- > restart:
- > with(OreModules):
- > with(OreMorphisms);
- > with(linalg):

Let us consider the model of a fluid in a tank satisfying Saint-Venant's equations and subjected to a onedimensional horizontal move studied in F. Dubois, N. Petit, P. Rouchon, "Motion planning and nonlinear simulations for a tank containing a fluid", in the proceedings of the 5th European Control Conference, Karlsruhe (Germany), 1999, and defined by the following system matrix:

- > A:=DefineOreAlgebra(diff=[d,t],dual_shift=[delta,s],polynom=[s,t]):
- > R:=matrix(2,3,[delta²,1,-2*d*delta,1,delta²,-2*d*delta]);

$$R := \left[\begin{array}{ccc} \delta^2 & 1 & -2 \, d \, \delta \\ 1 & \delta^2 & -2 \, d \, \delta \end{array} \right]$$

Let us compute the endomorphism ring $E = \text{end}_A(M)$ of the A-module $M = A^{1\times 3}/(A^{1\times 2}R)$, where $A = \mathbb{Q}[d, \delta]$ is the commutative polynomial ring of differential time-delay operators:

> Endo:=MorphismsConstCoeff(R,R,A,mult_table):

The A-module E is generated by the f_i 's defined by $f_i(\pi(\lambda)) = \pi(\lambda P_i)$, where $\pi : A^{1\times 3} \longrightarrow M$ denotes the projection onto $M, \lambda \in A^{1\times 3}$ and the matrix $P_i \in A^{3\times 3}$ is one of the following matrices:

$$>$$
 Endo[1];

	0	0	$2 d \delta$		1	0	0		0	0	0		0	1	0]
[0	0	$2d\delta$,	0	1	0	,	2 d	-2d	0	,	1	0	0]
	0	0	$\delta^2 + 1$		0	0	1		δ	$-\delta$	0		0	0	1	

The generators $\{f_i\}_{i=1,\dots,4}$ of the A-module E satisfy the relations Endo[2]F = 0, with the notation $F = (f_1 \dots f_4)^T$, and Endo[2] is the matrix defined by:

> Endo[2];

$$\begin{bmatrix} -1 & 1 & 0 & \delta^2 \\ -1 & \delta^2 & 0 & 1 \\ 0 & 0 & \delta^2 - 1 & 0 \end{bmatrix}$$

The multiplication table T of the generators $\{f_i\}_{i=1,\ldots,4}$ is defined by $F \otimes F = TF$, where \otimes denotes the Kronecker product, namely, $F \otimes F = ((f_1 \circ F)^T \ldots (f_4 \circ F)^T)^T$, and T is the matrix Endo[3] without the first column which corresponds to the indices (i, j) of the product $f_i \circ f_j$:

> Endo[3];

[1,1]	δ^2+1	0	0	0]
[1, 2]	1	0	0	0
[1, 3]	0	2d	2	-2d
[1,4]	1	0	0	0
[2, 1]	1	0	0	0
[2, 2]	0	1	0	0
[2, 3]	0	0	1	0
[2, 4]	0	0	0	1
[3, 1]	0	0	0	0
[3, 2]	0	0	1	0
[3, 3]	0	0	-2d	0
[3, 4]	0	0	-1	0
[4, 1]	1	0	0	0
[4, 2]	0	0	0	1
[4, 3]	0	2d	1	-2d
[4, 4]	0	1	0	0

Let us compute idempotents of E, namely, elements $e \in E$ satisfying $e^2 = e$:

$$Idem := \begin{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1/2 & 1/2 & 0 \\ 1/2 & 1/2 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1/2 & -1/2 & 0 \\ -1/2 & 1/2 & 0 \\ 0 & 0 & 0 \end{bmatrix}],$$

$$\begin{split} [Ore_algebra, [``diff'', dual_shift], [t, s], [d, \delta], [s, t], [], 0, [], [], [t, s], [], [], \\ [diff = [d, t], dual_shift = [\delta, s]]]] \end{split}$$

We obtain the two trivial idempotents 0 and id_M of E but also two other non-trivial idempotents e and f satisfying the relation $e + f = \mathrm{id}_M$. Let us consider the first non-trivial idempotent e of E defined by $e(\pi(\lambda)) = \pi(\lambda P)$, for all $\lambda \in A^{3\times 3}$, where P is the third matrix of Idem[1] and $Q \in A^{2\times 2}$ is a matrix satisfying R P = Q R:

$$P := \begin{bmatrix} 1/2 & 1/2 & 0 \\ 1/2 & 1/2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad Q := \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix}$$

