```
> restart:
> with(OreModules):
> with(OreMorphisms);
> with(linalg):
```

We consider a partial differential system studied in J.-F. Pommaret, Partial Differential Control Theory, Kluwer Academic Publishers, Mathematics and Its Applications, 2001, p. 807, and defined by the following system matrix:

```
> A:=DefineOreAlgebra(diff=[d[1],x[1]], diff=[d[2],x[2]], diff=[d[3],x[3]],
> polynom=[x[1],x[2],x[3]]):
> R:=matrix (6,4,[0,-2*d[1],d[3]-2*d[2]-d[1], -1,0,d[3]-2*d[1],2*d[2]-3*d[1] , 1, d[3],
> -6*d[1],-2*d[2]-5*d[1],-1,0,d[2]-d[1],d[2]-d[1],0,d[2],-d[1],-d[2]-d[1],0,d[1],
> -d[1],-2*d[1],0]);
```

$$
R:=\left[\begin{array}{cccc}
0 & -2 d_{1} & d_{3}-2 d_{2}-d_{1} & -1 \\
0 & d_{3}-2 d_{1} & 2 d_{2}-3 d_{1} & 1 \\
d_{3} & -6 d_{1} & -2 d_{2}-5 d_{1} & -1 \\
0 & d_{2}-d_{1} & d_{2}-d_{1} & 0 \\
d_{2} & -d_{1} & -d_{2}-d_{1} & 0 \\
d_{1} & -d_{1} & -2 d_{1} & 0
\end{array}\right]
$$

Let us consider the ring $A=\mathbb{Q}\left[d_{1}, d_{2}, d_{3}\right]$ and $M=A^{1 \times 4} /\left(A^{1 \times 6} R\right)$ the A-module finitely presented by R. We denote by π the projection from $A^{1 \times 4}$ to M. We can compute the A-module structure of the endomorphism ring $E=\operatorname{end}_{A}(M)$ of M :
> Endo:=MorphismsConstCoeff(R,R,A):
We find that E is generated by

```
> nops(Endo[1]);
```

11
elements which satisfy

```
> rowdim(Endo[2]);
```

A-linear relations.
Let us try to find idempotent elements of E defined by idempotent matrices $P \in \mathbb{Q}^{4 \times 4}$ and $Q \in \mathbb{Q}^{6 \times 6}$, namely, $e \in E$ satisfying $e^{2}=e$, where $e(\pi(\lambda))=\pi(\lambda P)$, for all $\lambda \in A^{1 \times 4}$, and $R P=Q R, P^{2}=P$, $Q^{2}=Q$:

```
> Idem:=IdempotentsMatConstCoeff(S,Endo[1],A,0,alpha):
```

Let us consider the one defined by the following matrices $P_{1}=\operatorname{Idem}[1,1] \in A^{4 \times 4}$, where we have set the arbitrary constants $c 61$ and $c 91$ appearing in P_{1} to 0 and $Q_{1} \in A^{6 \times 6}$ satisfying $R P_{1}=Q_{1} R$:

```
> P[1]:=subs(c61=0,c91=0,Idem[1,1]); Q[1]:=Factorize(Mult(R,P[1],A),R,A);
\[
P_{1}:=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
-1 & 1 & 2 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \quad Q_{1}:=\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 2 \\
2 & 1 & -1 & 0 & 0 & 2 \\
0 & 0 & 0 & 0 & 0 & 6 \\
0 & 0 & 0 & 1 & -1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
\]
```

As we have $P_{1}^{2}=P_{1}$ and $Q_{1}^{2}=Q_{1}$, we know that the A-modules $\operatorname{ker}_{A}\left(. P_{1}\right), \operatorname{im}_{A}\left(. P_{1}\right)=\operatorname{ker}_{A}\left(.\left(I_{4}-P_{1}\right)\right)$, $\operatorname{ker}_{A}\left(. Q_{1}\right)$ and $\operatorname{im}_{A}\left(. Q_{1}\right)=\operatorname{ker}_{A}\left(.\left(I_{6}-Q_{1}\right)\right)$ are projective, and thus, free by the Quillen-Suslin theorem. Let us compute bases of the corresponding modules. As the coefficients of P_{1} and Q_{1} belong to \mathbb{Q}, we can obtain them by means of linear algebraic techniques (e.g., using the jordan command of Maple) or using directly Oremodules as it is explained below. We then form the matrices U_{1} and V_{1} such that $U_{1} P_{1} U_{1}^{-1}$ and $V_{1} Q_{1} V_{1}^{-1}$ are the Jordan normal forms of U_{1} and V_{1}.

```
> U1:=SyzygyModule(P[1],A): U2:=SyzygyModule(evalm(1-P[1]),A):
> U[1]:=stackmatrix(U1,U2);
> V1:=SyzygyModule(Q[1],A): V2:=SyzygyModule(evalm(1-Q[1]),A):
> V[1]:=stackmatrix(V1,V2);
```

