```
> restart:
> with(OreModules):
> with(OreMorphisms);
> with(linalg):
```

We consider the model of a string with an interior mass studied in H. Mounier, J. Rudolph, M. Fliess, P. Rouchon, "Tracking control of a vibrating string with an interior mass viewed as delay system", ESAIM COCV, 3 (1998), 315-321,

$$
\left\{\begin{array}{l}
\phi_{1}(t)+\psi_{1}(t)-\phi_{2}(t)-\psi_{2}(t)=0 \tag{1}\\
\dot{\phi}_{1}(t)+\dot{\psi}_{1}(t)+\eta_{1} \phi_{1}(t)-\eta_{1} \psi_{1}(t)-\eta_{2} \phi_{2}(t)+\eta_{2} \psi_{2}(t)=0, \\
\phi_{1}\left(t-2 h_{1}\right)+\psi_{1}(t)-u\left(t-h_{1}\right)=0 \\
\phi_{2}(t)+\psi_{2}\left(t-2 h_{2}\right)-v\left(t-h_{2}\right)=0
\end{array}\right.
$$

where η_{1}, η_{2} are constant parameters and $h_{1}, h_{2} \in \mathbb{R}_{+}$are such that $\mathbb{Q} h_{1}+\mathbb{Q} h_{2}$ is a 2-dimensional \mathbb{Q} vector space. Let us denote by $A=\mathbb{Q}\left(\eta_{1}, \eta_{2}\right)\left[d, \sigma_{1}, \sigma_{2}\right]$ the commutative polynomial algebra of differential incommensurable time-delay operators in d, σ_{1} and σ_{2}, where:

$$
d f(t)=\dot{f}(t), \quad \sigma_{1} f(t)=f\left(t-h_{1}\right), \quad \sigma_{2} f(t)=f\left(t-h_{2}\right)
$$

The system matrix $R \in A^{4 \times 6}$ of (1) is defined by:

```
> A:=DefineOreAlgebra(diff=[d,t],dual_shift=[sigma[1],x[1]],
> dual_shift=[sigma[2],x[2]],polynom=[t,x[1],x[2]],
> comm=[eta[1],eta[2]]):
> R:=matrix(4,6,[1,1,-1,-1,0,0,d+eta[1],d-eta[1],-eta[2],
> eta[2],0,0, sigma[1] 2,1,0,0,-sigma[1],0,0,0,1,sigma[2] ^2,
> 0,-sigma[2]]);
\[
R:=\left[\begin{array}{cccccc}
1 & 1 & -1 & -1 & 0 & 0 \\
d+\eta_{1} & d-\eta_{1} & -\eta_{2} & \eta_{2} & 0 & 0 \\
\sigma_{1}{ }^{2} & 1 & 0 & 0 & -\sigma_{1} & 0 \\
0 & 0 & 1 & \sigma_{2}{ }^{2} & 0 & -\sigma_{2}
\end{array}\right]
\]
```

Factorization problem We show how to use Oremorphisms for computing a factorization of R of the form $R=L S$. We first need to compute the endomorphism ring $\operatorname{end}_{A}(M)$ of the A-module $M=A^{1 \times 6} /\left(A^{1 \times 4} R\right)$ finitely presented by the matrix R.

```
> Endo:=MorphismsConstCoeff(R,R,A):
```

Then, we choose a particular morphism f by selecting the first element P_{1} of Endo[1] and compute a matrix Q_{1} satisfying $R P_{1}=Q_{1} R$. The latter operation can be performed by means of the Factorize procedure of OreModules.

```
> P[1]:=Endo[1,1]; Q[1]:=Factorize(Mult(R,P[1],A),R,A);
```

