```
> restart:
> with(OreModules):
> with(OreMorphisms);
> with(linalg):
```

We consider the differential time-delay model of a stirred tank studied in H. Kwakernaak, R. Sivan, Linear Optimal Control Systems, Wiley-Interscience, 1972. The system matrix is defined by:

```
> A:=DefineOreAlgebra(diff=[d,t],dual_shift=[delta,s],polynom=[t,s],
> comm=[theta,c[0],c[1],c[2],V[0]]):
> R:=matrix(2,4,[d+1/2/theta,0,-1,-1,0,d+1/theta,-(c[1]-c[0])/V[0]*delta,
> -(c[2]-c[0])/V[0]*delta]);
\[
R:=\left[\begin{array}{cccc}
d+\frac{1}{2 \theta} & 0 & -1 & -1 \\
0 & d+\frac{1}{\theta} & -\frac{\left(c_{1}-c_{0}\right) \delta}{V_{0}} & -\frac{\left(c_{2}-c_{0}\right) \delta}{V_{0}}
\end{array}\right]
\]
```

Let us consider the $A=\mathbb{Q}\left(c_{0}, c_{1}, c_{2}, V_{0}, \theta\right)[d, \delta]$-module $M=A^{1 \times 4} /\left(A^{1 \times 2} R\right)$ finitely presented by R. We compute the A-module structure of the endomorphism ring $E=\operatorname{end}_{A}(M)$ of M :

```
> Endo:=MorphismsConstCoeff(R,R,A):
```

We obtain that the A-module E is defined by

```
> nops(Endo[1]);
```


8

generators which satisfy

```
> rowdim(Endo[2]);
```

A-linear relations. We do not print the large outputs of Endo.
Let us now search for idempotents of E defined by two idempotent matrices $P \in A^{4 \times 4}$ and $Q \in A^{2 \times 2}$, i.e., P and Q satisfy the relations $R P=Q R, P^{2}=P$ and $Q^{2}=Q$:

```
> Idem:=IdempotentsMatConstCoeff(R,Endo[1],A,0,alpha):
> nops(Idem[1]);
```

We obtain 12 different matrices P satisfying the previous relations. Let us consider the first one where we have set to zero the two arbitrary constants:

$$
\begin{aligned}
& >P:=\operatorname{subs}(\mathrm{c} 81=0, \mathrm{c} 21=0, \operatorname{evalm}(\operatorname{Idem}[1,1])) ; Q:=\operatorname{Factorize}(\operatorname{Mult}(\mathrm{R}, \mathrm{P}, \mathrm{~A}), \mathrm{R}, \mathrm{~A}) ; \\
& P \\
& \qquad:=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \frac{c_{1}-c_{0}}{c_{1}-c_{2}} & \frac{c_{2}-c_{0}}{c_{1}-c_{2}} \\
0 & 0 & -\frac{c_{1}-c_{0}}{c_{1}-c_{2}} & -\frac{c_{2}-c_{0}}{c_{1}-c_{2}}
\end{array}\right] \quad Q:=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

As we have $P^{2}=P$ and $Q^{2}=Q$, we know that the A-modules $\operatorname{ker}_{A}(. P), \operatorname{im}_{A}(. P)=\operatorname{ker}_{A}\left(.\left(I_{4}-P\right)\right)$, $\operatorname{ker}_{A}(. Q)$ and $\operatorname{im}_{A}(. Q)=\operatorname{ker}_{A}\left(.\left(I_{2}-Q\right)\right)$ are projective, and thus, free by the Quillen-Suslin theorem. Let us compute bases of those free modules:

```
> U1:=SyzygyModule(P,A): U2:=SyzygyModule(evalm(1-P),A):
> U:=stackmatrix(U1,U2);
```

$$
\begin{gathered}
U:=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & c_{1}-c_{0} & c_{2}-c_{0}
\end{array}\right] \\
>X 1:=\operatorname{SyzygyModule}(\mathrm{Q}, \mathrm{~A}): \text { X2:=SyzygyModule (evalm(1-Q),A) : } \\
>\mathrm{X}:=\operatorname{stackmatrix}(\mathrm{X}, \mathrm{X} 2) ;
\end{gathered}
$$

$$
X:=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

We then know that the matrix $U \in \mathrm{GL}_{4}(A)$ is such that the matrix R is equivalent to the following block-diagonal matrix $S=R U^{-1}$:

```
> S:=Mult(R,LeftInverse(U,A),A);
```

$$
S:=\left[\begin{array}{cccc}
d+\frac{1}{2 \theta} & -1 & 0 & 0 \\
0 & 0 & d+\frac{1}{\theta} & -\frac{\delta}{V_{0}}
\end{array}\right]
$$

