- > restart:
- > with(OreModules):
- > with(OreMorphisms);
- > with(linalg):

We consider the differential time-delay model of a stirred tank studied in H. Kwakernaak, R. Sivan, *Linear Optimal Control Systems*, Wiley-Interscience, 1972. The system matrix is defined by:

- > A:=DefineOreAlgebra(diff=[d,t],dual_shift=[delta,s],polynom=[t,s],
- > comm=[theta,c[0],c[1],c[2],V[0]]):
- > R:=matrix(2,4,[d+1/2/theta,0,-1,-1,0,d+1/theta,-(c[1]-c[0])/V[0]*delta,
- > -(c[2]-c[0])/V[0]*delta]);

$$R := \begin{bmatrix} d + \frac{1}{2\theta} & 0 & -1 & -1 \\ 0 & d + \frac{1}{\theta} & -\frac{(c_1 - c_0)\delta}{V_0} & -\frac{(c_2 - c_0)\delta}{V_0} \end{bmatrix}$$

Let us consider the $A = \mathbb{Q}(c_0, c_1, c_2, V_0, \theta)[d, \delta]$ -module $M = A^{1 \times 4}/(A^{1 \times 2} R)$ finitely presented by R. We compute the A-module structure of the endomorphism ring $E = \operatorname{end}_A(M)$ of M:

> Endo:=MorphismsConstCoeff(R,R,A):

We obtain that the A-module E is defined by

> nops(Endo[1]);

8

generators which satisfy

> rowdim(Endo[2]);

4

A-linear relations. We do not print the large outputs of Endo.

Let us now search for idempotents of E defined by two idempotent matrices $P \in A^{4 \times 4}$ and $Q \in A^{2 \times 2}$, i.e., P and Q satisfy the relations R P = Q R, $P^2 = P$ and $Q^2 = Q$:

- > Idem:=IdempotentsMatConstCoeff(R,Endo[1],A,0,alpha):
- > nops(Idem[1]);

12

We obtain 12 different matrices P satisfying the previous relations. Let us consider the first one where we have set to zero the two arbitrary constants:

$$P := \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{c_1 - c_0}{c_1 - c_2} & \frac{c_2 - c_0}{c_1 - c_2} \\ 0 & 0 & -\frac{c_1 - c_0}{c_1 - c_2} & -\frac{c_2 - c_0}{c_1 - c_2} \end{bmatrix} \quad Q := \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

As we have $P^2 = P$ and $Q^2 = Q$, we know that the A-modules ker_A(.P), im_A(.P) = ker_A(.(I₄ - P)), ker_A(.Q) and im_A(.Q) = ker_A(.(I₂ - Q)) are projective, and thus, free by the Quillen-Suslin theorem. Let us compute bases of those free modules:

- > U1:=SyzygyModule(P,A): U2:=SyzygyModule(evalm(1-P),A):
- > U:=stackmatrix(U1,U2);

$$U := \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & c_1 - c_0 & c_2 - c_0 \end{bmatrix}$$

- > X1:=SyzygyModule(Q,A): X2:=SyzygyModule(evalm(1-Q),A):
- > X:=stackmatrix(X1,X2);

$$X := \left[\begin{array}{rrr} 1 & 0 \\ 0 & 1 \end{array} \right]$$

We then know that the matrix $U \in GL_4(A)$ is such that the matrix R is equivalent to the following block-diagonal matrix $S = RU^{-1}$:

> S:=Mult(R,LeftInverse(U,A),A);

$$S := \left[\begin{array}{cccc} d + \frac{1}{2\theta} & -1 & 0 & 0 \\ \\ 0 & 0 & d + \frac{1}{\theta} & -\frac{\delta}{V_0} \end{array} \right]$$

We note that the second entry of the matrix S is invertible over A. Hence, we can use an elementary row operation to reduce the first row. In order to do that, we introduce the following unimodular matrix:

> X:=evalm([[0,1,0,0],[-1,d+1/(2*theta),0,0],[0,0,1,0],[0,0,0,1]]);

$$X := \begin{bmatrix} 0 & 1 & 0 & 0 \\ -1 & d + \frac{1}{2\theta} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Then, the matrix SX has the form:

> Mult(S,X,A);

$$\left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 0 & d + \frac{1}{\theta} & -\frac{\delta}{V_0} \end{array} \right]$$

Hence, if we denote by $Y = X^{-1} U \in GL_4(A)$ defined by

> Y:=Mult(LeftInverse(X,A),U,A);

$$Y := \begin{bmatrix} d + \frac{1}{2\theta} & 0 & -1 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & c_1 - c_0 & c_2 - c_0 \end{bmatrix}$$

then, the matrix R is equivalent to the following simple block-diagonal matrix $V R Y^{-1}$:

> Mult(V,R,LeftInverse(Y,A),A);