$$
P_{1}:=\left[\begin{array}{cccccc}
0 & 0 & \eta_{2} \sigma_{2} & \eta_{2} \sigma_{2} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & \sigma_{2} \eta_{1} & \eta_{2} \sigma_{2} & 0 & 0 & 0 \\
0 & -\sigma_{2} \eta_{1} & 0 & \eta_{2} \sigma_{2} & 0 & 0 \\
0 & 0 & \eta_{2} \sigma_{2} \sigma_{1} & \eta_{\mathcal{Z}} \sigma_{2} \sigma_{1} & 0 & 0 \\
0 & \eta_{1}-\sigma_{2}{ }^{2} \eta_{1} & 0 & 0 & 0 & \eta_{2} \sigma_{2}
\end{array}\right]
$$

$$
Q_{1}:=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
-\eta_{2} \sigma_{2} \eta_{1}-\eta_{2} \sigma_{2} d & \eta_{2} \sigma_{2} & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & \eta_{2} \sigma_{2}
\end{array}\right]
$$

By Theorem 3.1 of T. Cluzeau, A. Quadrat, "Factoring and decomposing a class of linear functional systems", Linear Algebra and Its Applications, 428 (2008), 324-381, the matrix S that we are searching for is the one defining the coimage of the endomorphism f of M defined by the previous matrices P_{1} and Q_{1}. So, we compute it using the CoimMorphism procedure.
$>\mathrm{S}:=\operatorname{CoimMorphism}(\mathrm{R}, \mathrm{R}, \mathrm{P}[1], \mathrm{Q}[1], \mathrm{A})[1] ;$

$$
S:=\left[\begin{array}{cccccc}
1 & 0 & -1 & -1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & \sigma_{1} & \sigma_{1} & -1 & 0 \\
0 & 0 & 1 & \sigma_{2}{ }^{2} & 0 & -\sigma_{2} \\
0 & 0 & -d+\eta_{2}-\eta_{1} & -d-\eta_{2}-\eta_{1} & 0 & 0
\end{array}\right]
$$

The matrix L such that $R=L S$ can be obtained by right factoring R by S.
> L:=Factorize(R,S,A);

$$
L:=\left[\begin{array}{cccccc}
1 & 1 & 0 & 0 & 0 & 0 \\
d+\eta_{1} & d-\eta_{1} & 0 & 1 & 0 & 0 \\
\sigma_{1}{ }^{2} & 1 & \sigma_{1} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

We note that choosing another endomorphism of M, i.e., another element of $\operatorname{Endo}[1]$, would lead to another factorization of the matrix R.

Reduction problem We use the package Oremorphisms to reduce the matrix R, i.e., to find an equivalent matrix with a block-triangular form. Theorem 3.2 of T. Cluzeau, A. Quadrat, "Factoring and decomposing a class of linear functional systems", Linear Algebra and Its Applications, 428 (2008), 324381 , this can be done using an endomorphism of M defined by a pair of matrices P and Q provided that the A-modules $\operatorname{ker}_{A}(. P), \operatorname{coim}_{A}(. P), \operatorname{ker}_{A}(. Q)$ and $\operatorname{coim}_{A}(. Q)$ are free. We use the library OreModules to check that these properties are fulfilled and use a heuristic method to compute bases of those free A-modules. We then form the matrices U and V as defined in Theorem 3.2 of T. Cluzeau, A. Quadrat, "Factoring and decomposing a class of linear functional systems", Linear Algebra and Its Applications, 428 (2008), 324-381. We note that we generally need to use the package QuillenSusin to compute bases of free modules over a commutative polynomial ring (see A. Fabiańska, A. Quadrat, "Applications of the Quillen-Suslin theorem in multidimensional systems theory", chapter of the book Gröbner Bases in Control Theory and Signal Processing, H. Park and G. Regensburger (Eds.), Radon Series on Computation and Applied Mathematics 3, de Gruyter publisher, 2007, 23-106).

```
> U1:=SyzygyModule(P[1],A): EU:=Exti(Involution(U1,A),A,1):
> U2:=LeftInverse(EU[3],A): U:=stackmatrix(U1,U2);
> V1:=SyzygyModule(Q[1],A): EV:=Exti(Involution(V1,A),A,1):
> V2:=LeftInverse(EV[3],A): V:=stackmatrix(V1,V2);
```

