```
> restart:
> with(OreModules):
> with(OreMorphisms);
> with(linalg):
```

We consider a time-delay model of a flexible rod with a torque studied in H. Mounier, J. Rudolph, M. Petitot, M. Fliess, "A flexible rod as a linear delay system", in Proccedings of 3rd European Control Conference, Rome (Italy), 1995, and defined by the following system matrix:

$$
\begin{aligned}
& >\mathrm{A}:=\text { DefineOreAlgebra }(\mathrm{diff}=[\mathrm{d}, \mathrm{t}], \text { dual_shift=[delta, } \mathrm{s}], \mathrm{polynom}=[\mathrm{t}, \mathrm{~s}]): \\
& >\mathrm{R}:=\operatorname{matrix}(2,3,[\mathrm{~d},-\mathrm{d} * \operatorname{delta},-1,2 * \mathrm{~d} * \operatorname{delta},-\mathrm{d} * \operatorname{delta} 2-\mathrm{d}, 0]) ; \\
& \qquad R:=\left[\begin{array}{ccc}
d & -d \delta & -1 \\
2 d \delta & -d \delta^{2}-d & 0
\end{array}\right]
\end{aligned}
$$

If we denote by $A=\mathbb{Q}[d, \delta]$ the commutative polynomial ring of differential time-delay operators with rational constant coefficients, $M=A^{1 \times 3} /\left(A^{1 \times 2} R\right)$ the A-module finitely presented by R, then we can compute the A-module structure of the endomorphism ring $E=\operatorname{end}_{A}(M)$ of M :

```
> Endo:=MorphismsConstCoeff(R,R,A,mult_table):
> Endo[1];
    [[[\begin{array}{l}{d}\end{array}0}
            [\begin{array}{ccc}{1}&{0}&{0}\\{0}&{1}&{0}\\{0}&{0}&{1}\end{array}],[\begin{array}{ccc}{0}&{1+\mp@subsup{\delta}{}{2}}&{0}\\{0}&{2\delta}&{0}\\{0}&{0}&{2\delta}\end{array}],[\begin{array}{ccc}{0}&{-d}&{\delta}\\{-d}&{0}&{1}\\{0}&{0}&{-d\delta}\end{array}]]
> Endo[2];
    [\begin{array}{ccccccc}{1}&{1}&{0}&{0}&{0}&{0}&{\delta}\\{\delta}&{0}&{0}&{0}&{0}&{0}&{1}\\{-1}&{0}&{0}&{0}&{d}&{0}&{0}\\{0}&{0}&{d}&{0}&{0}&{0}&{0}\\{0}&{0}&{0}&{1}&{0}&{0}&{1}\\{0}&{0}&{0}&{0}&{0}&{d}&{2}\end{array}]
> Endo[3];
```


Hence, we obtain that the A-module E is generated by the A-endomorphisms f_{i} 's defined by the 7 matrices P_{i} 's of Endo[1], i.e., $f_{i}(\pi(\lambda))=\pi\left(\lambda P_{i}\right)$, where $\pi: D^{1 \times 3} \longrightarrow M$ denotes the canonical projection onto M and λ is any element of $A^{1 \times 3}$. Moreover, the generators f_{i} 's of E satisfy the relations Endo[2] $F=0$, where $F=\left(f_{1} \ldots f_{7}\right)^{T}$. Finally, the multiplication table T of the generators f_{i} 's is the matrix Endo[3] without the first column which corresponds to the indices (i, j) of the product $f_{i} \circ f_{j}$, namely, we have $F \otimes F=T F$, where \otimes denotes the Kronecker product, namely, $F \otimes F=\left(\left(f_{1} \circ F\right)^{T} \ldots\left(f_{7} \circ F\right)^{T}\right)^{T}$. Using Endo[3], we can rewrite any polynomial in the f_{i} 's with coefficients in A as an A-linear combination of the f_{i} 's.
Let us try to find idempotent elements of E defined by idempotent matrices $P \in A^{3 \times 3}$ and $Q \in A^{2 \times 2}$, namely, $e \in E$ satisfying $e^{2}=e$, where $e(\pi(\lambda))=\pi(\lambda P)$, for all $\lambda \in A^{1 \times 3}$, and $R P=Q R, P^{2}=P$, $Q^{2}=Q$:

```
> Idem:=IdempotentsMatConstCoeff(R,Endo[1],A, 2);
```

$$
\begin{gathered}
\text { Idem : }= \\
{\left[\left[\begin{array}{ccc}
-\delta^{2} & 1 / 2 \delta\left(1+\delta^{2}\right) & 0 \\
-2 \delta & 1+\delta^{2} & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{ccc}
1+\delta^{2} & -1 / 2 \delta\left(1+\delta^{2}\right) & 0 \\
2 \delta & -\delta^{2} & 0 \\
0 & 0 & 1
\end{array}\right],\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right],}
\end{gathered}
$$

