restart:
with(OreModules) :
with(OreMorphisms) ;
with(linalg):

vV V. V V

We consider a partial differential system studied in J.-F. Pommaret, chapter V of the book Advanced
Topics in Control Systems Theory, Lecture Notes in Control and Information Sciences 311, F. Lamnabhi-
Lagarrigue, A. Loria, E. Panteley Editors, Springer, 2005, 155-223, and defined by the following matrix:

> A:=DefinelreAlgebra(diff=[d[1],x[1]],diff=[d[2],x[2]],polynom=[x[1],x[2]],comm=[a]) :
> R:=matrix(3,3,[0,d[2]-d[1],d[2]-d[1]-a,d[2],-d[1],-d[2]-d[1]-a,d[1],-d[1],-2%d[1]]);
0 do—dy do—di—a
R = | do —d; —dy —di —a
d  —-d —2d;

Let us consider the ring A = Q(a)[dy,ds] and M = A¥3/(A*3 R) the A-module finitely presented by
the matrix R. We denote by 7 the projection from A'*3 to M. We can compute the A-module structure
of the endomorphism ring F = end 4 (M) of M:

> Endo:=MorphismsConstCoeff (R,R,A):

> Endo[1];
1 00 0 0 0 0 0 di—da—a 01 2
[fo 1 0|,|]1 -1 -=21],]0 0 d—-di—a|,[0 1 0[]
0 0 1 0 0 0 0 0 —do+ds 0 0 1

Hence, we obtain that E is finitely generated over A by 4 elements fi = idy, fo, f3, f4 defined by
fi(m) = (X Endol[1,i]), where m = w(\) € M, A € A3 and i = 1,...,4. These generators satisfy the
A-linear relations Endo[2] (fi  fo fs f1)T =0, where Endo[2] is defined by:

> Endo[2];
[dy 0 0 —dy ]|
d 0 -1 —ds
0 do O 0
0 d 0 0
| 0 0 -1 —do+d; |

Let us try to find idempotent elements of E defined by means of idempotent matrices P € Q(a)?*3 and

Q € Q(a)®*3, namely, e € E satisfying e = e, where e(m(\)) = 7(A P), for all A € A>3 and RP = QR,
PP= P Q?=Q

> Idem:=IdempotentsMatConstCoeff (R,Endo[1],A,0,alpha):Idem([1];

0 0 0 1 0 0 —c41 c4l1 2c41 1—c41 c41 2c41
[0 0 Of,]0 1 O], —c41—1 14¢cfl 2c41+2 |,| 1—c4l c41 —-2+2c¢41 |]
0 0 0 0 0 1 0 0 0 0 0 1

We obtain two non-trivial idempotent endomorphisms e; and es of E respectively defined by the matrices
Idem|1,3] and Idem][1,4]. Let us consider e; defined by the following matrices P = Idem|[1,3] € A3*3
where we have set to 0 the arbitrary constant c41 and Q € A3*3 satisfying RP = Q R:

> P:=subs(c41=0,Idem[1,3]); Q:=Factorize(Mult(R,P,A),R,A);



0 00 1 -1 1
P=|-112| Q=10 0 1
0 00 0 0 1

As we have P? = P and Q? = @, we know that the A-modules ker4(.P), ims(.P) = kera(.(I3 — P)),
ker4(.Q) and im4(.Q) = kera(.(Is — Q)) are projective, and thus, free by the Quillen-Suslin theorem.
Let us compute bases of the corresponding modules. As the coefficients of P and @ belong to Q, we can
obtain them by means of linear algebraic techniques (e.g., using the jordan command of Maple) or using
directly OREMODULES as it is explained below. We then form the matrices U and V such that U PU !
and V Q V! are the Jordan normal forms of P and Q.

> Ul:=SyzygyModule(P,A): U2:=SyzygyModule(evalm(1-P) ,A):
> U:=stackmatrix(U1,U2);
>  V1:=SyzygyModule(Q,A): V2:=SyzygyModule (evalm(1-Q),A):
> V:=stackmatrix(V1,V2);
1 0 0 0 1 -1
U=1]10 0 1 V=11 -1 0
1 -1 -2 0 0 1

We obtain that the two unimodular matrices U and V, i.e., U € GL3(A4) and V € GL3(A), satisfy that
the matrix V RU ! is block-diagonal:

> S:=Mult(V,R,LeftInverse(U,A),A);
dy—dy di—do—a 0
S = 0 0 —do
0 0 dy
We can also use the command HeuristicDecomposition to directly obtain the previous result:
> HeuristicDecomposition(R,P,A)[1];
do—dy di—de—a 0
0 0 —ds
0 0 dq

We obtain that the general solution y = (y1(w1,22) y2(w1,22) y3(z1,22))T of the system Ry = 0 is
given by y = U~! 2z, where z = (21(w1,22) 22(x1,22) 23(21,72))7 is the general solution of Sz = 0.
Hence, if we denote by F = C*®(R?), kerz(R.) = {y € F* | Ry = 0} and kerz(S.) = {z € F* | Sz =0},
then we have kerz(R.) = U™t ker#(S.).

