- > restart:
- > with(OreModules):
- > with(OreMorphisms);
- > with(linalg):

We consider a time-delay model of a flexible rod with a torque studied in H. Mounier, J. Rudolph, M. Petitot, M. Fliess, "A flexible rod as a linear delay system", in *Proceedings of 3rd European Control Conference*, Rome (Italy), 1995, and defined by the following system matrix:

- > A:=DefineOreAlgebra(diff=[d,t],dual_shift=[delta,s],polynom=[t,s]):
- > R:=matrix(2,3,[d,-d*delta,-1,2*d*delta,-d*delta^2-d,0]);

$$R := \left[\begin{array}{ccc} d & -d\,\delta & -1 \\ 2\,d\,\delta & -d\,\delta^2 - d & 0 \end{array} \right]$$

If we denote by $A = \mathbb{Q}[d, \delta]$ the commutative polynomial ring of differential time-delay operators with rational constant coefficients, $M = A^{1\times 3}/(A^{1\times 2}R)$ the A-module finitely presented by R, then we can compute the A-module structure of the endomorphism ring $E = \operatorname{end}_A(M)$ of M:

> Endo:=MorphismsConstCoeff(R,R,A,mult_table):

```
> Endo[1];
```

	$\int d$	0 0	$\begin{bmatrix} 0 & 0 & -1 \end{bmatrix}$	$-\delta^2$	0	0 0	$\begin{bmatrix} 0 & d \end{bmatrix}$	$-\delta$
	[0	d 0 ,	00-	-2δ ,	-2δ 1	$+ \delta^2 = 0$	$\left \begin{array}{c} , \\ d \end{array} \right d = 0$	-1,
		0 d	$\begin{bmatrix} 0 & 0 & d\delta \end{bmatrix}$	2-d	0	0 0		$d\delta$
			$\begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	$\begin{array}{c} 1+\delta^2\\ 2\delta\\ 0\end{array}$	$\begin{bmatrix} 0 \\ 0 \\ 2 \delta \end{bmatrix},$	$\begin{array}{ccc} 0 & -d \\ -d & 0 \\ 0 & 0 \end{array}$	$\begin{bmatrix} \delta \\ 1 \\ -d \delta \end{bmatrix}$]	
>	Endo[2];	-					-	
			[1	1 0	0 0 0	δ		
			8	0 0	0 0 0	1		
			-	1 0 0	0 d 0	0		
				0 d	0 0 0	0		
			0	0 0	1 0 0	1		
				0 0	0 0 d	2		

> Endo [3];

Г	[1, 1]	d	0	0	0	0	0	0 .									
	[-, -] [1 0]	0	d	0	Õ	Õ	0	0	[4,5]	0	0	0	0	0	0	-1]	ĺ
	[1, 2]	0	u O	0	0	0	0	0	[4, 6]	2	2	0	0	0	0	0	
	[1,3]	0	0	0	0	0	0	0	[4,7]	-d	-d	0	0	0	0	0	
	[1, 4]	0	0	0	0	0	0	-d	[5, 1]	1	0	0	0	0	0	0	
	[1, 5]	1	0	0	0	0	0	0	[5, 2]	0	1	0	0	0	0	0	
	[1, 6]	0	0	0	0	0	0	-2	[5 3]	0	0	1	Õ	0	0	0	
	[1,7]	0	0	0	0	0	0	d	[5,0]	0	0	0	0	0	0	1	
	[2, 1]	0	d	0	0	0	0	0		0	0	0	0	0	0	-1	
	[2, 2]	0	$d\delta^2-d$	0	0	0	0	0	[5,5]	0	0	0	0	1	0	0	
	[2, 3]	0	0	0	0	0	0	0	[5, 6]	0	0	0	0	0	1	0	
	[2, 4]	0	$d\delta$	0	0	0	0	0	[5,7]	0	0	0	0	0	0	1	
	[2, 5]	0	1	0	0	0	0	0	[6,1]	0	0	0	0	0	0	-2	
	[<u>-</u> , •]	0	28	ů O	0	0	0	Û	[6, 2]	0	2δ	0	0	0	0	0	
	[2, 0]	0	20	0	0	0	0	0	[6, 3]	0	0	2δ	0	$-2\delta-2\delta^3$	$1+\delta^2$	0	
	[2, 1]	0	- <i>u</i> o	0	0	0	0	0	[6, 4]	2	2	0	0	0	0	0	
	[3, 1]	0	0	0	0	0	0	0	[6, 5]	0	0	0	0	0	1	0	
	[3, 2]	0	0	0	0	0	0	0	[6,6]	0	0	0	0	0	2δ	0	
	[3, 3]	0	0	$1 + \delta^2$	0	0	0	0	[6, 7]	-2	-2	0	0	0	0	0	
	[3, 4]	0	0	0	0	0	0	0	[7 1]	0	0	0	0	0	0	d	
	[3, 5]	0	0	1	0	0	0	0	[7, 2]	0	48	0	0	0	0	0	
	[3, 6]	0	0	0	0	0	0	0		0	-40	0	0	0	0	0	
	[3, 7]	0	0	0	0	0	0	0		0	0	0	0	0	0	0	
	[4, 1]	0	0	0	0	0	0	-d	[7,4]	-d	-d	0	0	0	0	0	ĺ
	[4, 2]	0	$d\delta$	0	0	0	0	0	[7,5]	0	0	0	0	0	0	1	
	[4, 3]	0	0	0	0	0	0	0	[7,6]	-2	-2	0	0	0	0	0	
	[4, 4]	d	d	0	0 0	0	0 0	0	[7,7]	d	d	0	0	0	0	0	l
L	[+,+]	u	u	0	U	U	0	υ.									