$[$ Ore_algebra, $[" d i f f "$ ", dual_shift $],[t, s],[d, \delta],[t, s],[], 0,[],[],[t, s],[],[],[$ diff $=[d, t]$, dual_shift $=[\delta, s]]]]$
We obtain two non-trivial idempotent endomorphisms e_{1} and e_{2} of E respectively defined by the matrices $\operatorname{Idem}[1,1]$ and $\operatorname{Idem}[1,3]$. We note that we have $e_{1}+e_{2}=\operatorname{id}_{M}$. Let us consider e_{1} defined by the following matrices $P=\operatorname{Idem}[1,1]$ and $Q \in A^{2 \times 2}$ satisfying $R P=Q R$:

$$
\begin{aligned}
& >P:=\operatorname{Idem}[1,1] ; \mathrm{Q}:=\operatorname{Factorize}(\operatorname{Mult}(\mathrm{R}, \mathrm{P}, \mathrm{~A}), \mathrm{R}, \mathrm{~A}) ; \\
& \qquad P:=\left[\begin{array}{ccc}
-\delta^{2} & 1 / 2 \delta\left(1+\delta^{2}\right) & 0 \\
-2 \delta & 1+\delta^{2} & 0 \\
0 & 0 & 0
\end{array}\right] \quad Q:=\left[\begin{array}{cc}
0 & 1 / 2 \delta \\
0 & 1
\end{array}\right]
\end{aligned}
$$

As we have $P^{2}=P$ and $Q^{2}=Q$, we know that the A-modules $\operatorname{ker}_{A}(. P), \operatorname{im}_{A}(. P)=\operatorname{ker}_{A}\left(.\left(I_{3}-P\right)\right)$, $\operatorname{ker}_{A}(. Q)$ and $\operatorname{im}_{A}(. Q)=\operatorname{ker}_{A}\left(.\left(I_{2}-Q\right)\right)$ are projective, and thus, free by the Quillen-Suslin theorem. Let us compute bases of the corresponding modules. We try heuristic methods implemented in OreModules which do not require the use of the package QuillenSusbin:

```
> U1:=SyzygyModule(P,A): U2:=SyzygyModule(evalm(1-P),A):
> U:=stackmatrix(U1,U2);
> V1:=SyzygyModule(Q,A): V2:=SyzygyModule(evalm(1-Q),A):
> V:=stackmatrix(V1,V2);
```

$$
U:=\left[\begin{array}{ccc}
-2 & \delta & 0 \\
0 & 0 & 1 \\
-2 \delta & 1+\delta^{2} & 0
\end{array}\right] \quad V:=\left[\begin{array}{cc}
-2 & \delta \\
0 & 1
\end{array}\right]
$$

We obtain that the two unimodular matrices U and V, i.e., $U \in \mathrm{GL}_{3}(A)$ and $V \in \mathrm{GL}_{2}(A)$, satisfy that the matrix $V R U^{-1}$ is block-diagonal:

```
> R_dec:=Mult(V,R,LeftInverse(U,A),A);
```

$$
R_{-} d e c:=\left[\begin{array}{ccc}
d-d \delta^{2} & 2 & 0 \\
0 & 0 & -d
\end{array}\right]
$$

We can also use the command HeuristicDecomposition to directly obtain the previous result:
> HeuristicDecomposition(R,P,A) [1];

$$
\left[\begin{array}{ccc}
d-d \delta^{2} & 2 & 0 \\
0 & 0 & -d
\end{array}\right]
$$

We can simplify $R _$dec by introducing the unimodular matrix X defined by:

$$
>\quad X:=\operatorname{diag}(e v a l m([[0,1],[1 / 2,-(d-d * d e l t a \wedge 2) / 2]]),-1) ;
$$

$$
X:=\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 / 2 & -1 / 2 d+1 / 2 d \delta^{2} & 0 \\
0 & 0 & -1
\end{array}\right]
$$