$$
U:=\left[\begin{array}{cccccc}
1 & 0 & -1 & -1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & \sigma_{1} & \sigma_{1} & -1 & 0 \\
0 & 0 & -1 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \quad V:=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Then, we can compute the reduction $V R U^{-1}$ of the matrix R :
> R_red:=Mult(V,R,LeftInverse(U,A),A);

$$
\text { R_red }:=\left[\begin{array}{cccccc}
1 & 1 & 0 & 0 & 0 & 0 \\
\sigma_{1}{ }^{2} & 1 & \sigma_{1} & 0 & 0 & 0 \\
d+\eta_{1} & d-\eta_{1} & 0 & -\eta_{1}-\eta_{2}-d & -2 \eta_{2} & 0 \\
0 & 0 & 0 & -\sigma_{2}{ }^{2} & 1-\sigma_{2}{ }^{2} & -\sigma_{2}
\end{array}\right]
$$

This reduction can be obtained using the HeuristicReduction procedure.
> HeuristicReduction(R,P[1],A)[1];

$$
\left[\begin{array}{cccccc}
1 & 1 & 0 & 0 & 0 & 0 \\
\sigma_{1}{ }^{2} & 1 & \sigma_{1} & 0 & 0 & 0 \\
d+\eta_{1} & d-\eta_{1} & 0 & -\eta_{1}-\eta_{2}-d & -2 \eta_{2} & 0 \\
0 & 0 & 0 & -\sigma_{2}{ }^{2} & 1-\sigma_{2}{ }^{2} & -\sigma_{2}
\end{array}\right]
$$

Decomposition problem We now show how to use the package Oremorphisms to decompose the differential time-delay linear system (1), i.e., to find an equivalent system defined by a block-diagonal matrix. To achieve this decomposition, we first need to compute idempotent endomorphisms of M that are defined by idempotent matrices P and Q i.e., $R P=Q R, P^{2}=P$ and $Q^{2}=Q$. A way to do that is to use the procedure IdempotentsMatConstCoeff of OreMorphisms. We need to specify the total order in d, σ_{1} and σ_{2} of the idempotent matrix P, a piece of information which is specified by the fourth entry of the procedure. We first start by searching for idempotents of M defined by constant matrices.
> Idem_order0:=IdempotentsMatConstCoeff(R,Endo[1], A, 0) [1];

$$
\text { Idem_order } \left.0:=\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right],\left[\begin{array}{cccccc}
0 & -1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]\right]
$$

We choose the non-trivial idempotent, i.e., the second entry of Idem_order 0 :

```
> P[2]:=Idem_order0[2]; Q[2]:=Factorize(Mult(R,P[2],A),R,A);
```

$$
P_{2}:=\left[\begin{array}{cccccc}
0 & -1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \quad Q_{2}:=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
-d-\eta_{1} & 1 & 0 & 0 \\
-\sigma_{1}{ }^{2} & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

The fact that $P_{2}^{2}=P_{2}$ and $Q_{2}^{2}=Q_{2}$ imply that the A-modules $\operatorname{ker}_{A}\left(. P_{2}\right), \operatorname{ker}_{A}\left(. Q_{2}\right), \operatorname{im}_{A}\left(. P_{2}\right)=$ $\operatorname{ker}_{A}\left(.\left(I_{6}-P_{2}\right)\right)$ and $\operatorname{im}_{A}\left(. Q_{2}\right)=\operatorname{ker}_{A}\left(.\left(I_{4}-Q_{2}\right)\right)$ are projective, and thus, free by the Quillen-Suslin theorem. We need to compute bases of those free A-modules. We then form the matrices U and V as explained in Theorem 4.2 of T. Cluzeau, A. Quadrat, "Factoring and decomposing a class of linear functional systems", Linear Algebra and Its Applications, 428 (2008), 324-381.

