restart:
with(OreModules) :
with(OreMorphisms) ;
with(linalg):

vV V. V V

We consider a partial differential system studied in J.-F. Pommaret, Partial Differential Control Theory,
Kluwer Academic Publishers, Mathematics and Its Applications, 2001, p. 807, and defined by the following
system matrix:

> A:=DefineQreAlgebra(diff=[d[1],x[1]],diff=[d[2],x[2]],diff=[d[3],x[3]],
> polynom=[x[1],x[2],x[3]]):
> R:=matrix(6,4,[0,-2*d[1],d[3]-2+d[2]-d[1],-1,0,d[3]-2*d[1],2*d[2]-3*d[1],1,d[3],

> -6xd[1],-2xd[2]-5%d[1],-1,0,d[2]-d[1],d[2]-d[1],0,d[2],-d4[1],-d[2]-d4[1],0,d[1],
> -d[1],-2%d[1],0]1);

[0 —2d, d3—2dy—dy —1]
0 dy—2di 2dy—3dy 1
ds —6d,  —2dy—5d; -1
B=1 dy — dy dy — dy 0
dy  —dy —dy—dy 0
4 —d —2d, 0

Let us consider the ring A = Q[dy,ds,d3] and M = A**/(A'*6 R) the A-module finitely presented by
R. We denote by 7 the projection from A'** to M. We can compute the A-module structure of the
endomorphism ring F = end 4 (M) of M:

> Endo:=MorphismsConstCoeff (R,R,A):
We find that F is generated by
> mnops(Endo[1]);
11
elements which satisfy

> rowdim(Endo[2]);
18

A-linear relations.

Let us try to find idempotent elements of E defined by idempotent matrices P € Q*** and Q € Q5*5,
namely, e € E satisfying e = e, where e(m(\)) = 7(AP), for all A € A4 and RP = QR, P> =P,
Q* =@

> Idem:=IdempotentsMatConstCoeff (S,Endo[1],A,0,alpha):

Let us consider the one defined by the following matrices P, = Idem|[1,1] € A***, where we have set the
arbitrary constants c61 and 91 appearing in P; to 0 and Q; € A%%6 satisfying R P, = Q; R:

> P[1] :=subs(c61=0,c91=0,Idem[1,1]); Q[1] :=Factorize (Mult(R,P[1],A),R,A);

[0 0 0 0 0 2]

0 0 0 O 21 -1 0 0 2

11 2 0 00 0 O 0 6
P12: Qliz

0 0 0 0 00 0 1 —-1 1

0 0 0 0 00 0 0 0 1

00 0 0 0 1|




As we have P2 = P; and Q% = Q1, we know that the A-modules ker 4 (.P;), ima(.P) = ker4(.(I4 — P1)) ,
kera(.Q1) and im4(.Q1) = kera(.(Is — Q1)) are projective, and thus, free by the Quillen-Suslin theorem.
Let us compute bases of the corresponding modules. As the coefficients of P; and @1 belong to Q, we
can obtain them by means of linear algebraic techniques (e.g., using the jordan command of Maple) or
using directly OREMODULES as it is explained below. We then form the matrices U; and V; such that
U PU; Land V4 Q1 Vl_1 are the Jordan normal forms of U; and V.

> Ul:=SyzygyModule(P[1],A): U2:=SyzygyModule (evalm(1-P[1]),A):
> U[1]:=stackmatrix(U1,U2);
>  V1:=SyzygyModule(Q[1],A): V2:=SyzygyModule (evalm(1-Q[1]),A):
> VI[1]:=stackmatrix(V1i,V2);
1.0 0 0 0 -2
1 0 0 O 00 1 0 0 -6
0 0 1 0 00 0 0 1 -1
Ul = ‘/1 =
0 0 0 1 21 -1 0 0 O
1 -1 -2 0 00 0 1 -1 0
|00 0 0 0 1 |

We obtain that the two unimodular matrices Uy and Vi, i.e., Uy € GL4(A) and Vi € GLg(A), satisfy that
the matrix V3 RU; ! is block-diagonal:

> R_dec:=Mult(V[1],R,LeftInverse(U[1],A),A);

[ —2d;  3dy+d3—2dy -1 0
ds — 6d; Tdy —2ds -1 0
dy — dq —dy +d; 0 0
R_dec :=
0 0 0 —ds
0 0 0 —ds
i 0 0 0 di |

We can also use the command HeuristicDecomposition to directly obtain the previous result:

> HeuristicDecomposition(R,P[1],A) [1];

[ —2d,  3di+d3—2dy —1 0 ]
ds—6d,  7dy—2dy, -1 0
dy — dy —dy + dy 0 0

0 0 0 —ds
0 0 0 —dy
0 0 0 di |

Let us now consider the first diagonal block S of Rge:
> S:=submatrix(R_dec,1..3,1..3);
—2d;  3di+d3—2dy -1
S:= | ds—6d; Tdy —2dy -1
do — dy —ds +dy 0

Let N = AY3/(A1*3S) be the A-module finitely presented by the matrix S. We can compute the
A-module structure of the endomorphism ring F' = end4(N) of N:



> Endol:=MorphismsConstCoeff (S,S,A):

