
> restart:

> with(OreModules):

> with(OreMorphisms);

> with(linalg):

We consider a time-delay model of a flexible rod with a torque studied in H. Mounier, J. Rudolph,
M. Petitot, M. Fliess, “A flexible rod as a linear delay system”, in Proccedings of 3rd European Control
Conference, Rome (Italy), 1995, and defined by the following system matrix:

> A:=DefineOreAlgebra(diff=[d,t],dual_shift=[delta,s],polynom=[t,s]):

> R:=matrix(2,3,[d,-d*delta,-1,2*d*delta,-d*delta^2-d,0]);

R :=

[
d −d δ −1

2 d δ −d δ2 − d 0

]
If we denote by A = Q[d, δ] the commutative polynomial ring of differential time-delay operators with
rational constant coefficients, M = A1×3/(A1×2 R) the A-module finitely presented by R, then we can
compute the A-module structure of the endomorphism ring E = endA(M) of M :

> Endo:=MorphismsConstCoeff(R,R,A,mult_table):

> Endo[1];

[


d 0 0

0 d 0

0 0 d

 ,


0 0 −1− δ2

0 0 −2 δ

0 0 d δ2 − d

 ,


0 0 0

−2 δ 1 + δ2 0

0 0 0

 ,


0 d −δ

d 0 −1

0 0 d δ

 ,


1 0 0

0 1 0

0 0 1

 ,


0 1 + δ2 0

0 2 δ 0

0 0 2 δ

 ,


0 −d δ

−d 0 1

0 0 −d δ

]

> Endo[2]; 

1 1 0 0 0 0 δ

δ 0 0 0 0 0 1

−1 0 0 0 d 0 0

0 0 d 0 0 0 0

0 0 0 1 0 0 1

0 0 0 0 0 d 2


> Endo[3];
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[1, 1] d 0 0 0 0 0 0

[1, 2] 0 d 0 0 0 0 0

[1, 3] 0 0 0 0 0 0 0

[1, 4] 0 0 0 0 0 0 −d

[1, 5] 1 0 0 0 0 0 0

[1, 6] 0 0 0 0 0 0 −2

[1, 7] 0 0 0 0 0 0 d

[2, 1] 0 d 0 0 0 0 0

[2, 2] 0 d δ2 − d 0 0 0 0 0

[2, 3] 0 0 0 0 0 0 0

[2, 4] 0 d δ 0 0 0 0 0

[2, 5] 0 1 0 0 0 0 0

[2, 6] 0 2 δ 0 0 0 0 0

[2, 7] 0 −d δ 0 0 0 0 0

[3, 1] 0 0 0 0 0 0 0

[3, 2] 0 0 0 0 0 0 0

[3, 3] 0 0 1 + δ2 0 0 0 0

[3, 4] 0 0 0 0 0 0 0

[3, 5] 0 0 1 0 0 0 0

[3, 6] 0 0 0 0 0 0 0

[3, 7] 0 0 0 0 0 0 0

[4, 1] 0 0 0 0 0 0 −d

[4, 2] 0 d δ 0 0 0 0 0

[4, 3] 0 0 0 0 0 0 0

[4, 4] d d 0 0 0 0 0
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[4, 5] 0 0 0 0 0 0 −1