Hence, we obtain that the A-module E is generated by the A-endomorphisms f_i 's defined by the 7 matrices P_i 's of Endo[1], i.e., $f_i(\pi(\lambda)) = \pi(\lambda P_i)$, where $\pi : D^{1\times 3} \longrightarrow M$ denotes the canonical projection onto M and λ is any element of $A^{1\times 3}$. Moreover, the generators f_i 's of E satisfy the relations Endo[2] F = 0, where $F = (f_1 \ldots f_7)^T$. Finally, the multiplication table T of the generators f_i 's is the matrix Endo[3] without the first column which corresponds to the indices (i, j) of the product $f_i \circ f_j$, namely, we have $F \otimes F = T F$, where \otimes denotes the Kronecker product, namely, $F \otimes F = ((f_1 \circ F)^T \ldots (f_7 \circ F)^T)^T$. Using Endo[3], we can rewrite any polynomial in the f_i 's with coefficients in A as an A-linear combination of the f_i 's.

Let us try to find idempotent elements of E defined by idempotent matrices $P \in A^{3\times 3}$ and $Q \in A^{2\times 2}$, namely, $e \in E$ satisfying $e^2 = e$, where $e(\pi(\lambda)) = \pi(\lambda P)$, for all $\lambda \in A^{1\times 3}$, and RP = QR, $P^2 = P$, $Q^2 = Q$:

> Idem:=IdempotentsMatConstCoeff(R,Endo[1],A,2);

$$Idem :=$$

$$\begin{bmatrix} -\delta^2 & 1/2 \,\delta \, \left(1+\delta^2\right) & 0 \\ -2 \,\delta & 1+\delta^2 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 1+\delta^2 & -1/2 \,\delta \, \left(1+\delta^2\right) & 0 \\ 2 \,\delta & -\delta^2 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}],$$

 $[Ore_algebra, [``diff'', dual_shift], [t, s], [d, \delta], [t, s], [], 0, [], [], [t, s], [], [], [diff = [d, t], dual_shift = [\delta, s]]]]$

We obtain two non-trivial idempotent endomorphisms e_1 and e_2 of E respectively defined by the matrices Idem[1, 1] and Idem[1, 3]. We note that we have $e_1 + e_2 = id_M$. Let us consider e_1 defined by the following matrices P = Idem[1, 1] and $Q \in A^{2 \times 2}$ satisfying R P = Q R:

> P:=Idem[1,1]; Q:=Factorize(Mult(R,P,A),R,A);

$$P := \begin{bmatrix} -\delta^2 & 1/2 \,\delta \, (1+\delta^2) & 0 \\ -2 \,\delta & 1+\delta^2 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad Q := \begin{bmatrix} 0 & 1/2 \,\delta \\ 0 & 1 \end{bmatrix}$$