Indeed, we have:

```
> Mult(R_dec,X,A);
```

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & d
\end{array}\right]
$$

Therefore, if we consider the new matrix $W=X^{-1} U \in \operatorname{GL}_{3}(A)$ defined by
> W:=Mult(LeftInverse (X,A), U, A);

$$
W:=\left[\begin{array}{ccc}
-2 d+2 d \delta^{2} & d \delta-d \delta^{3} & 2 \\
-2 & \delta & 0 \\
2 \delta & -1-\delta^{2} & 0
\end{array}\right]
$$

we then have the following simple decomposition of the matrix R :

$$
\begin{aligned}
& >S:=\operatorname{Mult}(\mathrm{V}, \mathrm{R}, \operatorname{LeftInverse}(\mathrm{~W}, \mathrm{~A}), \mathrm{A}) \\
& \qquad S:=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & d
\end{array}\right]
\end{aligned}
$$

Hence, we obtain that $M \cong A^{1 \times 3} /\left(A^{1 \times 2} S\right) \cong A \oplus A /(A d)$. Moreover, the linear system of differential time-delay equations $\operatorname{ker}_{\mathcal{F}}\left(R\right.$.), where \mathcal{F} is an A-module (e.g., $\mathcal{F}=C^{\infty}(\mathbb{R})$) is equivalent to $\operatorname{ker}_{\mathcal{F}}(S$.). In particular, an element $\zeta=\left(\begin{array}{lll}\zeta_{1} & \zeta_{2} & \zeta_{3}\end{array}\right)^{T} \in \operatorname{ker}_{\mathcal{F}}\left(S\right.$.) satisfies $\zeta_{1}=0, \zeta_{2}$ is arbitrary function of \mathcal{F} and $\zeta_{3}=c$ an arbitrary constant. Then, $\eta=W^{-1} \zeta$ is the general solution of the linear system $\operatorname{ker}_{\mathcal{F}}(R$.).
We point out that the previous simple equivalent matrix S cannot be obtained by just noticing that the first row of R contains the invertible element -1 and post-multiplying R by the following elementary matrix Y
> $\mathrm{Y}:=$ matrix $(3,3,[1,0,0,0,1,0, d, d * \operatorname{delta},-1])$;

$$
Y:=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
d & -d \delta & -1
\end{array}\right]
$$

as we then obtain:

$$
>\mathrm{L}:=\mathrm{Mult}(\mathrm{R}, \mathrm{Y}, \mathrm{~A}) ;
$$

$$
L:=\left[\begin{array}{ccc}
0 & 0 & 1 \\
2 d \delta & -d \delta^{2}-d & 0
\end{array}\right]
$$

We refer the reader to A. Fabiańska, A. Quadrat, "Applications of the Quillen-Suslin theorem in multidimensional systems theory", chapter of the book Gröbner Bases in Control Theory and Signal Processing, H. Park and G. Regensburger (Eds.), Radon Series on Computation and Applied Mathematics 3, de Gruyter publisher, 2007, 23-106, for different algorithms which simplify the presentation matrices. Indeed, the previous computation only shows that we have:

$$
M \cong A^{1 \times 3} /\left(A^{1 \times 2} L\right) \cong A^{1 \times 2} /\left(A\left(2 d \delta \quad-d\left(\delta^{2}+1\right)\right)\right.
$$

Using the equivalent presentation matrix L of M, we then need to compute $t(M)$ and $M / t(M)$ as explained in F. Chyzak, A. Quadrat, D. Robertz, "Effective algorithms for parametrizing linear control systems over Ore algebras", Appl. Algebra Engrg. Comm. Comput., 16 (2005), 319-376, to get that $t(M) \cong A /(A d)$ and $M / t(M) \cong A$ and to combine these results with the particular fact that $M \cong t(M) \oplus M / t(M)$ to find again that $M \cong A \oplus A /(A d)$. However, all these information are obtained in one step using the previous decomposition approach.
Let us study the A-module structure $A^{1 \times 7} /\left(A^{1 \times 6} E n d o[2]\right)$ of the endomorphism ring E.

```
> ext1:=Exti(Involution(Endo[2],A),A,1);
```

$$
\text { ext1 } \left.:=\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & d & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & d & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right],\left[\begin{array}{ccccccc}
1 & 1 & 0 & 0 & 0 & 0 & \delta \\
\delta & 0 & 0 & 0 & 0 & 0 & 1 \\
-1 & 0 & 0 & 0 & d & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 2 \delta & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & d & 2
\end{array}\right],\left[\begin{array}{c}
-d \\
d-d \delta^{2} \\
0 \\
-d \delta \\
-1 \\
-2 \delta \\
d \delta
\end{array}\right]\right]
$$