[4, 6] 2 2 0 0 0 0 0

[4, 7] −d −d 0 0 0 0 0

[5, 1] 1 0 0 0 0 0 0

[5, 2] 0 1 0 0 0 0 0

[5, 3] 0 0 1 0 0 0 0

[5, 4] 0 0 0 0 0 0 −1

[5, 5] 0 0 0 0 1 0 0

[5, 6] 0 0 0 0 0 1 0

[5, 7] 0 0 0 0 0 0 1

[6, 1] 0 0 0 0 0 0 −2

[6, 2] 0 2 δ 0 0 0 0 0

[6, 3] 0 0 2 δ 0 −2 δ − 2 δ3 1 + δ2 0

[6, 4] 2 2 0 0 0 0 0

[6, 5] 0 0 0 0 0 1 0

[6, 6] 0 0 0 0 0 2 δ 0

[6, 7] −2 −2 0 0 0 0 0

[7, 1] 0 0 0 0 0 0 d

[7, 2] 0 −d δ 0 0 0 0 0

[7, 3] 0 0 0 0 0 0 0

[7, 4] −d −d 0 0 0 0 0

[7, 5] 0 0 0 0 0 0 1

[7, 6] −2 −2 0 0 0 0 0

[7, 7] d d 0 0 0 0 0
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Hence, we obtain that the A-module E is generated by the A-endomorphisms fi’s defined by the 7 matrices
Pi’s of Endo[1], i.e., fi(π(λ)) = π(λ Pi), where π : D1×3 −→ M denotes the canonical projection onto
M and λ is any element of A1×3. Moreover, the generators fi’s of E satisfy the relations Endo[2]F = 0,
where F = (f1 . . . f7)T . Finally, the multiplication table T of the generators fi’s is the matrix Endo[3]
without the first column which corresponds to the indices (i, j) of the product fi ◦ fj , namely, we have
F⊗F = T F , where ⊗ denotes the Kronecker product, namely, F⊗F = ((f1◦F )T . . . (f7◦F )T )T . Using
Endo[3], we can rewrite any polynomial in the fi’s with coefficients in A as an A-linear combination of
the fi’s.

Let us try to find idempotent elements of E defined by idempotent matrices P ∈ A3×3 and Q ∈ A2×2,
namely, e ∈ E satisfying e2 = e, where e(π(λ)) = π(λ P ), for all λ ∈ A1×3, and R P = QR, P 2 = P ,
Q2 = Q:

> Idem:=IdempotentsMatConstCoeff(R,Endo[1],A,2);

2



Idem :=

[[


−δ2 1/2 δ

(
1 + δ2

)
0

−2 δ 1 + δ2 0

0 0 0

 ,


0 0 0

0 0 0

0 0 0

 ,


1 + δ2 −1/2 δ

(
1 + δ2

)
0

2 δ −δ2 0

0 0 1

 ,


1 0 0

0 1 0

0 0 1

],

[Ore algebra, [“diff ′′, dual shift ], [t, s], [d, δ], [t, s], [], 0, [], [], [t, s], [], [], [diff = [d, t], dual shift = [δ, s]]]]

We obtain two non-trivial idempotent endomorphisms e1 and e2 of E respectively defined by the matrices
Idem[1, 1] and Idem[1, 3]. We note that we have e1+e2 = idM . Let us consider e1 defined by the following
matrices P = Idem[1, 1] and Q ∈ A2×2 satisfying R P = QR:

> P:=Idem[1,1]; Q:=Factorize(Mult(R,P,A),R,A);

P :=


−δ2 1/2 δ

(
1 + δ2

)
0

−2 δ 1 + δ2 0

0 0 0

 Q :=

[
0 1/2 δ

0 1

]

As we have P 2 = P and Q2 = Q, we know that the A-modules kerA(.P ), imA(.P ) = kerA(.(I3 − P )) ,
kerA(.Q) and imA(.Q) = kerA(.(I2−Q)) are projective, and thus, free by the Quillen-Suslin theorem. Let
us compute bases of the corresponding modules. We try heuristic methods implemented in OreModules
which do not require the use of the package QuillenSuslin:

> U1:=SyzygyModule(P,A): U2:=SyzygyModule(evalm(1-P),A):
> U:=stackmatrix(U1,U2);
> V1:=SyzygyModule(Q,A): V2:=SyzygyModule(evalm(1-Q),A):
> V:=stackmatrix(V1,V2);

U :=


−2 δ 0

0 0 1

−2 δ 1 + δ2 0

 V :=

[
−2 δ

0 1

]