As we have $P^2 = P$ and $Q^2 = Q$, we know that the A-modules $\ker_A(.P)$, $\operatorname{im}_A(.P) = \ker_A(.(I_3 - P))$, $\ker_A(.Q)$ and $\operatorname{im}_A(.Q) = \ker_A(.(I_2 - Q))$ are projective, and thus, free by the Quillen-Suslin theorem. Let us compute bases of the corresponding modules. We try heuristic methods implemented in OREMODULES which do not require the use of the package QUILLENSUSLIN:

- > U1:=SyzygyModule(P,A): U2:=SyzygyModule(evalm(1-P),A):
- > U:=stackmatrix(U1,U2);
- > V1:=SyzygyModule(Q,A): V2:=SyzygyModule(evalm(1-Q),A):
- > V:=stackmatrix(V1,V2);

$$U := \begin{bmatrix} -2 & \delta & 0 \\ 0 & 0 & 1 \\ -2\delta & 1+\delta^2 & 0 \end{bmatrix} \quad V := \begin{bmatrix} -2 & \delta \\ 0 & 1 \end{bmatrix}$$

We obtain that the two unimodular matrices U and V, i.e., $U \in GL_3(A)$ and $V \in GL_2(A)$, satisfy that the matrix $V R U^{-1}$ is block-diagonal:

> R_dec:=Mult(V,R,LeftInverse(U,A),A);

$$R_dec := \left[\begin{array}{ccc} d - d \, \delta^2 & 2 & 0 \\ 0 & 0 & -d \end{array} \right]$$

We can also use the command *HeuristicDecomposition* to directly obtain the previous result:

> HeuristicDecomposition(R,P,A)[1];

$$\left[\begin{array}{ccc} d-d\,\delta^2 & 2 & 0 \\ 0 & 0 & -d \end{array} \right]$$

We can simplify R_dec by introducing the unimodular matrix X defined by:

> X:=diag(evalm([[0,1],[1/2,-(d-d*delta²)/2]]),-1);

$$X := \begin{bmatrix} 0 & 1 & 0 \\ 1/2 & -1/2 d + 1/2 d \delta^2 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

Indeed, we have:

> Mult(R_dec,X,A);

$$\left[\begin{array}{rrrr}1&0&0\\0&0&d\end{array}\right]$$

Therefore, if we consider the new matrix $W = X^{-1} U \in GL_3(A)$ defined by

> W:=Mult(LeftInverse(X,A),U,A);

$$W := \left[\begin{array}{ccc} -2\,d + 2\,d\,\delta^2 & d\,\delta - d\,\delta^3 & 2 \\ \\ -2 & \delta & 0 \\ \\ 2\,\delta & -1 - \delta^2 & 0 \end{array} \right]$$

we then have the following simple decomposition of the matrix R:

> S:=Mult(V,R,LeftInverse(W,A),A);

$$S := \left[\begin{array}{rrr} 1 & 0 & 0 \\ 0 & 0 & d \end{array} \right]$$

Hence, we obtain that $M \cong A^{1\times3}/(A^{1\times2}S) \cong A \oplus A/(Ad)$. Moreover, the linear system of differential time-delay equations $\ker_{\mathcal{F}}(R)$, where \mathcal{F} is an A-module (e.g., $\mathcal{F} = C^{\infty}(\mathbb{R})$) is equivalent to $\ker_{\mathcal{F}}(S)$. In particular, an element $\zeta = (\zeta_1 \quad \zeta_2 \quad \zeta_3)^T \in \ker_{\mathcal{F}}(S)$ satisfies $\zeta_1 = 0$, ζ_2 is arbitrary function of \mathcal{F} and $\zeta_3 = c$ an arbitrary constant. Then, $\eta = W^{-1}\zeta$ is the general solution of the linear system $\ker_{\mathcal{F}}(R)$.