We note that the second entry of the matrix S is invertible over A. Hence, we can use an elementary row operation to reduce the first row. In order to do that, we introduce the following unimodular matrix:
$>X:=\operatorname{evalm}([[0,1,0,0],[-1, d+1 /(2 *$ theta $), 0,0],[0,0,1,0],[0,0,0,1]]) ;$

$$
X:=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-1 & d+\frac{1}{2 \theta} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Then, the matrix $S X$ has the form:

```
\(>\operatorname{Mult}(\mathrm{S}, \mathrm{X}, \mathrm{A})\);
```

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & d+\frac{1}{\theta} & -\frac{\delta}{V_{0}}
\end{array}\right]
$$

Hence, if we denote by $Y=X^{-1} U \in \mathrm{GL}_{4}(A)$ defined by
> $\mathrm{Y}:=\mathrm{Mult}(\operatorname{LeftInverse}(\mathrm{X}, \mathrm{A}), \mathrm{U}, \mathrm{A})$;

$$
Y:=\left[\begin{array}{cccc}
d+\frac{1}{2 \theta} & 0 & -1 & -1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & c_{1}-c_{0} & c_{2}-c_{0}
\end{array}\right]
$$

then, the matrix R is equivalent to the following simple block-diagonal matrix $V R Y^{-1}$:

```
> Mult(V,R,LeftInverse(Y,A),A);
```

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & d+\frac{1}{\theta} & -\frac{\delta}{V_{0}}
\end{array}\right]
$$

Therefore, we have $\left.M \cong A^{1 \times 2} /\left(\begin{array}{ll}(1 & 0\end{array}\right)\right) \oplus A^{1 \times 2} /\left(A\left(d+1 / \theta \quad \delta / V_{0}\right)\right)$, i.e.:

$$
M \cong A \oplus A^{1 \times 2} /\left(A\left(d+1 / \theta \quad-\delta / V_{0}\right)\right)
$$

If \mathcal{F} denotes an A-module (e.g., $\mathcal{F}=C^{\infty}(\mathbb{R})$), then we obtain that the linear differential time-delay system $\operatorname{ker}_{\mathcal{F}}\left(R\right.$.) is equivalent to the linear system $\operatorname{ker}_{\mathcal{F}}(S$.), i.e.:

$$
\zeta_{1}=0, \quad \zeta_{2} \in \mathcal{F}, \quad \dot{\zeta}_{3}(t)-\zeta_{3}(t) / \theta+\zeta_{4}(t-h) / V_{0}=0
$$

Let us study the A-module structure of the endomorphism ring $E=\operatorname{end}_{A}(M)$ of M :

```
> ext1:=Exti(Involution(Endo[2],A),A,1): ext1[1];
```

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

As we have $\operatorname{ext}_{A}^{1}(N, A)=0$, where $N=A^{1 \times 2} /\left(A^{1 \times 4} R^{T}\right)$, because the previous matrix is the identity matrix (see F. Chyzak, A. Quadrat, D. Robertz, "OreModules: A symbolic package for the study of multidimensional linear systems", in the book Applications of Time-Delay Systems, J. Chiasson and J. J. Loiseau (Eds.), Lecture Notes in Control and Information Sciences (LNCIS) 352, Springer, 233-264), we obtain that the A-module E is torsion-free. Let us check whether or not the A-module E is reflexive:
> ext2:=Exti(Involution(Endo[2],A),A,2)[1];

$$
\left[\begin{array}{cccc}
\delta & 0 & 0 & 0 \\
d \theta+1 & 0 & 0 & 0 \\
0 & \delta & 0 & 0 \\
0 & d \theta+1 & 0 & 0 \\
0 & 0 & \delta & 0 \\
0 & 0 & d \theta+1 & 0 \\
0 & 0 & 0 & \delta \\
0 & 0 & 0 & d \theta+1
\end{array}\right]
$$

As the previous matrix is not the identity matrix, we obtain that $\operatorname{ext}_{A}^{2}(N, A) \neq 0$, a fact proving that the A-module E is not reflexive. Hence, the A-module E is torsion-free but not free.