As the entries of the matrices P and Q belong to \mathbb{Q} , we can compute their Jordan normal forms:

> J[1]:=jordan(P,'W'); evalm(W);

$$J_1 := \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1/2 & 1/2 & 0 \\ -1/2 & 1/2 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

> J[2]:=jordan(Q,'Z'); evalm(Z);

$$J_2 := \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1/2 & 1/2 \\ -1/2 & 1/2 \end{bmatrix}$$

Hence, we have $J_1 = W^{-1} P W$ and $J_2 = Z^{-1} Q Z$, and thus, the matrix R is equivalent to the block-matrix $Z^{-1} R W$ defined by:

> R_dec:=simplify(Mult(inverse(Z),R,W,A));

$$R_{-}dec := \begin{bmatrix} \delta^2 - 1 & 0 & 0 \\ 0 & 1 + \delta^2 - 4 \, d \, \delta & -4 \, d \, \delta \end{bmatrix}$$

We can simplify the previous matrix by post-multiplying it by the following unimodular matrix

> Y:=evalm(diag(1,evalm([[1,0],[-1,1]])));

$$Y := \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$$

in order to obtain the following simple block-diagonal matrix:

> R_final:=Mult(R_dec,Y,A);

$$R_{-}final := \left[\begin{array}{ccc} \delta^2 - 1 & 0 & 0 \\ 0 & \delta^2 + 1 & -4 \, d \, \delta \end{array} \right]$$

Hence, we obtain that the A-module can be decomposed as $M \cong M_1 \oplus M_2$, with the notations $M_1 = A/(A(\delta^2-1))$ and $M_2 = A^{1\times 2}/(A(\delta^2+1 -4d\delta))$. Hence, if \mathcal{F} denotes an A-module (e.g., $\mathcal{F} = C^{\infty}(\mathbb{R})$), then we have $\ker_{\mathcal{F}}(R) \cong \ker_{\mathcal{F}}((\delta^2-1)) \oplus \ker_{\mathcal{F}}((\delta^2+1 -4d\delta))$. We note that $\ker_{\mathcal{F}}((\delta^2-1))$ is formed by the 2-periodic functions of \mathcal{F} .

Let us study the A-module structure $A^{1\times 4}/(A^{1\times 3} Endo[2])$ of the endomorphism ring E:

> ext1:=Exti(Involution(Endo[2],A),A,1);

$$ext1 := \begin{bmatrix} \delta^2 - 1 & 0 & 0 \\ 0 & \delta^2 - 1 & 0 \\ 0 & 0 & \delta^2 - 1 \end{bmatrix}, \begin{bmatrix} -1 & 0 & 0 & \delta^2 + 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} \delta^2 + 1 \\ 1 \\ 0 \\ 1 \end{bmatrix}]$$

Г с? . . . Т

Hence, we obtain that the following torsion elements of E

$$\begin{cases} t_1 = -f_1 + (\delta^2 + 1) f_4, \\ t_2 = f_2 - f_4, \\ t_3 = f_3, \end{cases} \quad (\delta^2 - 1) t_i = 0, \quad i = 1, 2, 3, \end{cases}$$

generate the A-module t(E). Moreover, we have $E/t(E) = A^{1\times4}/(A^{1\times3} ext1[2]) \cong A^{1\times4} ext1[3]$, where ext1[2] (resp., ext1[3]) denotes the second (resp., third) matrix of ext1. As the matrix ext1[3] admits the following left-inverse over A

> LeftInverse(ext1[3],A);

$$\begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix}$$

the A-module E/t(E) is a free A-module of rank 1. The short exact sequence of A-modules

$$0 \longrightarrow t(E) \stackrel{\iota}{\longrightarrow} E \stackrel{\rho}{\longrightarrow} E/t(E) \longrightarrow 0,$$

ending with a projective A-module, splits, a fact implying:

$$E \cong t(E) \oplus E/t(E) \cong t(E) \oplus A.$$

Let us now study the A-module $t(E) = (A^{1 \times 4} ext1[2])/(A^{1 \times 2} Endo[2])$:

> L:=Factorize(Endo[2],ext1[2],A);

$$L := \begin{bmatrix} 1 & 1 & 0 \\ 1 & \delta^2 & 0 \\ 0 & 0 & \delta^2 - 1 \end{bmatrix}$$