Let us try to find idempotent elements of F defined by idempotent matrices P, € Q3*3 and Q5 € Q3*3,
na’mGIYa SP2 :QQSa P22 :P2a Q%:Q2:

> Ideml:=IdempotentsMatConstCoeff (S,Endol1[1],A,0,alpha):

We obtain non-trivial idempotent endomorphisms and we choose one of them defined by the following
matrices Py = Idem1[1,3] € A3*3 and Q € A3*3 satisfying S P, = Q2 S:

> P[2]:=Idemi1[1,3]; Q[2]:=Factorize (Mult(S,P[2],A),S,A);

5/3 —5/3 0 —2/3 2/3 —4/3
Pyi=|2/3 =2/3 0| Qy:=| -5/3 5/3 —4/3
0O 0 0 o 0 1

As we have P? = P, and Q% = Q2, we know that the A-modules ker4(.P,), ima(.P) = kera(.(I3 — P»)) ,
ker4(.Q2) and im4(.Q2) = kera(.(Is — Q)2)) are projective, and thus, free by the Quillen-Suslin theorem.
Let us compute bases of the corresponding modules. As the coefficients of P, and Q2 belong to Q, we
can obtain them by means of linear algebraic techniques (e.g., using the jordan command of Maple) or
using directly OREMODULES as it is explained below. We then form the matrices Uz and Va such that
Us Py U{l and V5 Q2 V2_1 are the Jordan normal forms of Uy and V5.

Ul:=SyzygyModule(P[2],A): U2:=SyzygyModule (evalm(1-P[2]),A):
U[2] :=stackmatrix(U1,U2);

V1:=SyzygyModule(Q[2],4): V2:=SyzygyModule(evalm(1-Q[2]),A):
V[2] :=stackmatrix(V1,V2);

2 =5 0 5 —2 4
Uy:=1[0 0 1 Vo = 1 -1 0
1 -1 0 0 0 1

vV V. V V

We obtain that the two unimodular matrices Uy and Vs, i.e., Us € GL3(A) and Vo € GL3(A), satisfy that
the matrix V5 SU, ' is block-diagonal:

> S_dec:=Mult(V[2],S,LeftInverse(U[2],A),A);
—dy +2dy —ds -3 0
S_dec := 0 0 4dy—ds
0 0 da—dy
Now, considering the following unimodular matrices X and Y defined by

> X:=Mult(diag(U[2],1),U[1],A);Y:=Mult(diag(V[2],1,1,1),V[1],A);

5 0 —2 0 4 =27
2 0 -5 0 1 0 -1 0 0O 4
0 0 0 1 00 0o o0 1 -1
X = Y
1 0 -1 0 21 -1 0 0 0
1 -1 -2 0 00 0O 1 -1 0
L0 0 0 0 0 1]

we can obtain the final decomposition of R in one step:

> R_final:=Mult(Y,R,LeftInverse(X,A),A);



[ —dy +2dy —d3 —3 0 0 ]
0 0 4d;—ds 0
0 0 do—dy 0
R_final =
0 0 0 —d3
0 0 0 —ds
i 0 0 0 di |

We obtain that the general solution y = (y1(z1, 22, 23) yo(21, T2, 23) y3(w1,T2,23) ya(z1,22,23))T of
the system Ry = 0is given by X ~! z where z = (21 (21,22, 73) 22(21, 72, 23)  23(x1,22,73) 24(x1, 72, 23))T
is the general solution of R_final z = 0. The solutions of the latter system can be parametrized as follows:

> z:=Parametrization(R_final,A);
3¢ (x1,29,23)
— a1 (w1, @2, 23) + 2 5260 (21,20, 23) — 5261 (01,2, 3)
F1(xs+1/4x1 4+ 1/429)
_C1

For more details, see A. Quadrat, D. Robertz, “Parametrizing all solutions of uncontrollable multidimen-
sional linear systems”, Proceedings of 16" IFAC World Congress, Prague (Czech Republic), 04-08/07/05.
Then, we obtain the parametrization of the solutions of Ry = 0 by applying the matrix X ! to z:

> y:=ApplyMatrix(LeftInverse(X,A),z,A);
—&1 (w1, 29,23) + 5/3_F1 (x5 + 1/4x1 + 1/422)
& (v1,22,23) +1/3_F1 (x3+1/421 +1/425) — _C1
=& (x1,29,23) +2/3_F1 (x3+ 1/4x1 + 1/4x9)
— 5261 (1, @9, 3) + 2 5261 (w1, 02, m3) — 5261 (w1, T2, 3)

Hence, the smooth solutions of Ry = 0 are parametrized by an arbitrary function &; of three independent
variables, an arbitrary function _ F'1 of one independent variable and a constant _C1. This result gives a
simple proof of a result given in J.-F. Pommaret, Partial Differential Control Theory, Kluwer Academic
Publishers, Mathematics and Its Applications, 2001, p. 807.

Finally, applying R to y, we can check that Ry = O:

> ApplyMatrix(R,y,A);

o o o o o

0

We refer the reader to A. Quadrat, D. Robertz, “Parametrizing all solutions of uncontrollable multidimen-
sional linear systems”, Proceedings of 16" IFAC World Congress, Prague (Czech Republic), 04-08/07/05,
for the proof that, conversely, every smooth solutions of Ry = 0 has the previous form.