$$
\begin{aligned}
& >\text { U1:=SyzygyModule(P[2],A): U2:=SyzygyModule }(\text { evalm }(1-\mathrm{P}[2]), \mathrm{A}): \\
& >\mathrm{U}:=\operatorname{stackmatrix}(\mathrm{U} 1, \mathrm{U} 2) ; \\
& >\mathrm{V}:=\operatorname{SyzygyModule}(\mathrm{Q}[2], \mathrm{A}): \mathrm{V} 2:=\text { SyzygyModule }(\text { evalm }(1-\mathrm{Q}[2]), \mathrm{A}): \\
& >\mathrm{V}:=\operatorname{stackmatrix}(\mathrm{V} 1, \text { submatrix }(\mathrm{V} 2,[1,2,4], 1 . .4)) ; \\
& \qquad U:=\left[\begin{array}{cccccc}
1 & 1 & -1 & -1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \quad V:=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
d+\eta_{1} & -1 & 0 & 0 \\
\sigma_{1}{ }^{2} & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Now, we can compute the corresponding decomposition $V R U^{-1}$ of R :

```
> R_dec:=Mult(V,R,LeftInverse(U,A),A);
```

$$
\text { R_dec }:=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 2 \eta_{1} & -d+\eta_{2}-\eta_{1} & -d-\eta_{2}-\eta_{1} & 0 & 0 \\
0 & \sigma_{1}{ }^{2}-1 & -\sigma_{1}{ }^{2} & -\sigma_{1}{ }^{2} & \sigma_{1} & 0 \\
0 & 0 & 1 & \sigma_{2}{ }^{2} & 0 & -\sigma_{2}
\end{array}\right]
$$

We can now try to decompose the second diagonal block matrix S of $R_{_} d e c$:

```
> S:=submatrix(R_dec,2..4,2..6):
```

We apply the same technique as above: compute the endomorphism ring of the A-module $N=A^{1 \times 5} /\left(A^{1 \times 3} S\right)$ finitely presented by S, find one idempotent defined by idempotent matrices, compute bases of the free A-modules defined by their kernels and images, form the corresponding unimodular matrices and deduce the decomposition of S.

```
> Endo1:=MorphismsConstCoeff(S,S,A):
> Idem1_order0:=IdempotentsMatConstCoeff(S,Endo1[1],A,0) [1];
```

$$
\text { Idem1_order } \left.0:=\left[\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right],\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]\right]
$$

We do not obtain a non-trivial idempotent of order 0 by means of the IdempotentsMatConstCoeff procedure. Hence, we can try another technique which searches for idempotents which are obtained by homotopies from the trivial idempotent id ${ }_{N}$ defined by $P_{3}=I_{5}$ and $Q_{3}=I_{3}$, i.e., $S P_{3}=Q_{3} S$.

```
> P[3]:=diag(1$5): Q[3]:=diag(1$3): Z[3]:=matrix (5,3,[0$15]):
```

We then need to solve the algebraic Riccati equation $\Lambda S \Lambda+\Lambda=0$:

```
> Mu:=RiccatiConstCoeff(S,P[3],Q[3],Z[3],A,0,alpha):
```

We choose one solution Λ_{1} of the previous algebraic Riccati equation:
$>\operatorname{Lambda}[1]:=\operatorname{subs}(\{\mathrm{b} 321=0, \mathrm{~b} 521=0\}, \mathrm{Mu}[1,2])$;

$$
\Lambda_{1}:=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

We get a non-trivial idempotent defined by the following matrices P_{4} and Q_{4} :

$$
\begin{array}{ll}
> & \mathrm{P}[4]:=\text { simplify }(\text { (evalm }(\mathrm{P}[3]+\mathrm{Mult}(\operatorname{Lambda}[1], \mathrm{S}, \mathrm{~A}))) ; \\
> & \mathrm{Q}[4]:=\text { simplify }(\operatorname{evalm}(\mathrm{Q}[3]+\mathrm{Mult}(\mathrm{~S}, \operatorname{Lambda}[1], \mathrm{A}))) ; \\
& P_{4}:=\left[\begin{array}{ccccc}
\sigma_{1}{ }^{2} & -\sigma_{1}{ }^{2} & -\sigma_{1}{ }^{2} & \sigma_{1} & 0 \\
\sigma_{1}{ }^{2}-1 & -\sigma_{1}{ }^{2}+1 & -\sigma_{1}{ }^{2} & \sigma_{1} & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] \quad Q_{4}:=\left[\begin{array}{ccc}
1 & \eta_{1}-d+\eta_{2} & 0 \\
0 & 0 & 0 \\
0 & 1 & 1
\end{array}\right]
\end{array}
$$

