
> restart:

> with(OreModules):

> with(OreMorphisms);

> with(linalg):

We consider the differential time-delay model of a stirred tank studied in H. Kwakernaak, R. Sivan,
Linear Optimal Control Systems, Wiley-Interscience, 1972. The system matrix is defined by:

> A:=DefineOreAlgebra(diff=[d,t],dual_shift=[delta,s],polynom=[t,s],
> comm=[theta,c[0],c[1],c[2],V[0]]):

> R:=matrix(2,4,[d+1/2/theta,0,-1,-1,0,d+1/theta,-(c[1]-c[0])/V[0]*delta,
> -(c[2]-c[0])/V[0]*delta]);

R :=

[
d + 1

2 θ 0 −1 −1

0 d + 1
θ − (c1−c0) δ

V0
− (c2−c0) δ

V0

]

Let us consider the A = Q(c0, c1, c2, V0, θ)[d, δ]-module M = A1×4/(A1×2 R) finitely presented by R. We
compute the A-module structure of the endomorphism ring E = endA(M) of M :

> Endo:=MorphismsConstCoeff(R,R,A):

We obtain that the A-module E is defined by

> nops(Endo[1]);

8

generators which satisfy

> rowdim(Endo[2]);

4

A-linear relations. We do not print the large outputs of Endo.

Let us now search for idempotents of E defined by two idempotent matrices P ∈ A4×4 and Q ∈ A2×2,
i.e., P and Q satisfy the relations R P = QR, P 2 = P and Q2 = Q:

> Idem:=IdempotentsMatConstCoeff(R,Endo[1],A,0,alpha):

> nops(Idem[1]);

12

We obtain 12 different matrices P satisfying the previous relations. Let us consider the first one where
we have set to zero the two arbitrary constants:

> P:=subs(c81=0,c21=0,evalm(Idem[1,1])); Q:=Factorize(Mult(R,P,A),R,A);

P :=


0 0 0 0

0 1 0 0

0 0 c1−c0
c1−c2

c2−c0
c1−c2

0 0 − c1−c0
c1−c2

− c2−c0
c1−c2

 Q :=

[
0 0

0 1

]

As we have P 2 = P and Q2 = Q, we know that the A-modules kerA(.P ), imA(.P ) = kerA(.(I4 − P )),
kerA(.Q) and imA(.Q) = kerA(.(I2 − Q)) are projective, and thus, free by the Quillen-Suslin theorem.
Let us compute bases of those free modules:

> U1:=SyzygyModule(P,A): U2:=SyzygyModule(evalm(1-P),A):
> U:=stackmatrix(U1,U2);
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U :=


1 0 0 0

0 0 1 1

0 1 0 0

0 0 c1 − c0 c2 − c0


> X1:=SyzygyModule(Q,A): X2:=SyzygyModule(evalm(1-Q),A):
> X:=stackmatrix(X1,X2);

X :=

[
1 0

0 1

]
We then know that the matrix U ∈ GL4(A) is such that the matrix R is equivalent to the following
block-diagonal matrix S = R U−1:

> S:=Mult(R,LeftInverse(U,A),A);

S :=

[
d + 1

2 θ −1 0 0

0 0 d + 1
θ − δ

V0

]
We note that the second entry of the matrix S is invertible over A. Hence, we can use an elementary row
operation to reduce the first row. In order to do that, we introduce the following unimodular matrix:

> X:=evalm([[0,1,0,0],[-1,d+1/(2*theta),0,0],[0,0,1,0],[0,0,0,1]]);

X :=


0 1 0 0

−1 d + 1
2 θ 0 0

0 0 1 0

0 0 0 1


Then, the matrix S X has the form:

> Mult(S,X,A); [
1 0 0 0

0 0 d + 1
θ − δ

V0

]
Hence, if we denote by Y = X−1 U ∈ GL4(A) defined by

> Y:=Mult(LeftInverse(X,A),U,A);

Y :=


d + 1

2 θ 0 −1 −1

1 0 0 0

0 1 0 0

0 0 c1 − c0 c2 − c0


then, the matrix R is equivalent to the following simple block-diagonal matrix V R Y −1:

> Mult(V,R,LeftInverse(Y,A),A);[
1 0 0 0

0 0 d + 1
θ − δ

V0

]
Therefore, we have M ∼= A1×2/(A (1 0))⊕A1×2/(A (d + 1/θ δ/V0)), i.e.:

M ∼= A⊕A1×2/(A (d + 1/θ − δ/V0)).
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If F denotes an A-module (e.g., F = C∞(R)), then we obtain that the linear differential time-delay
system kerF (R.) is equivalent to the linear system kerF (S.), i.e.:

ζ1 = 0, ζ2 ∈ F , ζ̇3(t)− ζ3(t)/θ + ζ4(t− h)/V0 = 0.

Let us study the A-module structure of the endomorphism ring E = endA(M) of M :

> ext1:=Exti(Involution(Endo[2],A),A,1): ext1[1];
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


As we have ext1A(N,A) = 0, where N = A1×2/(A1×4 RT ), because the previous matrix is the identity
matrix (see F. Chyzak, A. Quadrat, D. Robertz, “OreModules: A symbolic package for the study of
multidimensional linear systems”, in the book Applications of Time-Delay Systems, J. Chiasson and J. -
J. Loiseau (Eds.), Lecture Notes in Control and Information Sciences (LNCIS) 352, Springer, 233-264),
we obtain that the A-module E is torsion-free. Let us check whether or not the A-module E is reflexive:

> ext2:=Exti(Involution(Endo[2],A),A,2)[1];

δ 0 0 0

d θ + 1 0 0 0

0 δ 0 0

0 d θ + 1 0 0

0 0 δ 0

0 0 d θ + 1 0

0 0 0 δ

0 0 0 d θ + 1


As the previous matrix is not the identity matrix, we obtain that ext2A(N,A) 6= 0, a fact proving that
the A-module E is not reflexive. Hence, the A-module E is torsion-free but not free.