If a # 0, then kerz(S.) = {z € F3 | Sz = 0} is parametrized by
z1(21,w2) = (d2 — d1 + a) u(z1, 22),
z2(71,2) = (d2 — d1) u(z1, 22),
z3(21,22) = ¢,

where v is an arbitrary function of F and ¢ an arbitrary constant. For more details, see F. Chyzak,
A. Quadrat, D. Robertz, “Effective algorithms for parametrizing linear control systems over Ore algebras”,
Appl. Algebra Engrg. Comm. Comput., 16 (2005), 319-376. This last result can be checked as follows:

> L[1] :=Parametrization(S,A);
aéy (21, 12) + 5261 (w1, 12) — 5261 (21, 72)
L, = 5261 (1, 02) — 52-&1 (w1, 72)

_C1



Using the fact that the matrices U and V' do not depend on a and

> U_inv:=inverse(U);

1 0 0
U_inv .= 1 -2 -1
0 1 0

we obtain the following parametrization of kerz(R.) = {y € F3 | Ry = 0}
> Sol[1]:=ApplyMatrix(U_inv,L[1],A);
ai(z1,22) + 3%251 (w1, 72) — 3%151 (z1,22)
Soly = | a& (1,22) — 5261 (w1, 22) + 5261 (21, 02) — C1
561 (1, 02) — 52-&1 (w1, 72)

i.e., all the F-solutions of the system Ry = 0 have the form:

y1(z1,22) = (d2 — di + a) u(z1, 22),
VueF, VceR, ya(x1,22) = (d1 — da + a) u(z1, 22) — ¢,
y3(z1,22) = (do — di) u(x1,22).

If @ = 0, using Theorem 6 of A. Quadrat, D. Robertz, “Parametrizing all solutions of uncontrollable
multidimensional linear systems”, Proceedings of 16" IFAC World Congress, Prague (Czech Republic),
04-08/07/05, we then obtain that the F-solutions of (dy — dy) 21 + (d1 — d2) 22 = 0 are parametrized by:

21($1,$2) ($1,$2),

=Uu
VueF, V¢eCTR), {22(331,;@):u($17$2)—¢(5‘71+$2)'

Hence, we get the following parametrization of kerz(S.):

z1(21, w2) = u(x1, 22),
VueF, VoeC®R), ceR, zo(x1, 22) = u(x1,2) — P(x1 + x2),
z3(x1,x2) = c.
We can check this result as follows:
> T:=subs(a=0,evalm(S));
do—dy di—da O
T = 0 0 —dy
0 0 dy
> L[2] :=Parametrization(T,A);
&1 (xq,2)
Ly := | —_F1(zxo+z1)+& (21,22)
_C1
Then, kerz(R.) = U~! kerz(S.) is parametrized by
> Sol[2]:=ApplyMatrix(U_inv,L[2],A);
&1 (21, 22)
Soly = | =& (z1,22) +2-FI (z2 + 1) — -C1

—_F1 (29 4+ 1) + & (21, 72)



i.e., we have the following parametrization of kerz(R.):

y1(9€17$2) = U($1,$2)7
YueF, Ve C®R), ceR, ya(x1, 2) = 2 (11 + x2) — u(w1, 22) — C,
y3(x1,22) = —p(x1 + 2) + u(wy, 22).

To conclude, if a # 0, then we obtain that kerz(R.) depends on one arbitrary function of two independent
variables and one arbitrary constant, whereas if a = 0, kerx(R.) depends on one arbitrary function of
two independent variables, one arbitrary constant but also on one arbitrary function of one independent
variable. This result proves again in an unified way the results obtained in J.-F. Pommaret, chapter V of
the book Advanced Topics in Control Systems Theory, Lecture Notes in Control and Information Sciences
311, F. Lamnabhi-Lagarrigue, A. Loria, E. Panteley Editors, Springer, 2005, 155-223.