We now compute bases of the free A-modules $\operatorname{ker}_{A}\left(. P_{4}\right), \operatorname{ker}_{A}\left(. Q_{4}\right), \operatorname{im}_{A}\left(. P_{4}\right)=\operatorname{ker}_{A}\left(.\left(I_{5}-P_{4}\right)\right)$ and $\operatorname{im}_{A}\left(. Q_{4}\right)=\operatorname{ker}_{A}\left(.\left(I_{3}-Q_{4}\right)\right)$ and we get the following two unimodular matrices X and Y :

$$
\begin{aligned}
& >\text { X1:=SyzygyModule(P[4],A): X2:=SyzygyModule(evalm(1-P[4]),A): } \\
& >\text { X:=stackmatrix(X1, X2); } \\
& >\text { Y1:=SyzygyModule(Q[4],A): Y2:=SyzygyModule(evalm(1-Q[4]),A): } \\
& \text { > Y:=stackmatrix (Y1, Y2); } \\
& X:=\left[\begin{array}{ccccc}
\sigma_{1}{ }^{2}-1 & -\sigma_{1}{ }^{2} & -\sigma_{1}{ }^{2} & \sigma_{1} & 0 \\
1 & -1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] \quad Y:=\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & d-\eta_{2}-\eta_{1} \\
0 & 1 & 1
\end{array}\right]
\end{aligned}
$$

Then, we obtain the following decomposition $Y S X^{-1}$ of the matrix S :

$$
\begin{aligned}
& \text { > S_dec:=Mult(Y,S,LeftInverse(X,A),A); } \\
& \text { S_dec := } \\
& {\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 2 \eta_{1} & -d-\eta_{2}-\eta_{1}+\sigma_{2}{ }^{2} d-\eta_{2} \sigma_{2}{ }^{2}-\sigma_{2}{ }^{2} \eta_{1} & 0 & \left(\eta_{1}-d+\eta_{2}\right) \sigma_{2} \\
0 & \sigma_{1}{ }^{2}-1 & -\sigma_{1}{ }^{2}+\sigma_{2}{ }^{2} & \sigma_{1} & -\sigma_{\mathcal{Z}}
\end{array}\right]}
\end{aligned}
$$

We continue by considering the second diagonal block matrix T of $S_{_} d e c$:

```
> T:=submatrix(S_dec,2..3,2..5):
```

We apply the same technique as above:

```
> P[5]:=diag(1$4): Q[5]:=diag(1$2): Z[5]:=matrix(4,2,[0$8]):
```

We compute the solutions of the Riccati equation $\Lambda T \Lambda+\Lambda=0$:

```
> Mu1:=RiccatiConstCoeff(T,P[5],Q[5],Z[5],A,0,alpha):
```

We choose one solution Λ_{2} of the previous algebraic Riccati equation:
$>$ Lambda[2]:=subs(\{b311=0\},Mu1[1,1]);

$$
\Lambda_{2}:=\left[\begin{array}{cc}
-1 /\left(2 \eta_{1}\right) & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right]
$$

Hence, we get an idempotent of the endomorphism ring of the A-module finitely presented by T defined by the following matrices P_{6} and Q_{6} :

```
> P[6]:=simplify(evalm(P[5]+Mult(Lambda[2],T,A)));
> Q[6]:=simplify(evalm(Q[5]+Mult(T,Lambda[2],A)));
```

$$
\begin{gathered}
P_{6}=\left[\begin{array}{cccc}
0 & 1 / 2 \frac{\eta_{1}+\eta_{2}+d-\sigma_{2}{ }^{2} d+\eta_{2} \sigma_{2}{ }^{2}+\sigma_{2}{ }^{2} \eta_{1}}{\eta_{1}} & 0 & -1 / 2 \frac{\left(\eta_{1}-d+\eta_{2}\right) \sigma_{2}}{\eta_{1}} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
Q_{6}=\left[\begin{array}{cc}
0 & 0 \\
-1 / 2 \frac{\sigma_{1}{ }^{2}-1}{\eta_{1}} & 1
\end{array}\right]
\end{gathered}
$$