We obtain that the two unimodular matrices U and V , i.e., U ∈ GL3(A) and V ∈ GL2(A), satisfy that
the matrix V R U−1 is block-diagonal:

> R_dec:=Mult(V,R,LeftInverse(U,A),A);

R dec :=

[
d− d δ2 2 0

0 0 −d

]
We can also use the command HeuristicDecomposition to directly obtain the previous result:

> HeuristicDecomposition(R,P,A)[1];[
d− d δ2 2 0

0 0 −d

]
We can simplify R dec by introducing the unimodular matrix X defined by:

> X:=diag(evalm([[0,1],[1/2,-(d-d*delta^2)/2]]),-1);

X :=


0 1 0

1/2 −1/2 d + 1/2 d δ2 0

0 0 −1


Indeed, we have:

> Mult(R_dec,X,A);
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[
1 0 0

0 0 d

]
Therefore, if we consider the new matrix W = X−1 U ∈ GL3(A) defined by

> W:=Mult(LeftInverse(X,A),U,A);

W :=


−2 d + 2 d δ2 d δ − d δ3 2

−2 δ 0

2 δ −1− δ2 0


we then have the following simple decomposition of the matrix R:

> S:=Mult(V,R,LeftInverse(W,A),A);

S :=

[
1 0 0

0 0 d

]
Hence, we obtain that M ∼= A1×3/(A1×2 S) ∼= A ⊕ A/(A d). Moreover, the linear system of differential
time-delay equations kerF (R.), where F is an A-module (e.g., F = C∞(R)) is equivalent to kerF (S.). In
particular, an element ζ = (ζ1 ζ2 ζ3)T ∈ kerF (S.) satisfies ζ1 = 0, ζ2 is arbitrary function of F and
ζ3 = c an arbitrary constant. Then, η = W−1 ζ is the general solution of the linear system kerF (R.).

We point out that the previous simple equivalent matrix S cannot be obtained by just noticing that the
first row of R contains the invertible element −1 and post-multiplying R by the following elementary
matrix Y

> Y:=matrix(3,3,[1,0,0,0,1,0,d,d*delta,-1]);

Y :=


1 0 0

0 1 0

d −d δ −1


as we then obtain:

> L:=Mult(R,Y,A);

L :=

[
0 0 1

2 d δ −d δ2 − d 0

]
We refer the reader to A. Fabiańska, A. Quadrat, “Applications of the Quillen-Suslin theorem in multidi-
mensional systems theory”, chapter of the book Gröbner Bases in Control Theory and Signal Processing,
H. Park and G. Regensburger (Eds.), Radon Series on Computation and Applied Mathematics 3, de
Gruyter publisher, 2007, 23-106, for different algorithms which simplify the presentation matrices. In-
deed, the previous computation only shows that we have:

M ∼= A1×3/(A1×2 L) ∼= A1×2/(A (2 d δ − d (δ2 + 1)).

Using the equivalent presentation matrix L of M , we then need to compute t(M) and M/t(M) as explained
in F. Chyzak, A. Quadrat, D. Robertz, “Effective algorithms for parametrizing linear control systems over
Ore algebras”, Appl. Algebra Engrg. Comm. Comput., 16 (2005), 319-376, to get that t(M) ∼= A/(A d)
and M/t(M) ∼= A and to combine these results with the particular fact that M ∼= t(M) ⊕M/t(M) to
find again that M ∼= A ⊕ A/(A d). However, all these information are obtained in one step using the
previous decomposition approach.

Let us study the A-module structure A1×7/(A1×6 Endo[2]) of the endomorphism ring E.