$$
U_{1}:=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & -1 & -2 & 0
\end{array}\right] \quad V_{1}:=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & -2 \\
0 & 0 & 1 & 0 & 0 & -6 \\
0 & 0 & 0 & 0 & 1 & -1 \\
2 & 1 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

We obtain that the two unimodular matrices U_{1} and V_{1}, i.e., $U_{1} \in \mathrm{GL}_{4}(A)$ and $V_{1} \in \mathrm{GL}_{6}(A)$, satisfy that the matrix $V_{1} R U_{1}^{-1}$ is block-diagonal:

$$
\begin{aligned}
& >\mathrm{R}_{-} \text {dec }:=\operatorname{Mult}(\mathrm{V}[1], \mathrm{R}, \operatorname{Left} \operatorname{Inverse}(\mathrm{U}[1], \mathrm{A}), \mathrm{A}) ; \\
& \qquad R_{-} d e c:=\left[\begin{array}{cccc}
-2 d_{1} & 3 d_{1}+d_{3}-2 d_{2} & -1 & 0 \\
d_{3}-6 d_{1} & 7 d_{1}-2 d_{2} & -1 & 0 \\
d_{2}-d_{1} & -d_{2}+d_{1} & 0 & 0 \\
0 & 0 & 0 & -d_{3} \\
0 & 0 & 0 & -d_{2} \\
0 & 0 & 0 & d_{1}
\end{array}\right]
\end{aligned}
$$

We can also use the command HeuristicDecomposition to directly obtain the previous result:
> HeuristicDecomposition(R,P[1],A)[1];

$$
\left[\begin{array}{cccc}
-2 d_{1} & 3 d_{1}+d_{3}-2 d_{2} & -1 & 0 \\
d_{3}-6 d_{1} & 7 d_{1}-2 d_{2} & -1 & 0 \\
d_{2}-d_{1} & -d_{2}+d_{1} & 0 & 0 \\
0 & 0 & 0 & -d_{3} \\
0 & 0 & 0 & -d_{2} \\
0 & 0 & 0 & d_{1}
\end{array}\right]
$$

Let us now consider the first diagonal block S of $R_{d e c}$:
> S:=submatrix(R_dec,1..3,1..3);

$$
S:=\left[\begin{array}{ccc}
-2 d_{1} & 3 d_{1}+d_{3}-2 d_{2} & -1 \\
d_{3}-6 d_{1} & 7 d_{1}-2 d_{2} & -1 \\
d_{2}-d_{1} & -d_{2}+d_{1} & 0
\end{array}\right]
$$

Let $N=A^{1 \times 3} /\left(A^{1 \times 3} S\right)$ be the A-module finitely presented by the matrix S. We can compute the A-module structure of the endomorphism ring $F=\operatorname{end}_{A}(N)$ of N :

```
> Endo1:=MorphismsConstCoeff(S,S,A):
```

Let us try to find idempotent elements of F defined by idempotent matrices $P_{2} \in \mathbb{Q}^{3 \times 3}$ and $Q_{2} \in \mathbb{Q}^{3 \times 3}$, namely, $S P_{2}=Q_{2} S, P_{2}^{2}=P_{2}, Q_{2}^{2}=Q_{2}$:

```
> Idem1:=IdempotentsMatConstCoeff(S,Endo1[1],A,0,alpha):
```