We now compute bases of the free A-modules $\operatorname{ker}_{A}\left(. P_{6}\right), \operatorname{ker}_{A}\left(. Q_{6}\right), \operatorname{im}_{A}\left(. P_{6}\right)=\operatorname{ker}_{A}\left(.\left(I_{4}-P_{6}\right)\right)$ and $\operatorname{im}_{A}\left(. Q_{6}\right)=\operatorname{ker}_{A}\left(.\left(I_{2}-Q_{6}\right)\right)$ and we obtain the following unimodular matrices G and H :

$$
\begin{aligned}
& \text { > G1:=SyzygyModule(P[6],A): G2:=SyzygyModule(evalm(1-P[6]),A): } \\
& >\text { G:=stackmatrix(G1,G2); } \\
& >\text { H1:=SyzygyModule(Q[6],A): H2:=SyzygyModule(evalm(1-Q[6]),A): } \\
& \text { > H:=stackmatrix(H1,H2); } \\
& G:= \\
& {\left[\begin{array}{cccc}
2 \eta_{1} & -d-\eta_{2}-\eta_{1}+\sigma_{2}{ }^{2} d-\eta_{2} \sigma_{2}{ }^{2}-\sigma_{2}{ }^{2} \eta_{1} & 0 & \sigma_{2} \eta_{1}-\sigma_{2} d+\eta_{2} \sigma_{2} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]} \\
& H:=\left[\begin{array}{cc}
1 & 0 \\
\sigma_{1}{ }^{2}-1 & -2 \eta_{1}
\end{array}\right]
\end{aligned}
$$

Then, we obtain the following decomposition $H T G^{-1}$ of the matrix T :

```
> T_dec:=Mult(H,T,LeftInverse(G,A),A);
```

$$
\left.\begin{array}{cc}
\text { T_dec }:= \\
{\left[\begin{array}{cc}
1 & 0 \\
0 & \left(\left(-\eta_{1}+d-\eta_{2}\right) \sigma_{2}{ }^{2}+\eta_{1}-d-\eta_{2}\right) \sigma_{1}{ }^{2}+\left(-d-\eta_{1}+\eta_{2}\right) \sigma_{2}{ }^{2}+d+\eta_{2}+\eta_{1}
\end{array}-2 \eta_{1} \sigma_{1}\right.} \\
0 & 0 \\
& -2 \eta_{1} \sigma_{1} \\
& \left(\eta_{1}-d+\eta_{2}\right) \sigma_{2} \sigma_{1}{ }^{2}+\left(d-\eta_{2}+\eta_{1}\right) \sigma_{2}
\end{array}\right] .
$$

From the previous three invertible transformations, we can deduce the unimodular matrices that perform all this decomposition process in one step:

```
> W[1]:=Mult(diag(1,1,G),diag(1,X),U,A):
> W[2]:=Mult(diag(1,1,H),\operatorname{diag}(1,Y),V,A):
```

The system matrix R is equivalent to the matrix $L=W_{2} R W_{1}^{-1}$.

```
> L:=Mult(W[2],R,LeftInverse(W[1],A),A)):
```