We point out that the previous simple equivalent matrix S cannot be obtained by just noticing that the first row of R contains the invertible element -1 and post-multiplying R by the following elementary matrix Y

> Y:=matrix(3,3,[1,0,0,0,1,0,d,d*delta,-1]);

$$Y := \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ d & -d\delta & -1 \end{bmatrix}$$

as we then obtain:

> L:=Mult(R,Y,A);

$$L := \begin{bmatrix} 0 & 0 & 1 \\ 2 d \delta & -d \delta^2 - d & 0 \end{bmatrix}$$

We refer the reader to A. Fabiańska, A. Quadrat, "Applications of the Quillen-Suslin theorem in multidimensional systems theory", chapter of the book *Gröbner Bases in Control Theory and Signal Processing*, H. Park and G. Regensburger (Eds.), Radon Series on Computation and Applied Mathematics 3, de Gruyter publisher, 2007, 23-106, for different algorithms which simplify the presentation matrices. Indeed, the previous computation only shows that we have:

$$M \cong A^{1 \times 3} / (A^{1 \times 2} L) \cong A^{1 \times 2} / (A (2 d \delta - d (\delta^2 + 1))).$$

Using the equivalent presentation matrix L of M, we then need to compute t(M) and M/t(M) as explained in F. Chyzak, A. Quadrat, D. Robertz, "Effective algorithms for parametrizing linear control systems over Ore algebras", *Appl. Algebra Engrg. Comm. Comput.*, 16 (2005), 319-376, to get that $t(M) \cong A/(Ad)$ and $M/t(M) \cong A$ and to combine these results with the particular fact that $M \cong t(M) \oplus M/t(M)$ to find again that $M \cong A \oplus A/(Ad)$. However, all these information are obtained in one step using the previous decomposition approach.

Let us study the A-module structure $A^{1\times7}/(A^{1\times6} Endo[2])$ of the endomorphism ring E.

> ext1:=Exti(Involution(Endo[2],A),A,1);

$$ext1 := \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & d & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 & \delta \\ \delta & 0 & 0 & 0 & 0 & 0 & 1 \\ -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 2\delta & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & d & 2 \end{bmatrix}, \begin{bmatrix} -d \\ d - d\delta^2 \\ 0 \\ -d\delta \\ -1 \\ -2\delta \\ d\delta \end{bmatrix}]$$

We obtain that the endomorphisms $t_1 = f_3$ and $t_2 = 2 \delta f_5 - f_6$ generate the torsion A-module t(E). We note that $f_5 = \mathrm{id}_M$, a fact showing that $t_2 = 2 \delta \mathrm{id}_M - f_6$. In particular, we obtain that every element in $t_1(M)$ or in $t_2(M)$ define a torsion element of M. Moreover, the A-module E/t(E) is finitely presented by the second matrix ext1[2] of ext1, i.e., $E/t(E) = A^{1\times7}/(A^{1\times7}ext1[2])$. We also have $E/t(E) \cong A^{1\times7}ext1[3]$.

> T:=LeftInverse(ext1[3],A);

 $T := \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & -1 & 0 \end{bmatrix}$

As the matrix ext1[3] admits a left-inverse of A, we obtain that $E/t(E) \cong A$, i.e., E/t(E) is a free A-module of rank 1. In particular, the short exact sequence of A-modules

$$0 \longrightarrow t(E) \stackrel{\iota}{\longrightarrow} E \stackrel{\rho}{\longrightarrow} E/t(E) \longrightarrow 0 \tag{1}$$

splits and we obtain $E \cong t(E) \oplus E/t(E) \cong t(E) \oplus A$. Let us now study the A-module t(E):

> K:=stackmatrix(Factorize(Endo[2],ext1[2],A),SyzygyModule(ext1[2],A));

	1	0	0	0	0	0	0
	0	1	0	0	0	0	0
	0	0	1	0	0	0	0
K :=	0	0	0	d	0	0	0
	0	0	0	0	1	0	0
	0	0	0	0	0	0	1
	0	-2	-2δ	0	0	d	1