We obtain that the endomorphisms $t_{1}=f_{3}$ and $t_{2}=2 \delta f_{5}-f_{6}$ generate the torsion A-module $t(E)$. We note that $f_{5}=\operatorname{id}_{M}$, a fact showing that $t_{2}=2 \delta \mathrm{id}_{M}-f_{6}$. In particular, we obtain that every element in $t_{1}(M)$ or in $t_{2}(M)$ define a torsion element of M. Moreover, the A-module $E / t(E)$ is finitely presented by the second matrix ext1[2] of ext1, i.e., $E / t(E)=A^{1 \times 7} /\left(A^{1 \times 7} \operatorname{ext1[2]}\right)$. We also have $E / t(E) \cong A^{1 \times 7} \operatorname{ext} 1[3]$.

```
> T:=LeftInverse(ext1[3],A);
```

$$
T:=\left[\begin{array}{lllllll}
0 & 0 & 0 & 0 & 0 & -1 & 0
\end{array}\right]
$$

As the matrix $\operatorname{ext1[3]}$ admits a left-inverse of A, we obtain that $E / t(E) \cong A$, i.e., $E / t(E)$ is a free A-module of rank 1. In particular, the short exact sequence of A-modules

$$
\begin{equation*}
0 \longrightarrow t(E) \xrightarrow{\iota} E \xrightarrow{\rho} E / t(E) \longrightarrow 0 \tag{1}
\end{equation*}
$$

splits and we obtain $E \cong t(E) \oplus E / t(E) \cong t(E) \oplus A$. Let us now study the A-module $t(E)$:
> K:=stackmatrix(Factorize(Endo[2],ext1[2],A),SyzygyModule(ext1[2],A));

$$
K:=\left[\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & d & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & -2 & -2 \delta & 0 & 0 & d & 1
\end{array}\right]
$$

We obtain that $t(E) \cong A^{1 \times 7} /\left(A^{1 \times 7} K\right)$. Using the special structure of the matrix K, we get that $t(E) \cong A /(A d) \oplus A /(A d)$, which shows that:

$$
\begin{equation*}
E \cong[A /(A d)]^{2} \oplus A \tag{2}
\end{equation*}
$$

(2) is consistent with the fact that $M \cong A^{1 \times 3} /\left(A^{1 \times 2} S\right) \cong A \oplus A /(A d)$ which implies that:

$$
\begin{aligned}
E & =\operatorname{end}_{A}(M) \cong \operatorname{hom}_{A}(A \oplus A /(A d), A \oplus A /(A d)) \\
& \cong \operatorname{end}_{A}(A) \oplus \operatorname{hom}_{A}(A, A /(A d)) \oplus \operatorname{hom}_{A}(A /(A d), A) \oplus \operatorname{end}_{A}(A /(A d))
\end{aligned}
$$

We have $\operatorname{end}_{A}(A) \cong A, \operatorname{hom}_{A}(A, A /(A d)) \cong A /(A d)$ and $\operatorname{hom}_{A}(A /(A d), A)=0$ because $A /(A d)$ is a torsion A-module and A is torsion-free. Moreover, we have $\operatorname{end}_{A}(A /(A d)) \cong A /(A d)$, which proves (2).
Using the following notations $F=\left(f_{1} \ldots f_{7}\right)^{T}$ and $G=\left(g_{1} \ldots g_{7}\right)^{T}$

```
> F:=evalm([seq([f[i]],i=1..nops(Endo[1]))]);
> G:=evalm([seq([g[i]],i=1..rowdim(ext1[2]))]);
```

$$
F:=\left[\begin{array}{c}
f_{1} \\
f_{2} \\
f_{3} \\
f_{4} \\
f_{5} \\
f_{6} \\
f_{7}
\end{array}\right] \quad G:=\left[\begin{array}{c}
g_{1} \\
g_{2} \\
g_{3} \\
g_{4} \\
g_{5} \\
g_{6} \\
g_{7}
\end{array}\right]
$$