The matrix L has then the form
> ShapeOfMatrix(L);

$$
\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & * & * & *
\end{array}\right]
$$

where the stars * denote non-trivial elements of A respectively defined by:

```
\(>\operatorname{collect}(L[4,4],\{d\), sigma[1], sigma[2] \(\})\);
    \(\left(\left(-\eta_{1}+d-\eta_{2}\right) \sigma_{2}{ }^{2}+\eta_{1}-d-\eta_{2}\right) \sigma_{1}{ }^{2}+\left(-d-\eta_{1}+\eta_{2}\right) \sigma_{2}{ }^{2}+d+\eta_{2}+\eta_{1}\)
\(>\) collect(L[4,5],\{d,sigma[1],sigma[2]\});
    \(-2 \eta_{1} \sigma_{1}\)
\(>\) collect(L[4,6],\{d,sigma[1],sigma[2]\});
    \(\left(\eta_{1}-d+\eta_{2}\right) \sigma_{2} \sigma_{1}^{2}+\left(d-\eta_{2}+\eta_{1}\right) \sigma_{2}\)
```

The entries of the last row of L can be reduced by means of elementary column operations. Hence, if we consider the following unimodular matrix

$$
\left[\begin{array}{cccccc}
1 & 1 & -1 & -1 & == \\
0 & \sigma_{1}{ }^{2}-1 & -\sigma_{1}{ }^{2} & -\sigma_{1}{ }^{2} & 0 & 0 \\
0 & 2 \eta_{1} & -2 \eta_{1} & -\eta_{1}-\eta_{2}-d+\sigma_{2}{ }^{2} d-\sigma_{2}{ }^{2} \eta_{1}-\eta_{2} \sigma_{2}{ }^{2} & 0 & -\left(d-\eta_{1}-\eta_{2}\right) \sigma_{2} \\
0 & 0 & 0 & 1-\sigma_{2}{ }^{2} & 0 & \sigma_{2} \\
0 & 0 & 0 & \sigma_{1}\left(\sigma_{2}{ }^{2} d-\sigma_{2}{ }^{2} \eta_{1}-\eta_{2} \sigma_{2}{ }^{2}-d-\eta_{2}+\eta_{1}\right) & -2 \eta_{1} & -\sigma_{2} \sigma_{1}\left(d-\eta_{1}-\eta_{2}\right) \\
0 & 0 & 0 & 2 \sigma_{2} \eta_{2} & 0 & -2 \eta_{2}
\end{array}\right]
$$

obtained from W_{1} by means of elementary operations (see the corresponding Maple worksheet), we finally get the following simpler decomposition $W_{2} R J^{-1}$ of R :
> R_final:=Mult(W[2],R,LeftInverse(J,A),A);

$$
R_{-} \text {final }=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & d+\eta_{1}+\eta_{2} & \sigma_{1} & \sigma_{2}
\end{array}\right]
$$

Hence, the differential time-delay system (1) formed by 4 equations in 6 unknowns is equivalent to the following sole equation in 3 unknowns:

$$
\begin{equation*}
\dot{x}_{1}(t)+\left(\eta_{1}+\eta_{2}\right) x_{1}(t)+x_{2}\left(t-h_{1}\right)+x_{3}\left(t-h_{2}\right)=0 . \tag{2}
\end{equation*}
$$

Using the simple form of (2), we can easily study its structural properties (e.g., controllability, parametrizability, flatness, π-freeness, stability, stabilizability), and thus, those of (1). In particular, we obtain that (2), and thus, (1) is controllable, parametrizable, σ_{1}-free and σ_{2}-free (see F. Chyzak, A. Quadrat, D. Robertz, "Effective algorithms for parametrizing linear control systems over Ore algebras", Appl. Algebra Engrg. Comm. Comput., 16 (2005), 319-376, and M. Fliess, H. Mounier, "Controllability and observability of linear delay systems: an algebraic approach", ESAIM: Control, Optimisation and Calculus of Variations, 3 (1998), 301-314, for the corresponding definitions). Parametrizations of (1) can directly be obtained from the ones of (2) by means of the matrix J^{-1} (see the previous references). System (2) admits an unstable pole at $-\left(\eta_{1}+\eta_{2}\right)$, where the η_{i} 's are two positive parameters of (1). Its stabilizability can be studied using, e.g., A. Quadrat, "The fractional representation approach to synthesis problems: an algebraic analysis viewpoint. Part II: Internal stabilization", SIAM J. Control \mathcal{E} Optimization, 42 (2003), 300-320.