We obtain non-trivial idempotent endomorphisms and we choose one of them defined by the following matrices $P_{2}=\operatorname{Idem} 1[1,3] \in A^{3 \times 3}$ and $Q_{2} \in A^{3 \times 3}$ satisfying $S P_{2}=Q_{2} S$:

$$
\begin{aligned}
& >P[2]:=\operatorname{Idem} 1[1,3] ; Q[2]:=\text { Factorize }(\text { Mult }(S, P[2], A), S, A) ; \\
& \qquad P_{2}:=\left[\begin{array}{ccc}
5 / 3 & -5 / 3 & 0 \\
2 / 3 & -2 / 3 & 0 \\
0 & 0 & 0
\end{array}\right] \quad Q_{2}:=\left[\begin{array}{ccc}
-2 / 3 & 2 / 3 & -4 / 3 \\
-5 / 3 & 5 / 3 & -4 / 3 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

As we have $P_{2}^{2}=P_{2}$ and $Q_{2}^{2}=Q_{2}$, we know that the A-modules $\operatorname{ker}_{A}\left(. P_{2}\right), \operatorname{im}_{A}\left(. P_{2}\right)=\operatorname{ker}_{A}\left(.\left(I_{3}-P_{2}\right)\right)$, $\operatorname{ker}_{A}\left(. Q_{2}\right)$ and $\operatorname{im}_{A}\left(. Q_{2}\right)=\operatorname{ker}_{A}\left(.\left(I_{3}-Q_{2}\right)\right)$ are projective, and thus, free by the Quillen-Suslin theorem. Let us compute bases of the corresponding modules. As the coefficients of P_{2} and Q_{2} belong to \mathbb{Q}, we can obtain them by means of linear algebraic techniques (e.g., using the jordan command of Maple) or using directly Oremodules as it is explained below. We then form the matrices U_{2} and V_{2} such that $U_{2} P_{2} U_{2}^{-1}$ and $V_{2} Q_{2} V_{2}^{-1}$ are the Jordan normal forms of U_{2} and V_{2}.

```
> U1:=SyzygyModule(P[2],A): U2:=SyzygyModule(evalm(1-P[2]),A):
> U[2]:=stackmatrix(U1,U2);
> V1:=SyzygyModule(Q[2],A): V2:=SyzygyModule(evalm(1-Q[2]),A):
> V[2]:=stackmatrix(V1,V2);
\[
U_{2}:=\left[\begin{array}{ccc}
2 & -5 & 0 \\
0 & 0 & 1 \\
1 & -1 & 0
\end{array}\right] \quad V_{2}:=\left[\begin{array}{ccc}
5 & -2 & 4 \\
1 & -1 & 0 \\
0 & 0 & 1
\end{array}\right]
\]
```

We obtain that the two unimodular matrices U_{2} and V_{2}, i.e., $U_{2} \in \mathrm{GL}_{3}(A)$ and $V_{2} \in \mathrm{GL}_{3}(A)$, satisfy that the matrix $V_{2} S U_{2}^{-1}$ is block-diagonal:

$$
\begin{aligned}
& >\text { S_dec: }=\operatorname{Mult}(\mathrm{V}[2], \mathrm{S}, \text { LeftInverse }(\mathrm{U}[2], \mathrm{A}), \mathrm{A}) ; \\
& \qquad S_{_} d e c:=\left[\begin{array}{ccc}
-d_{1}+2 d_{2}-d_{3} & -3 & 0 \\
0 & 0 & 4 d_{1}-d_{3} \\
0 & 0 & d_{2}-d_{1}
\end{array}\right]
\end{aligned}
$$

Now, considering the following unimodular matrices X and Y defined by

$$
\begin{aligned}
& >\quad X:=M u l t(\operatorname{diag}(U[2], 1), U[1], A) ; Y:=M u l t(\operatorname{diag}(V[2], 1,1,1), V[1], A) ; \\
& X:=\left[\begin{array}{cccc}
2 & 0 & -5 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & -1 & 0 \\
1 & -1 & -2 & 0
\end{array}\right] \quad Y:=\left[\begin{array}{cccccc}
5 & 0 & -2 & 0 & 4 & -2 \\
1 & 0 & -1 & 0 & 0 & 4 \\
0 & 0 & 0 & 0 & 1 & -1 \\
2 & 1 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

we can obtain the final decomposition of R in one step:

```
> R_final:=Mult(Y,R,LeftInverse(X,A),A);
```

$$
\text { R_final }:=\left[\begin{array}{cccc}
-d_{1}+2 d_{2}-d_{3} & -3 & 0 & 0 \\
0 & 0 & 4 d_{1}-d_{3} & 0 \\
0 & 0 & d_{2}-d_{1} & 0 \\
0 & 0 & 0 & -d_{3} \\
0 & 0 & 0 & -d_{2} \\
0 & 0 & 0 & d_{1}
\end{array}\right]
$$