the generators f_{i} 's of the A-module E satisfy the relations $E n d o[2] F=0$, namely,

$$
\begin{aligned}
& >\operatorname{evalm}(\text { Endo }[2] \& * \mathrm{~F})=\operatorname{evalm}([[0] \text { \$rowdim }(\text { Endo }[2])]) ; \\
& \qquad\left[\begin{array}{c}
f_{1}+f_{2}+\delta f_{7} \\
\delta f_{1}+f_{7} \\
-f_{1}+d f_{5} \\
d f_{3} \\
f_{4}+f_{7} \\
d f_{6}+2 f_{7}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

and the generators g_{i} 's of $E / t(E)$ satisfy the equation $\operatorname{ext} 1[2] G=0$:

$$
\begin{aligned}
&>\operatorname{evalm}(\operatorname{ext} 1[2] \& * G)=\operatorname{evalm}([[0] \$ r o w d i m \\
&(e x t 1 {[2])]) ; } \\
& {\left[\begin{array}{c}
g_{1}+g_{2}+\delta g_{7} \\
\delta g_{1}+g_{7} \\
-g_{1}+d g_{5} \\
g_{3} \\
g_{4}+g_{7} \\
2 \delta g_{5}-g_{6} \\
d g_{6}+2 g_{7}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Using the split exact sequence of A-modules $A^{1 \times 7} \xrightarrow{. e x t 1[2]} A^{1 \times 7} \xrightarrow{. e x t 1[3]} A \longrightarrow 0$, we obtain the following injective parametrization of the generators g_{i} 's of $E / t(E)$

```
> evalm(G)=evalm(ext1[3]*h);
```

$$
\left[\begin{array}{l}
g_{1} \\
g_{2} \\
g_{3} \\
g_{4} \\
g_{5} \\
g_{6} \\
g_{7}
\end{array}\right]=\left[\begin{array}{c}
-d h \\
\left(d-d \delta^{2}\right) h \\
0 \\
-d \delta h \\
-h \\
-2 \delta h \\
d \delta h
\end{array}\right]
$$

where h is defined by

```
> h=evalm(T&*G)[1,1];
```

$$
h=-g_{5}
$$

i.e., we have $E / t(E) \cong A g_{5}$ and $\operatorname{ann}_{A}\left(g_{5}\right)=0$. Moreover, we have $t(E) \cong A t_{1} \oplus A t_{2}$, where $\operatorname{ann}_{A}\left(t_{1}\right)=$ $\operatorname{ann}_{A}\left(t_{2}\right)=A d$, which shows that $E \cong A g_{5} \oplus A t_{1} \oplus A t_{2}$.

To finish, we can explicitly describe the previous isomorphism. In order to do that, we first compute a generalized inverse Z of $\operatorname{ext1}[2]$ over A :
> Z:=GeneralizedInverse(ext1[2],A);

$$
Z:=\left[\begin{array}{ccccccc}
0 & 0 & -1 & 0 & 0 & 0 & 0 \\
1 & -\delta & 1-\delta^{2} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & -1 & -\delta & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 \\
0 & 1 & \delta & 0 & 0 & 0 & 0
\end{array}\right]
$$

We can check that we have $\operatorname{ext1[2]~} Z \operatorname{ext1[2]}=\operatorname{ext1[2]}$. Let us denote by $H=I_{7}-Z \operatorname{ext1[2]:~}$

$$
\begin{aligned}
& >H:=\operatorname{evalm}(1-M u l t(Z, \operatorname{ext} 1[2], A)) ; \\
& H:=\left[\begin{array}{ccccccc}
0 & 0 & 0 & 0 & d & 0 & 0 \\
0 & 0 & 0 & 0 & d\left(\delta^{2}-1\right) & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & d \delta & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 2 \delta & 0 & 0 \\
0 & 0 & 0 & 0 & -d \delta & 0 & 0
\end{array}\right]
\end{aligned}
$$