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & d + \frac{1}{\theta} & -\frac{\delta}{V_0} \end{bmatrix}$$

Therefore, we have $M \cong A^{1 \times 2} / (A \begin{pmatrix} 1 & 0 \end{pmatrix}) \oplus A^{1 \times 2} / (A \begin{pmatrix} d + 1/\theta & \delta/V_0 \end{pmatrix})$, i.e.:

$$M \cong A \oplus A^{1 \times 2} / (A (d + 1/\theta - \delta/V_0)).$$

If \mathcal{F} denotes an A-module (e.g., $\mathcal{F} = C^{\infty}(\mathbb{R})$), then we obtain that the linear differential time-delay system ker_{\mathcal{F}}(R.) is equivalent to the linear system ker_{\mathcal{F}}(S.), i.e.:

$$\zeta_1 = 0, \quad \zeta_2 \in \mathcal{F}, \quad \dot{\zeta}_3(t) - \zeta_3(t)/\theta + \zeta_4(t-h)/V_0 = 0.$$

Let us study the A-module structure of the endomorphism ring $E = \text{end}_A(M)$ of M:

- > ext1:=Exti(Involution(Endo[2],A),A,1): ext1[1];

As we have $\operatorname{ext}_A^1(N, A) = 0$, where $N = A^{1 \times 2}/(A^{1 \times 4} R^T)$, because the previous matrix is the identity matrix (see F. Chyzak, A. Quadrat, D. Robertz, "OREMODULES: A symbolic package for the study of multidimensional linear systems", in the book *Applications of Time-Delay Systems*, J. Chiasson and J. - J. Loiseau (Eds.), Lecture Notes in Control and Information Sciences (LNCIS) 352, Springer, 233-264), we obtain that the A-module E is torsion-free. Let us check whether or not the A-module E is reflexive:

> ext2:=Exti(Involution(Endo[2],A),A,2)[1];

δ	0	0	0
$d \theta + 1$	0	0	0
0	δ	0	0
0	$d\theta+1$	0	0
0	0	δ	0
0	0	$d\theta+1$	0
0	0	0	δ
0	0	0	$d\theta+1$

As the previous matrix is not the identity matrix, we obtain that $\operatorname{ext}_A^2(N, A) \neq 0$, a fact proving that the A-module E is not reflexive. Hence, the A-module E is torsion-free but not free.

We proved that $M \cong A \oplus N$, where $N = A^{1 \times 2} / (A (d + 1/\theta \quad \delta/V_0))$. Hence, we get:

$$E = \operatorname{end}_A(M) \cong \operatorname{end}_A(A) \oplus \operatorname{hom}_A(N, A) \oplus \operatorname{hom}_A(A, N) \oplus \operatorname{end}_A(N)$$

We have $\operatorname{end}_A(A) \cong A$ and $\operatorname{hom}_A(A, N) \cong N$. Let us compute the A-modules $\operatorname{hom}_A(N, A)$ and $\operatorname{end}_A(N)$. In order to do that, we introduce the two matrices Z = 0 and $T = (d + 1/\theta \quad \delta/V_0)$:

> Z:=evalm([[0]]);

$$Z := \begin{bmatrix} 0 \end{bmatrix}$$

> T:=submatrix(S,2..2,3..4);

$$T := \begin{bmatrix} d + \frac{1}{\theta} & -\frac{\delta}{V_0} \end{bmatrix}$$

Let us check that we have $\hom_A(A, N) \cong N$ by computing the A-module $\hom_A(A, N)$:

> E[1]:=MorphismsConstCoeff(Z,T,A);

$$E_1 := \left[\begin{bmatrix} 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \end{bmatrix} \right], \begin{bmatrix} V_0 d \theta + V_0 & -\delta \theta \end{bmatrix} \right]$$

We obtain that the A-module $\hom_A(A, N)$ is defined by two generators f_1 and f_2 satisfying the A-linear relation $V_0 \theta d f_1 - \theta \delta f_2 = 0$, which is precisely the definition of the A-module N.

Let us now compute the A-module $\hom_A(N, A)$:

> E[2]:=MorphismsConstCoeff(T,Z,A);

$$E_2 := \left[\begin{bmatrix} \delta \theta \\ V_0 d \theta + V_0 \end{bmatrix} \right], []]$$

We obtain that A-module $\hom_A(N, A)$ is defined by one generator which does not satisfy any A-linear relation, i.e., it is not a torsion element. Hence, we obtain $\hom_A(N, A) \cong A$. We note that we have T E[2][1] = 0, which is consistent with the fact that $\hom_A(N, A) \cong \ker_A(T)$.