> SyzygyModule(ext1[2],A);

INJ(3)

By Lemma 3.1 of T. Cluzeau, A. Quadrat, "Factoring and decomposing a class of linear functional systems", *Linear Algebra and Its Applications*, 428 (2008), 324-381, we obtain

$$t(E) \cong A^{1\times 3}/(A^{1\times 3}L) \cong A^{1\times 2}/(A^{1\times 2}Q) \oplus A/(A(\delta^2 - 1)),$$

where the matrix $Q \in A^{2 \times 2}$ is defined by:

> Q:=submatrix(L,1..2,1..2);

$$Q := \left[\begin{array}{cc} 1 & 1 \\ 1 & \delta^2 \end{array} \right]$$

The matrix Q admits an equivalent diagonal matrix which can be computed as follows:

- > Endo_Q:=MorphismsConstCoeff(Q,Q,A):
- > Idem_Q:=IdempotentsMatConstCoeff(Q,Endo_Q[1],A,0,alpha);

$$\begin{split} Idem_{-}Q &:= [[\left[\begin{array}{cc} 0 & -1 \\ 0 & 1 \end{array}\right], \left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right]], [Ore_algebra, [``diff'', dual_shift]], \\ [t,s], [d,\delta], [s,t], [], 0, [], [], [t,s], [], [], [diff = [d,t], dual_shift = [\delta,s]]]] \end{split}$$

$$F := \begin{bmatrix} 0 & -1 \\ 0 & 1 \end{bmatrix}$$

> HeuristicDecomposition(Q,F,A)[1];

$$\left[\begin{array}{rrr} 1 & 0 \\ 0 & 1-\delta^2 \end{array}\right]$$

Hence, we obtain that $A^{1\times 2}/(A^{1\times 2}Q) \cong A/(A1) \oplus A/(A(\delta^2-1)) \cong A/(A(\delta^2-1))$, a fact finally proving that the A-module E satisfies

$$E \cong [A/(A(\delta^2 - 1))]^2 \oplus A$$

where N^l denotes l direct sums of the A-module N.

Let us explicitly describe the previous isomorphism. In order to do that, let us first compute a generalized inverse of the matrix ext1[2] over A:

> U:=GeneralizedInverse(ext1[2],A);

	-1	0	0]
π.	0	1	0
U :=	0	0	1
	0	0	0

Let us now introduce the matrix $V = I_4 - U ext_1[2]$:

> V:=simplify(evalm(1-Mult(U,ext1[2],A)));

$$V := \begin{bmatrix} 0 & 0 & 0 & \delta^2 + 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Using the fact that ext1[2] V = 0, we obtain that the A-morphism $\sigma : E/t(E) \longrightarrow E$ defined by $\sigma(\pi'(\lambda)) = \pi(\lambda V)$, where $\pi : A^{1\times 4} \longrightarrow E$ (resp., $\pi' : A^{1\times 4} \longrightarrow E/t(E)$) denotes the canonical projection onto E (resp., E/t(E)) and $\lambda \in A^{1\times 4}$, satisfies $\rho \circ \sigma = id_{E/t(E)}$. For more details, see Theorem 4 of A. Quadrat, D. Robertz, "Parametrizing all solutions of uncontrollable multidimensional linear systems", *Proceedings of* 16th *IFAC World Congress*, Prague (Czech Republic), 04-08/07/05. If we denote by $\{g_i = \rho(f_i)\}_{i=1,\dots,4}$ a set of generators of the A-module E/t(E), then the A-morphism $\sigma : E/t(E) \longrightarrow E$ is defined by:

$$\begin{cases} \sigma(g_1) = (\delta^2 + 1) f_4 \\ \sigma(g_2) = f_4, \\ \sigma(g_3) = 0, \\ \sigma(g_4) = f_4. \end{cases}$$

Using the relations Endo[2] F = 0 between the generators f_i 's of the A-module E, we obtain that the A-morphism $\chi : \mathrm{id}_E - \sigma \circ \rho : E \longrightarrow E$ is defined by:

$$\begin{cases} \chi(f_1) = f_1 - (\delta^2 + 1) f_4 = -t_1 = t_2, \\ \chi(f_2) = f_2 - f_4 = t_2, \\ \chi(f_3) = f_3 = t_3, \\ \chi(f_4) = f_4 - f_4 = 0. \end{cases}$$