> ext1:=Exti(Involution(Endo[2],A),A,1);
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ext1 := [



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 d 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 d 0

0 0 0 0 0 0 1


,



1 1 0 0 0 0 δ

δ 0 0 0 0 0 1

−1 0 0 0 d 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 1

0 0 0 0 2 δ −1 0

0 0 0 0 0 d 2


,



−d

d− d δ2

0

−d δ

−1

−2 δ

d δ


]

We obtain that the endomorphisms t1 = f3 and t2 = 2 δ f5 − f6 generate the torsion A-module t(E).
We note that f5 = idM , a fact showing that t2 = 2 δ idM − f6. In particular, we obtain that every
element in t1(M) or in t2(M) define a torsion element of M . Moreover, the A-module E/t(E) is finitely
presented by the second matrix ext1[2] of ext1, i.e., E/t(E) = A1×7/(A1×7 ext1[2]). We also have
E/t(E) ∼= A1×7 ext1[3].

> T:=LeftInverse(ext1[3],A);

T :=
[

0 0 0 0 0 −1 0
]

As the matrix ext1[3] admits a left-inverse of A, we obtain that E/t(E) ∼= A, i.e., E/t(E) is a free
A-module of rank 1. In particular, the short exact sequence of A-modules

0 −→ t(E) ι−→ E
ρ−→ E/t(E) −→ 0 (1)

splits and we obtain E ∼= t(E)⊕ E/t(E) ∼= t(E)⊕A. Let us now study the A-module t(E):

> K:=stackmatrix(Factorize(Endo[2],ext1[2],A),SyzygyModule(ext1[2],A));

K :=



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 d 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 1

0 −2 −2 δ 0 0 d 1


We obtain that t(E) ∼= A1×7/(A1×7 K). Using the special structure of the matrix K, we get that
t(E) ∼= A/(A d)⊕A/(A d), which shows that:

E ∼= [A/(A d)]2 ⊕A. (2)

(2) is consistent with the fact that M ∼= A1×3/(A1×2 S) ∼= A⊕A/(A d) which implies that:

E = endA(M) ∼= homA(A⊕A/(A d), A⊕A/(A d))
∼= endA(A)⊕ homA(A,A/(A d))⊕ homA(A/(A d), A)⊕ endA(A/(A d)).

We have endA(A) ∼= A, homA(A,A/(A d)) ∼= A/(A d) and homA(A/(A d), A) = 0 because A/(A d) is a
torsion A-module and A is torsion-free. Moreover, we have endA(A/(A d)) ∼= A/(A d), which proves (2).

Using the following notations F = (f1 . . . f7)T and G = (g1 . . . g7)T

> F:=evalm([seq([f[i]],i=1..nops(Endo[1]))]);
> G:=evalm([seq([g[i]],i=1..rowdim(ext1[2]))]);
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F :=



f1

f2

f3

f4

f5

f6

f7


G :=



g1

g2

g3

g4

g5

g6

g7


the generators fi’s of the A-module E satisfy the relations Endo[2]F = 0, namely,

> evalm(Endo[2]&*F)=evalm([[0]$rowdim(Endo[2])]);

f1 + f2 + δ f7

δ f1 + f7

−f1 + d f5

d f3

f4 + f7

d f6 + 2 f7


=



0

0

0

0

0

0


and the generators gi’s of E/t(E) satisfy the equation ext1[2]G = 0:

> evalm(ext1[2]&*G)=evalm([[0]$rowdim(ext1[2])]);

g1 + g2 + δ g7

δ g1 + g7

−g1 + d g5

g3

g4 + g7

2 δ g5 − g6

d g6 + 2 g7


=



0

0

0

0

0

0

0


Using the split exact sequence of A-modules A1×7 .ext1[2]−−−−−→ A1×7 .ext1[3]−−−−−→ A −→ 0, we obtain the following
injective parametrization of the generators gi’s of E/t(E)

> evalm(G)=evalm(ext1[3]*h);

g1

g2

g3

g4

g5

g6

g7


=



−d h

(d− d δ2) h

0

−d δ h

−h

−2 δ h

d δ h


where h is defined by

> h=evalm(T&*G)[1,1];
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h = −g5

i.e., we have E/t(E) ∼= A g5 and annA(g5) = 0. Moreover, we have t(E) ∼= A t1 ⊕A t2, where annA(t1) =
annA(t2) = A d, which shows that E ∼= A g5 ⊕A t1 ⊕A t2.