Using the fact that $\operatorname{ext1}[2] H=0$, we obtain that the A-morphism $\sigma: E / t(E) \longrightarrow E$ defined by $\sigma\left(\pi^{\prime}(\lambda)\right)=\pi(\lambda H)$, where $\pi^{\prime}: A^{1 \times 7} \longrightarrow E / t(E)$ denotes the projection onto $E / t(E)$ and λ is an element of $A^{1 \times 7}$, satisfies $\rho \circ \sigma=\operatorname{id}_{E / t(E)}$. For more details, see Theorem 4 of A. Quadrat, D. Robertz, "Parametrizing all solutions of uncontrollable multidimensional linear systems", Proceedings of $16^{\text {th }}$ IFAC World Congress, Prague (Czech Republic), 04-08/07/05. We find again that the short exact sequence (1) splits. The A-morphism σ is defined by:

$$
\left\{\begin{array}{l}
\sigma\left(g_{1}\right)=d f_{5} \\
\sigma\left(g_{2}\right)=d\left(\delta^{2}-1\right) f_{5} \\
\sigma\left(g_{3}\right)=0 \\
\sigma\left(g_{4}\right)=d \delta f_{5} \\
\sigma\left(g_{5}\right)=f_{5} \\
\sigma\left(g_{6}\right)=2 \delta f_{5} \\
\sigma\left(g_{7}\right)=-d \delta f_{5}
\end{array}\right.
$$

Using the relations between the generators f_{i} 's of the A-module E, we obtain that the A-morphism $\chi: \operatorname{id}_{E}-\sigma \circ \rho: E \longrightarrow E$ is defined by:

$$
\left\{\begin{array}{l}
\chi\left(f_{1}\right)=f_{1}-d f_{5}=0 \\
\chi\left(f_{2}\right)=f_{2}-d\left(\delta^{2}-1\right) f_{5}=0 \\
\chi\left(f_{3}\right)=f_{3}=t_{1} \\
\chi\left(f_{4}\right)=f_{4}-d \delta f_{5}=0 \\
\chi\left(f_{5}\right)=f_{5}-f_{5}=0 \\
\chi\left(f_{6}\right)=f_{6}-2 \delta f_{5}=-t_{2} \\
\chi\left(f_{7}\right)=f_{7}-d \delta f_{5}=0
\end{array}\right.
$$

Hence, if we define the A-morphism $\kappa: E \longrightarrow t(E)$ by

$$
\left\{\begin{array}{l}
\kappa\left(f_{1}\right)=0 \\
\kappa\left(f_{2}\right)=0 \\
\kappa\left(f_{3}\right)=t_{1}, \\
\kappa\left(f_{4}\right)=0, \\
\kappa\left(f_{5}\right)=0, \\
\kappa\left(f_{6}\right)=-t_{2} \\
\kappa\left(f_{7}\right)=0,
\end{array}\right.
$$

we then get that $\operatorname{id}_{E}=\sigma \circ \rho+\iota \circ \kappa$. Therefore, using the fact that $f_{5}=\operatorname{id}_{M}$, we obtain

$$
\left\{\begin{array}{l}
f_{1}=d \mathrm{id}_{M} \tag{3}\\
f_{2}=d\left(\delta^{2}-1\right) \mathrm{id}_{M} \\
f_{3}=t_{1} \\
f_{4}=d \delta \mathrm{id}_{M} \\
f_{5}=\mathrm{id}_{M} \\
f_{6}=2 \delta \operatorname{id}_{M}-t_{2} \\
f_{7}=-d \delta \operatorname{id}_{M}
\end{array}\right.
$$

a fact showing that the generators f_{i} 's of E can be expressed in terms of id_{M} and $t_{1}=f_{3}$ and $t_{2}=$ $2 \delta \mathrm{id}_{M}-f_{6}$ and $\left\{\mathrm{id}_{M}, t_{1}, t_{2}\right\}$ generates the A-module E. In particular, using the multiplication table Endo[3] and (3), we can easily obtain the following small multiplication table for the new family of generators $\left\{\operatorname{id}_{M}, t_{1}, t_{2}\right\}$ (compare with Endo[3]):

$$
\left\{\begin{array}{l}
t_{1} \circ t_{1}=\left(1+\delta^{2}\right) t_{1} \\
t_{1} \circ t_{2}=2 \delta t_{1} \\
t_{2} \circ t_{1}=\left(1+\delta^{2}\right) t_{2} \\
t_{2} \circ t_{2}=4 \delta t_{2}-2 \delta(2 \delta-1) \operatorname{id}_{M} \\
t_{i} \circ \operatorname{id}_{M}=\operatorname{id}_{M} \circ t_{i}=t_{i}, i=1,2
\end{array}\right.
$$

Using it, we can rewrite any polynomial in the f_{i} 's with coefficients in A in terms of an A-linear combination of id_{M}, t_{1} and t_{2}.