We proved that $M \cong A \oplus N$, where $N=A^{1 \times 2} /\left(A\left(d+1 / \theta \quad \delta / V_{0}\right)\right)$. Hence, we get:

$$
E=\operatorname{end}_{A}(M) \cong \operatorname{end}_{A}(A) \oplus \operatorname{hom}_{A}(N, A) \oplus \operatorname{hom}_{A}(A, N) \oplus \operatorname{end}_{A}(N)
$$

We have $\operatorname{end}_{A}(A) \cong A$ and $\operatorname{hom}_{A}(A, N) \cong N$. Let us compute the A-modules hom $A(N, A)$ and $\operatorname{end}_{A}(N)$. In order to do that, we introduce the two matrices $Z=0$ and $T=\left(\begin{array}{ll}d+1 / \theta & \delta / V_{0}\end{array}\right)$:

```
> Z:=evalm([[0]]);
\[
Z:=[0]
\]
\[
\text { > T:=submatrix }(\mathrm{S}, 2 \ldots 2,3 . .4) \text {; }
\]
\[
T:=\left[\begin{array}{ll}
d+\frac{1}{\theta} & -\frac{\delta}{V_{0}}
\end{array}\right]
\]
```

Let us check that we have $\operatorname{hom}_{A}(A, N) \cong N$ by computing the A-module $\operatorname{hom}_{A}(A, N)$:

$$
\begin{aligned}
& >\mathrm{E}[1]:=\text { MorphismsConstCoeff }(\mathrm{Z}, \mathrm{~T}, \mathrm{~A}) ; \\
& \qquad E_{1}:=\left[\left[\left[\begin{array}{ll}
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1
\end{array}\right]\right],\left[\begin{array}{ll}
V_{0} d \theta+V_{0} & -\delta \theta
\end{array}\right]\right]
\end{aligned}
$$

We obtain that the A-module $\operatorname{hom}_{A}(A, N)$ is defined by two generators f_{1} and f_{2} satisfying the A-linear relation $V_{0} \theta d f_{1}-\theta \delta f_{2}=0$, which is precisely the definition of the A-module N.

Let us now compute the A-module $\operatorname{hom}_{A}(N, A)$:

$$
\begin{aligned}
& >\mathrm{E}[2]:=\text { MorphismsConstCoeff }(\mathrm{T}, \mathrm{Z}, \mathrm{~A}) ; \\
& \qquad E_{2}:=\left[\left[\left[\begin{array}{c}
\delta \theta \\
V_{0} d \theta+V_{0}
\end{array}\right]\right],[]\right]
\end{aligned}
$$

We obtain that A-module $\operatorname{hom}_{A}(N, A)$ is defined by one generator which does not satisfy any A-linear relation, i.e., it is not a torsion element. Hence, we obtain $\operatorname{hom}_{A}(N, A) \cong A$. We note that we have $T E[2][1]=0$, which is consistent with the fact that $\operatorname{hom}_{A}(N, A) \cong \operatorname{ker}_{A}(T$.$) .$

Let us compute the A-module $\operatorname{end}_{A}(N)$:

```
> E[3]:=MorphismsConstCoeff(T,T,A):
> E[3][1];
```

$$
\left.\left[\begin{array}{cc}
0 & \delta \theta \\
0 & V_{0} d \theta+V_{0}
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right]
$$

The A-module $\operatorname{end}_{A}(N)$ is defined by two generators g_{1} and $g_{2}=\mathrm{id}_{N}$ which satisfy the relation:

```
> E[3][2];
```

$$
\left[\begin{array}{cc}
-1 & V_{0} d \theta+V_{0}
\end{array}\right]
$$

Hence, we obtain that $g_{1}=V_{0}(\theta d+1) \operatorname{id}_{M}$, i.e., the A-module $\operatorname{end}_{A}(N)$ is generated by id_{M}, which proves that $\operatorname{end}_{A}(N) \cong A$. We finally obtain:

$$
E \cong A \oplus N \oplus A \oplus A=A^{3} \oplus N
$$

We can check the previous result by studying the A-module E. One way to do that is to find an injective A-morphism $\varphi: N \longrightarrow E$ such that coker $\varphi \cong A^{1 \times 3}$. Using OreMorphisms, we can try to handle the corresponding computations. We first compute the A-module $\operatorname{hom}_{A}(N, E)$:

```
> Morph:=MorphismsConstCoeff(T,Endo[2],A):
```