Let us compute the A-module $\operatorname{end}_A(N)$:

- > E[3]:=MorphismsConstCoeff(T,T,A):
- > E[3][1];

$$\begin{bmatrix} 0 & \delta \theta \\ 0 & V_0 d \theta + V_0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}]$$

The A-module $\operatorname{end}_A(N)$ is defined by two generators g_1 and $g_2 = \operatorname{id}_N$ which satisfy the relation:

> E[3][2];

 $\begin{bmatrix} -1 & V_0 d\theta + V_0 \end{bmatrix}$

Hence, we obtain that $g_1 = V_0 (\theta d + 1) \operatorname{id}_M$, i.e., the A-module $\operatorname{end}_A(N)$ is generated by id_M , which proves that $\operatorname{end}_A(N) \cong A$. We finally obtain:

$$E \cong A \oplus N \oplus A \oplus A = A^3 \oplus N.$$

We can check the previous result by studying the A-module E. One way to do that is to find an injective A-morphism $\varphi : N \longrightarrow E$ such that $\operatorname{coker} \varphi \cong A^{1 \times 3}$. Using OREMORPHISMS, we can try to handle the corresponding computations. We first compute the A-module $\hom_A(N, E)$:

> Morph:=MorphismsConstCoeff(T,Endo[2],A):

If we consider the matrix $P = Morph[1][6] \in A^{2\times 8}$ defining the element h of $hom_A(N, E)$ and compute a matrix $Q \in A^{1\times 8}$ satisfying T P = Q Endo[2],

> Y:=Morph[1][6]; Z:=Factorize(Mult(T,Y,A),Endo[2],A);

$$Y := \begin{bmatrix} 0 & 0 & 0 \\ \theta V_0 (c_2 c_1 - c_2 c_0 + c_0^2 - c_1 c_0) & -\theta V_0 (c_2 c_1 - c_2 c_0 + c_0^2 - c_1 c_0) & 0 \\ V_0 \theta (-c_1 + c_2) 0 & 0 & 0 & 0 & 0 \\ 0 & \theta V_0 (-2 c_2 c_0 + c_0^2 + c_2^2) & 0 & 0 & 0 & -\theta V_0 (-2 c_1 c_0 + c_0^2 + c_1^2) \\ Z := \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

then we can compute the A-module ker φ :

> K:=KerMorphism(T,Endo[2],Y,Z,A);

$$K := \begin{bmatrix} 1 \end{bmatrix}, \begin{bmatrix} V_0 d\theta + V_0 & -\delta\theta \end{bmatrix}, \begin{bmatrix} d + \theta^{-1} & -\frac{\delta}{V_0} \end{bmatrix}, \begin{bmatrix} \frac{1}{\theta V_0} \end{bmatrix}$$

As the first matrix K[1][1] is 1, we obtain that $\varphi \in \hom_A(N, E)$ is injective.

Let us now compute the A-module $\operatorname{coker} \varphi$:

> Coker:=CokerMorphism(T,Endo[2],Y,Z,A):

Let us compute its rank:

> OreRank(Coker,A);

3

We finally need to check whether or not the A-module coker φ is free:

> Ext1:=Exti(Involution(Coker,A),A,1): Ext1[1];

 $\left[\begin{array}{cccccccccccc} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{array}\right]$

We obtain that the A-module coker φ is torsion-free. Moreover, we have coker $\varphi \cong A^{1\times 8} Ext_{1}[3]$.

$$\begin{bmatrix} 0 & 0 & 0 & 0 & \frac{1}{2(c_2-c_1)^2 V_0 \theta} & \frac{1}{(c_2-c_1)^2 (c_1-c_0)} & \frac{1}{(c_2-c_1)^2 (c_0-c_1)} & 0 \\ 0 & 0 & 0 & 0 & \frac{c_2-c_0}{2(-c_1+c_2)^2 V_0 \theta} & \frac{c_0-c_2}{(c_2-c_1)^2 (c_0-c_1)} & -\frac{1}{(c_2-c_1)^2} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{c_0-c_2}{2 V_0 \theta (c_2-c_1)} & \frac{1}{c_1-c_2} & \frac{c_0-c_2}{(c_1-c_2)(c_1-c_0)} & 0 \end{bmatrix}$$

As the matrix Ext1[3] admits a left-inverse over A, we obtain that $\operatorname{coker} \varphi \cong A^{1\times3}$, which proves that we have the split exact sequence of A-modules $0 \longrightarrow N \xrightarrow{\varphi} E \longrightarrow A^{1\times3} \longrightarrow 0$, a fact implying that $E \cong N \oplus A^3$ and proves the result. In all the previous computations, we have assumed that we were in the generic situation, i.e., the constants c_0 , c_1 and c_2 are pairwise different. As the module properties of M are known to depend on the system parameters (see F. Chyzak, A. Quadrat, D. Robertz, OREMODULES project, http://wwwb.math.rwth-aachen.de/OreModules for the precise details), we let the reader handle the different non-generic situations.