We obtain that $t(E) \cong A^{1\times 7}/(A^{1\times 7}K)$. Using the special structure of the matrix K, we get that $t(E) \cong A/(Ad) \oplus A/(Ad)$, which shows that:

$$E \cong [A/(A\,d)]^2 \oplus A. \tag{2}$$

(2) is consistent with the fact that $M \cong A^{1\times 3}/(A^{1\times 2}S) \cong A \oplus A/(Ad)$ which implies that:

$$E = \operatorname{end}_{A}(M) \cong \operatorname{hom}_{A}(A \oplus A/(A d), A \oplus A/(A d))$$

$$\cong \operatorname{end}_{A}(A) \oplus \operatorname{hom}_{A}(A, A/(A d)) \oplus \operatorname{hom}_{A}(A/(A d), A) \oplus \operatorname{end}_{A}(A/(A d)).$$

We have $\operatorname{end}_A(A) \cong A$, $\operatorname{hom}_A(A, A/(Ad)) \cong A/(Ad)$ and $\operatorname{hom}_A(A/(Ad), A) = 0$ because A/(Ad) is a torsion A-module and A is torsion-free. Moreover, we have $\operatorname{end}_A(A/(Ad)) \cong A/(Ad)$, which proves (2).

Using the following notations $F = (f_1 \ldots f_7)^T$ and $G = (g_1 \ldots g_7)^T$

- > F:=evalm([seq([f[i]],i=1..nops(Endo[1]))]);
- > G:=evalm([seq([g[i]],i=1..rowdim(ext1[2]))]);

$$F := \begin{bmatrix} f_1 \\ f_2 \\ f_3 \\ f_4 \\ f_5 \\ f_6 \\ f_7 \end{bmatrix} \quad G := \begin{bmatrix} g_1 \\ g_2 \\ g_3 \\ g_4 \\ g_5 \\ g_6 \\ g_7 \end{bmatrix}$$

the generators f_i 's of the A-module E satisfy the relations Endo[2] F = 0, namely,

> evalm(Endo[2]&*F)=evalm([[0]\$rowdim(Endo[2])]);

$$\begin{bmatrix} f_1 + f_2 + \delta f_7 \\ \delta f_1 + f_7 \\ -f_1 + d f_5 \\ d f_3 \\ f_4 + f_7 \\ d f_6 + 2 f_7 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

and the generators g_i 's of E/t(E) satisfy the equation ext1[2] G = 0:

> evalm(ext1[2]&*G)=evalm([[0]\$rowdim(ext1[2])]);

$$\begin{bmatrix} g_1 + g_2 + \delta g_7 \\ \delta g_1 + g_7 \\ -g_1 + d g_5 \\ g_3 \\ g_4 + g_7 \\ 2 \delta g_5 - g_6 \\ d g_6 + 2 g_7 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Using the split exact sequence of A-modules $A^{1\times 7} \xrightarrow{.ext1[2]} A^{1\times 7} \xrightarrow{.ext1[3]} A \longrightarrow 0$, we obtain the following injective parametrization of the generators g_i 's of E/t(E)

> evalm(G)=evalm(ext1[3]*h);

$$\begin{bmatrix} g_1 \\ g_2 \\ g_3 \\ g_4 \\ g_5 \\ g_6 \\ g_7 \end{bmatrix} = \begin{bmatrix} -dh \\ (d-d\delta^2)h \\ 0 \\ -d\delta h \\ -h \\ -2\delta h \\ d\delta h \end{bmatrix}$$

where h is defined by

> h=evalm(T&*G)[1,1];

$$h = -g_{5}$$

i.e., we have $E/t(E) \cong A g_5$ and $\operatorname{ann}_A(g_5) = 0$. Moreover, we have $t(E) \cong A t_1 \oplus A t_2$, where $\operatorname{ann}_A(t_1) = \operatorname{ann}_A(t_2) = A d$, which shows that $E \cong A g_5 \oplus A t_1 \oplus A t_2$.