We proved that M ∼= A⊕N , where N = A1×2/(A (d + 1/θ δ/V0)). Hence, we get:

E = endA(M) ∼= endA(A)⊕ homA(N,A)⊕ homA(A,N)⊕ endA(N).

We have endA(A) ∼= A and homA(A,N) ∼= N . Let us compute the A-modules homA(N,A) and endA(N).
In order to do that, we introduce the two matrices Z = 0 and T = (d + 1/θ δ/V0):

> Z:=evalm([[0]]);

Z :=
[

0
]

> T:=submatrix(S,2..2,3..4);

T :=
[

d + 1
θ − δ

V0

]
Let us check that we have homA(A,N) ∼= N by computing the A-module homA(A,N):

> E[1]:=MorphismsConstCoeff(Z,T,A);

E1 := [[
[

1 0
]
,
[

0 1
]
],

[
V0 d θ + V0 −δ θ

]
]

We obtain that the A-module homA(A,N) is defined by two generators f1 and f2 satisfying the A-linear
relation V0 θ d f1 − θ δ f2 = 0, which is precisely the definition of the A-module N .
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Let us now compute the A-module homA(N,A):

> E[2]:=MorphismsConstCoeff(T,Z,A);

E2 := [[

[
δ θ

V0 d θ + V0

]
], []]

We obtain that A-module homA(N,A) is defined by one generator which does not satisfy any A-linear
relation, i.e., it is not a torsion element. Hence, we obtain homA(N,A) ∼= A. We note that we have
T E[2][1] = 0, which is consistent with the fact that homA(N,A) ∼= kerA(T.).

Let us compute the A-module endA(N):

> E[3]:=MorphismsConstCoeff(T,T,A):

> E[3][1];

[

[
0 δ θ

0 V0 d θ + V0

]
,

[
1 0

0 1

]
]

The A-module endA(N) is defined by two generators g1 and g2 = idN which satisfy the relation:

> E[3][2]; [
−1 V0 d θ + V0

]
Hence, we obtain that g1 = V0 (θ d + 1) idM , i.e., the A-module endA(N) is generated by idM , which
proves that endA(N) ∼= A. We finally obtain:

E ∼= A⊕N ⊕A⊕A = A3 ⊕N.

We can check the previous result by studying the A-module E. One way to do that is to find an injective
A-morphism ϕ : N −→ E such that cokerϕ ∼= A1×3. Using OreMorphisms, we can try to handle the
corresponding computations. We first compute the A-module homA(N,E):

> Morph:=MorphismsConstCoeff(T,Endo[2],A):

If we consider the matrix P = Morph[1][6] ∈ A2×8 defining the element h of homA(N,E) and compute
a matrix Q ∈ A1×8 satisfying T P = QEndo[2],

> Y:=Morph[1][6]; Z:=Factorize(Mult(T,Y,A),Endo[2],A);

Y :=

[
0 0 0

θ V0

(
c2 c1 − c2 c0 + c0

2 − c1 c0

)
−θ V0

(
c2 c1 − c2 c0 + c0

2 − c1 c0

)
0

V0 θ (−c1 + c2) 0 0 0 0 0

0 θ V0

(
−2 c2 c0 + c0

2 + c2
2
)

0 0 0 −θ V0

(
−2 c1 c0 + c0

2 + c1
2
) ]

Z :=
[

0 0 0 0 1
]

then we can compute the A-module kerϕ:

> K:=KerMorphism(T,Endo[2],Y,Z,A);

K := [
[

1
]
,
[

V0 d θ + V0 −δ θ
]
,
[

d + θ−1 − δ
V0

]
], [

[
1

θ V0

]
]

As the first matrix K[1][1] is 1, we obtain that ϕ ∈ homA(N,E) is injective.

Let us now compute the A-module cokerϕ:

> Coker:=CokerMorphism(T,Endo[2],Y,Z,A):

Let us compute its rank:

4



> OreRank(Coker,A);

3

We finally need to check whether or not the A-module cokerϕ is free:

> Ext1:=Exti(Involution(Coker,A),A,1): Ext1[1];

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


We obtain that the A-module cokerϕ is torsion-free. Moreover, we have cokerϕ ∼= A1×8 Ext1[3].

> map(factor,LeftInverse(Ext1[3],A));
0 0 0 0 0 1

2 (c2−c1)
2V0 θ

1
(c2−c1)

2(c1−c0)
1

(c2−c1)
2(c0−c1)

0

0 0 0 0 0 c2−c0
2 (−c1+c2)

2 V0 θ
c0−c2

(c2−c1)
2(c0−c1)

− 1
(c2−c1)

2 0

0 0 0 0 0 c0−c2
2 V0 θ (c2−c1)

1
c1−c2

c0−c2
(c1−c2)(c1−c0)

0


As the matrix Ext1[3] admits a left-inverse over A, we obtain that coker ϕ ∼= A1×3, which proves that
we have the split exact sequence of A-modules 0 −→ N

ϕ−→ E −→ A1×3 −→ 0, a fact implying
that E ∼= N ⊕ A3 and proves the result. In all the previous computations, we have assumed that we
were in the generic situation, i.e., the constants c0, c1 and c2 are pairwise different. As the module
properties of M are known to depend on the system parameters (see F. Chyzak, A. Quadrat, D. Robertz,
OreModules project, http://wwwb.math.rwth-aachen.de/OreModules for the precise details), we let
the reader handle the different non-generic situations.
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