Hence, if we define the A-morphism $\kappa : E \longrightarrow t(E)$ by

$$\left\{ \begin{array}{l} \kappa(f_1) = t_2, \\ \kappa(f_2) = t_2, \\ \kappa(f_3) = t_3, \\ \kappa(f_4) = 0, \end{array} \right.$$

then we get that $id_E = \sigma \circ \rho + \iota \circ \kappa$. Therefore, we obtain

$$\begin{cases}
f_1 = t_2 + (\delta^2 + 1) f_4, \\
f_2 = t_2 + f_4, \\
f_3 = t_3, \\
f_4 = f_4,
\end{cases}$$
(1)

which shows that the generators f_i 's of E can be expressed in terms of the elements $t_2 = f_2 - f_4 = -t_1$, $t_3 = f_3$ and f_4 , a fact proving that $\{t_2, t_3, f_4\}$ is also a family of generators of the A-module E. Using the multiplication table Endo[3] and (1), we can easily obtain the following multiplication table for the

new family of generators $\{t_2, t_3, f_4\}$ of E:

$$\begin{array}{l} t_2 \circ t_2 = 2 \, t_2, \\ t_2 \circ t_3 = -2 \, d \, t_2, \\ t_2 \circ f_4 = -t_2, \\ t_3 \circ t_2 = 2 \, t_3, \\ t_3 \circ t_3 = -2 \, d \, t_3, \\ t_3 \circ f_4 = -t_3, \\ f_4 \circ t_2 = -t_2, \\ f_4 \circ t_3 = 2 \, d \, t_2 + t_3, \\ f_4 \circ f_4 = t_2 + f_4. \end{array}$$

We have previously shown that $M \cong M_1 \oplus M_2$. Hence, we have:

$$E = \operatorname{end}_A(M) \cong \operatorname{end}_A(M_1) \oplus \operatorname{hom}_A(M_1, M_2) \oplus \operatorname{hom}_A(M_2, M_1) \oplus \operatorname{end}_A(M_2).$$

Using the fact that $M_1 = A/(A(\delta^2 - 1))$, we have $\operatorname{end}_A(M_1) \cong A/(A(\delta^2 - 1))$. The fact that M_1 is a torsion A-module and M_2 is torsion-free implies that $\operatorname{hom}_A(M_1, M_2) = 0$. We now need to study $\operatorname{hom}_A(M_2, M_1)$ and $\operatorname{end}_A(M_2)$. Let us denote by $S = (\delta^2 - 1)$ and $T = (\delta^2 + 1 - 4 d \delta)$:

> S:=submatrix(R_final,1..1,1..1); $S := \begin{bmatrix} \delta^2 - 1 \end{bmatrix}$ > T:=submatrix(R_final,2..2,2..3); $T := \begin{bmatrix} \delta^2 + 1 & -4d\delta \end{bmatrix}$

Then, $\hom_A(M_2, M_1)$ is defined by:

> Morph:=MorphismsConstCoeff(T,S,A);

$$Morph := \left[\begin{bmatrix} 2 \ d \\ \delta \end{bmatrix} \right], \left[\begin{array}{c} \delta^2 - 1 \end{array} \right] \right]$$

In particular, $\hom_A(M_2, M_1)$ is defined by only one generator h which satisfies $(\delta^2 - 1)h = 0$, i.e., $\hom_A(M_2, M_1) \cong A/(A(\delta^2 - 1))$.

Finally, let us compute $\operatorname{end}_A(M_2)$:

- > Endo_T:=MorphismsConstCoeff(T,T,A):
- > Endo_T[1];

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 4 \, d \, \delta \\ 0 & \delta^2 + 1 \end{bmatrix} \end{bmatrix}$$

We obtain that the A-module $\operatorname{end}_A(M_2)$ is defined by two generators k_1 and k_2 which satisfy the following A-linear relation:

> Endo_T[2];

$$\begin{bmatrix} \delta^2 + 1 & -1 \end{bmatrix}$$

As we have the following relation $k_2 = (\delta^2 + 1) k_1$, the A-module $\operatorname{end}_A(M_2)$ is generated by k_1 which does not satisfy any other relation. Hence, we get $\operatorname{end}_A(M_2) \cong A$. Hence, we finally find again that $E \cong [A/(A(\delta^2 - 1))]^2 \oplus A$.