To finish, we can explicitly describe the previous isomorphism. In order to do that, we first compute a
generalized inverse Z of ext1[2] over A:

> Z:=GeneralizedInverse(ext1[2],A);

Z :=



0 0 −1 0 0 0 0
1 −δ 1− δ2 0 0 0 0
0 0 0 1 0 0 0
0 −1 −δ 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 −1 0
0 1 δ 0 0 0 0


We can check that we have ext1[2]Z ext1[2] = ext1[2]. Let us denote by H = I7 − Z ext1[2]:

> H:=evalm(1-Mult(Z,ext1[2],A));

H :=



0 0 0 0 d 0 0
0 0 0 0 d (δ2 − 1) 0 0
0 0 0 0 0 0 0
0 0 0 0 d δ 0 0
0 0 0 0 1 0 0
0 0 0 0 2 δ 0 0
0 0 0 0 −d δ 0 0


Using the fact that ext1[2]H = 0, we obtain that the A-morphism σ : E/t(E) −→ E defined by
σ(π′(λ)) = π(λ H), where π′ : A1×7 −→ E/t(E) denotes the projection onto E/t(E) and λ is an
element of A1×7, satisfies ρ ◦ σ = idE/t(E). For more details, see Theorem 4 of A. Quadrat, D. Robertz,
“Parametrizing all solutions of uncontrollable multidimensional linear systems”, Proceedings of 16th IFAC
World Congress, Prague (Czech Republic), 04-08/07/05. We find again that the short exact sequence (1)
splits. The A-morphism σ is defined by:

σ(g1) = d f5,

σ(g2) = d (δ2 − 1) f5,

σ(g3) = 0,

σ(g4) = d δ f5,

σ(g5) = f5,

σ(g6) = 2 δ f5,

σ(g7) = −d δ f5.

Using the relations between the generators fi’s of the A-module E, we obtain that the A-morphism
χ : idE − σ ◦ ρ : E −→ E is defined by:

χ(f1) = f1 − d f5 = 0,

χ(f2) = f2 − d (δ2 − 1) f5 = 0,

χ(f3) = f3 = t1,

χ(f4) = f4 − d δ f5 = 0,

χ(f5) = f5 − f5 = 0,

χ(f6) = f6 − 2 δ f5 = −t2,

χ(f7) = f7 − d δ f5 = 0.
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Hence, if we define the A-morphism κ : E −→ t(E) by

κ(f1) = 0,

κ(f2) = 0,

κ(f3) = t1,

κ(f4) = 0,

κ(f5) = 0,

κ(f6) = −t2,

κ(f7) = 0,

we then get that idE = σ ◦ ρ + ι ◦ κ. Therefore, using the fact that f5 = idM , we obtain

f1 = d idM ,

f2 = d (δ2 − 1) idM ,

f3 = t1,

f4 = d δ idM ,

f5 = idM ,

f6 = 2 δ idM − t2,

f7 = −d δ idM ,

(3)

a fact showing that the generators fi’s of E can be expressed in terms of idM and t1 = f3 and t2 =
2 δ idM − f6 and {idM , t1, t2} generates the A-module E. In particular, using the multiplication table
Endo[3] and (3), we can easily obtain the following small multiplication table for the new family of
generators {idM , t1, t2} (compare with Endo[3]):

t1 ◦ t1 = (1 + δ2) t1

t1 ◦ t2 = 2 δ t1,

t2 ◦ t1 = (1 + δ2) t2,

t2 ◦ t2 = 4 δ t2 − 2 δ (2 δ − 1) idM ,

ti ◦ idM = idM ◦ ti = ti, i = 1, 2,

Using it, we can rewrite any polynomial in the fi’s with coefficients in A in terms of an A-linear combi-
nation of idM , t1 and t2.
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