If we consider the matrix $P=\operatorname{Morph}[1][6] \in A^{2 \times 8}$ defining the element h of $\operatorname{hom}_{A}(N, E)$ and compute a matrix $Q \in A^{1 \times 8}$ satisfying $T P=Q$ Endo[2],

$$
\begin{aligned}
& \text { > Y:=Morph[1][6]; Z:=Factorize(Mult(T,Y,A),Endo[2],A); } \\
& Y:=\left[\begin{array}{ccc}
0 & 0 & 0 \\
\theta V_{0}\left(c_{2} c_{1}-c_{2} c_{0}+c_{0}{ }^{2}-c_{1} c_{0}\right) & -\theta V_{0}\left(c_{2} c_{1}-c_{2} c_{0}+c_{0}{ }^{2}-c_{1} c_{0}\right) & 0
\end{array}\right. \\
& \left.\begin{array}{cccccc}
V_{0} \theta\left(-c_{1}+c_{2}\right) 0 & 0 & 0 & 0 & 0 & \\
0 & \theta V_{0}\left(-2 c_{2} c_{0}+c_{0}{ }^{2}+c_{2}^{2}\right) & 0 & 0 & 0 & -\theta V_{0}\left(-2 c_{1} c_{0}+c_{0}{ }^{2}+c_{1}^{2}\right)
\end{array}\right] \\
& Z:=\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

then we can compute the A-module $\operatorname{ker} \varphi$:
> K:=KerMorphism(T,Endo[2],Y,Z,A);

$$
K:=\left[[1],\left[\begin{array}{ll}
V_{0} d \theta+V_{0} & -\delta \theta
\end{array}\right],\left[\begin{array}{ll}
d+\theta^{-1} & -\frac{\delta}{V_{0}}
\end{array}\right]\right],\left[\left[\frac{1}{\theta V_{0}}\right]\right]
$$

As the first matrix $K[1][1]$ is 1 , we obtain that $\varphi \in \operatorname{hom}_{A}(N, E)$ is injective.
Let us now compute the A-module coker φ :

```
> Coker:=CokerMorphism(T,Endo[2],Y,Z,A):
```

Let us compute its rank:

```
> OreRank(Coker,A);
```

We finally need to check whether or not the A-module $\operatorname{coker} \varphi$ is free:

```
> Ext1:=Exti(Involution(Coker,A),A,1): Ext1[1];
```

$\left[\begin{array}{llllll}1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]$

We obtain that the A-module coker φ is torsion-free. Moreover, we have coker $\varphi \cong A^{1 \times 8} \operatorname{Ext1}[3]$.
$>\operatorname{map}(f a c t o r, L e f t I n v e r s e(E x t 1[3], A))$;

$$
\left[\begin{array}{ccccccccc}
0 & 0 & 0 & 0 & 0 & \frac{1}{2\left(c_{2}-c_{1}\right)^{2} V_{0} \theta} & \frac{1}{\left(c_{2}-c_{1}\right)^{2}\left(c_{1}-c_{0}\right)} & \frac{1}{\left(c_{2}-c_{1}\right)^{2}\left(c_{0}-c_{1}\right)} & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{c_{2}-c_{0}}{2\left(-c_{1}+c_{2}\right)^{2} V_{0} \theta} & \frac{c_{0}-c_{2}}{\left(c_{2}-c_{1}\right)^{2}\left(c_{0}-c_{1}\right)} & -\frac{1}{\left(c_{2}-c_{1}\right)^{2}} & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{c_{0}-c_{2}}{2 V_{0} \theta\left(c_{2}-c_{1}\right)} & \frac{1}{c_{1}-c_{2}} & \frac{c_{0}-c_{2}}{\left(c_{1}-c_{2}\right)\left(c_{1}-c_{0}\right)} & 0
\end{array}\right]
$$

As the matrix $\operatorname{Ext1}[3]$ admits a left-inverse over A, we obtain that coker $\varphi \cong A^{1 \times 3}$, which proves that we have the split exact sequence of A-modules $0 \longrightarrow N \xrightarrow{\varphi} E \longrightarrow A^{1 \times 3} \longrightarrow 0$, a fact implying that $E \cong N \oplus A^{3}$ and proves the result. In all the previous computations, we have assumed that we were in the generic situation, i.e., the constants c_{0}, c_{1} and c_{2} are pairwise different. As the module properties of M are known to depend on the system parameters (see F. Chyzak, A. Quadrat, D. Robertz, OreModules project, http://wwwb.math.rwth-aachen.de/OreModules for the precise details), we let the reader handle the different non-generic situations.