To finish, we can explicitly describe the previous isomorphism. In order to do that, we first compute a generalized inverse Z of ext1[2] over A:

> Z:=GeneralizedInverse(ext1[2],A);

We can check that we have ext1[2] Z ext1[2] = ext1[2]. Let us denote by $H = I_7 - Z ext1[2]$:

> H:=evalm(1-Mult(Z,ext1[2],A));

Using the fact that ext1[2] H = 0, we obtain that the A-morphism $\sigma : E/t(E) \longrightarrow E$ defined by $\sigma(\pi'(\lambda)) = \pi(\lambda H)$, where $\pi' : A^{1\times7} \longrightarrow E/t(E)$ denotes the projection onto E/t(E) and λ is an element of $A^{1\times7}$, satisfies $\rho \circ \sigma = id_{E/t(E)}$. For more details, see Theorem 4 of A. Quadrat, D. Robertz, "Parametrizing all solutions of uncontrollable multidimensional linear systems", *Proceedings of* 16th *IFAC* World Congress, Prague (Czech Republic), 04-08/07/05. We find again that the short exact sequence (1) splits. The A-morphism σ is defined by:

$$\begin{cases} \sigma(g_1) = d f_5, \\ \sigma(g_2) = d (\delta^2 - 1) f_5, \\ \sigma(g_3) = 0, \\ \sigma(g_4) = d \delta f_5, \\ \sigma(g_5) = f_5, \\ \sigma(g_6) = 2 \delta f_5, \\ \sigma(g_7) = -d \delta f_5. \end{cases}$$

Using the relations between the generators f_i 's of the A-module E, we obtain that the A-morphism $\chi : \mathrm{id}_E - \sigma \circ \rho : E \longrightarrow E$ is defined by:

$$\begin{split} \chi(f_1) &= f_1 - d f_5 = 0, \\ \chi(f_2) &= f_2 - d (\delta^2 - 1) f_5 = 0 \\ \chi(f_3) &= f_3 = t_1, \\ \chi(f_4) &= f_4 - d \,\delta \,f_5 = 0, \\ \chi(f_5) &= f_5 - f_5 = 0, \\ \chi(f_6) &= f_6 - 2 \,\delta \,f_5 = -t_2, \\ \chi(f_7) &= f_7 - d \,\delta \,f_5 = 0. \end{split}$$

Hence, if we define the A-morphism $\kappa: E \longrightarrow t(E)$ by

$$\begin{cases} \kappa(f_1) = 0, \\ \kappa(f_2) = 0, \\ \kappa(f_3) = t_1, \\ \kappa(f_4) = 0, \\ \kappa(f_5) = 0, \\ \kappa(f_6) = -t_2, \\ \kappa(f_7) = 0, \end{cases}$$

we then get that $\mathrm{id}_E = \sigma \circ \rho + \iota \circ \kappa$. Therefore, using the fact that $f_5 = \mathrm{id}_M$, we obtain

$$\begin{cases} f_{1} = d \operatorname{id}_{M}, \\ f_{2} = d \left(\delta^{2} - 1 \right) \operatorname{id}_{M}, \\ f_{3} = t_{1}, \\ f_{4} = d \delta \operatorname{id}_{M}, \\ f_{5} = \operatorname{id}_{M}, \\ f_{6} = 2 \delta \operatorname{id}_{M} - t_{2}, \\ f_{7} = -d \delta \operatorname{id}_{M}, \end{cases}$$
(3)

a fact showing that the generators f_i 's of E can be expressed in terms of id_M and $t_1 = f_3$ and $t_2 = 2 \delta \mathrm{id}_M - f_6$ and $\{\mathrm{id}_M, t_1, t_2\}$ generates the A-module E. In particular, using the multiplication table Endo[3] and (3), we can easily obtain the following small multiplication table for the new family of generators $\{\mathrm{id}_M, t_1, t_2\}$ (compare with Endo[3]):

$$\begin{cases} t_1 \circ t_1 = (1 + \delta^2) t_1 \\ t_1 \circ t_2 = 2 \,\delta \, t_1, \\ t_2 \circ t_1 = (1 + \delta^2) \, t_2, \\ t_2 \circ t_2 = 4 \,\delta \, t_2 - 2 \,\delta \, (2 \,\delta - 1) \, \mathrm{id}_M, \\ t_i \circ \mathrm{id}_M = \mathrm{id}_M \circ t_i = t_i, \ i = 1, 2, \end{cases}$$

Using it, we can rewrite any polynomial in the f_i 's with coefficients in A in terms of an A-linear combination of id_M , t_1 and t_2 .