We obtain that the general solution $y=\left(y_{1}\left(x_{1}, x_{2}, x_{3}\right) \quad y_{2}\left(x_{1}, x_{2}, x_{3}\right) \quad y_{3}\left(x_{1}, x_{2}, x_{3}\right) \quad y_{4}\left(x_{1}, x_{2}, x_{3}\right)\right)^{T}$ of the system $R y=0$ is given by $X^{-1} z$ where $z=\left(z_{1}\left(x_{1}, x_{2}, x_{3}\right) \quad z_{2}\left(x_{1}, x_{2}, x_{3}\right) \quad z_{3}\left(x_{1}, x_{2}, x_{3}\right) \quad z_{4}\left(x_{1}, x_{2}, x_{3}\right)\right)^{T}$ is the general solution of R_{-}final $z=0$. The solutions of the latter system can be parametrized as follows:

```
> \(z:=\) Parametrization(R_final,A);
    \(z:=\left[\begin{array}{c}3 \xi_{1}\left(x_{1}, x_{2}, x_{3}\right) \\ -\frac{\partial}{\partial x_{1}} \xi_{1}\left(x_{1}, x_{2}, x_{3}\right)+2 \frac{\partial}{\partial x_{2}} \xi_{1}\left(x_{1}, x_{2}, x_{3}\right)-\frac{\partial}{\partial x_{3}} \xi_{1}\left(x_{1}, x_{2}, x_{3}\right) \\ { }_{-} F 1\left(x_{3}+1 / 4 x_{1}+1 / 4 x_{2}\right) \\ { }_{-} C 1\end{array}\right]\)
```

For more details, see A. Quadrat, D. Robertz, "Parametrizing all solutions of uncontrollable multidimensional linear systems", Proceedings of $16^{\text {th }}$ IFAC World Congress, Prague (Czech Republic), 04-08/07/05. Then, we obtain the parametrization of the solutions of $R y=0$ by applying the matrix X^{-1} to z :

$$
\begin{aligned}
& >y:=\operatorname{ApplyMatrix}(\operatorname{LeftInverse}(\mathrm{X}, \mathrm{~A}), \mathrm{z}, \mathrm{~A}) ; \\
& \qquad y:=\left[\begin{array}{c}
-\xi_{1}\left(x_{1}, x_{2}, x_{3}\right)+5 / 3 _F 1\left(x_{3}+1 / 4 x_{1}+1 / 4 x_{2}\right) \\
\xi_{1}\left(x_{1}, x_{2}, x_{3}\right)+1 / 3 _F 1\left(x_{3}+1 / 4 x_{1}+1 / 4 x_{2}\right)-{ }_{_} C 1 \\
-\xi_{1}\left(x_{1}, x_{2}, x_{3}\right)+2 / 3 _F 1\left(x_{3}+1 / 4 x_{1}+1 / 4 x_{2}\right) \\
-\frac{\partial}{\partial x_{1}} \xi_{1}\left(x_{1}, x_{2}, x_{3}\right)+2 \frac{\partial}{\partial x_{2}} \xi_{1}\left(x_{1}, x_{2}, x_{3}\right)-\frac{\partial}{\partial x_{3}} \xi_{1}\left(x_{1}, x_{2}, x_{3}\right)
\end{array}\right]
\end{aligned}
$$

Hence, the smooth solutions of $R y=0$ are parametrized by an arbitrary function ξ_{1} of three independent variables, an arbitrary function $F 1$ of one independent variable and a constant _ $C 1$. This result gives a simple proof of a result given in J.-F. Pommaret, Partial Differential Control Theory, Kluwer Academic Publishers, Mathematics and Its Applications, 2001, p. 807.
Finally, applying R to y, we can check that $R y=0$:

```
> ApplyMatrix(R,y,A);
```

$$
\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

We refer the reader to A. Quadrat, D. Robertz, "Parametrizing all solutions of uncontrollable multidimensional linear systems", Proceedings of $16^{\text {th }}$ IFAC World Congress, Prague (Czech Republic), 04-08/07/05, for the proof that, conversely, every smooth solutions of $R y=0$ has the previous form.

