(\delta^{2}-1\right)\right)$. The fact that M_{1} is a torsion A-module and M_{2} is torsion-free implies that $\operatorname{hom}_{A}\left(M_{1}, M_{2}\right)=0$. We now need to study $\operatorname{hom}_{A}\left(M_{2}, M_{1}\right)$ and $\operatorname{end}_{A}\left(M_{2}\right)$. Let us denote by $S=\left(\delta^{2}-1\right)$ and $T=\left(\delta^{2}+1-4 d \delta\right)$:

$$
\begin{aligned}
& >\mathrm{S}:=\text { submatrix (R_final,1..1,1..1) } ; \\
& S:=\left[\delta^{2}-1\right] \\
& >\mathrm{T}:=\text { submatrix(R_final,2..2,2..3); } \\
& T:=\left[\begin{array}{ll}
\delta^{2}+1 & -4 d \delta
\end{array}\right]
\end{aligned}
$$

Then, $\operatorname{hom}_{A}\left(M_{2}, M_{1}\right)$ is defined by:
> Morph:=MorphismsConstCoeff(T, S, A) ;

$$
\text { Morph }:=\left[\left[\left[\begin{array}{c}
2 d \\
\delta
\end{array}\right]\right],\left[\delta^{2}-1\right]\right]
$$

In particular, $\operatorname{hom}_{A}\left(M_{2}, M_{1}\right)$ is defined by only one generator h which satisfies $\left(\delta^{2}-1\right) h=0$, i.e., $\operatorname{hom}_{A}\left(M_{2}, M_{1}\right) \cong A /\left(A\left(\delta^{2}-1\right)\right)$.

Finally, let us compute end ${ }_{A}\left(M_{2}\right)$:

```
> Endo_T:=MorphismsConstCoeff(T,T,A):
> Endo_T[1];
\[
\left.\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{cc}
0 & 4 d \delta \\
0 & \delta^{2}+1
\end{array}\right]\right]
\]
```

We obtain that the A-module end $_{A}\left(M_{2}\right)$ is defined by two generators k_{1} and k_{2} which satisfy the following A-linear relation:

```
> Endo_T[2];
```

$$
\left[\begin{array}{ll}
\delta^{2}+1 & -1
\end{array}\right]
$$

As we have the following relation $k_{2}=\left(\delta^{2}+1\right) k_{1}$, the A-module end ${ }_{A}\left(M_{2}\right)$ is generated by k_{1} which does not satisfy any other relation. Hence, we get $\operatorname{end}_{A}\left(M_{2}\right) \cong A$. Hence, we finally find again that $E \cong\left[A /\left(A\left(\delta^{2}-1\right)\right)\right]^{2} \oplus A$.

