- > restart:
- > with(OreModules):
- > with(OreMorphisms);
- > with(linalg):

Let us consider the Dirac equations for a massless particle defined by the matrix

- > R:=matrix(4,4,[d[4],0,-i*d[3],-(i*d[1]+d[2]),0,d[4],-i*d[1]+d[2],i*d[3],
- > i*d[3],i*d[1]+d[2],-d[4],0,i*d[1]-d[2],-i*d[3],0,-d[4]]);

$$R := \begin{bmatrix} d_4 & 0 & -id_3 & -id_1 - d_2 \\ 0 & d_4 & -id_1 + d_2 & id_3 \\ id_3 & id_1 + d_2 & -d_4 & 0 \\ id_1 - d_2 & -id_3 & 0 & -d_4 \end{bmatrix}$$

with entries in the ring $A = \mathbb{Q}(i)[d_1, d_2, d_3, d_4]$ of differential operators in d_1, \ldots, d_4 with coefficients in $\mathbb{Q}(i)$:

- > A:=DefineOreAlgebra(diff=[d[1],x[1]],diff=[d[2],x[2]],diff=[d[3],x[3]],
- > diff=[d[4],x[4]],polynom=[x[1],x[2],x[3],x[4]],comm=[i],
- > alg_relations=[i^2+1]):

See, e.g., R. Courant, D. Hilbert, Methods of Mathematical Physics, Wiley Classics Library, Wiley, 1989. Let us consider the A-module $M = A^{1\times 4}/(A^{1\times 4}R)$ finitely presented by the matrix R and let us compute its endomorphism ring $E = \text{end}_A(M)$:

> Endo:=MorphismsConstCoeff(R,R,A):

The A-module structure of the ring E can be generated by

> nops(Endo[1]);

18

generators which satisfy

> rowdim(Endo[2]);

22

A-linear relations. Let us try to compute idempotents of E defined by matrices over $\mathbb{Q}(i)$:

> Idem:=IdempotentsMatConstCoeff(R,Endo[1],A,0);

$$[Ore_algebra, ["diff", "diff", "diff", "diff"], [x_1, x_2, x_3, x_4], [d_1, d_2, d_3, d_4], [x_1, x_2, x_3, x_4], [i], 0, \\ [], [i^2 + 1], [x_1, x_2, x_3, x_4], [], [], [diff = [d_1, x_1], diff = [d_2, x_2], diff = [d_3, x_3], diff = [d_4, x_4]]]]$$

We obtain the trivial idempotents 0 and id_M of E as well as two non-trivial idempotents e_1 and e_2 respectively defined by the matrices Idem[1,2] and Idem[1,4]. Let us denote by P=Idem[1,2] and $Q \in A^{4\times 4}$ defined by RP=QR:

> P:=Idem[1,2]; Q:=Factorize(Mult(R,P,A),R,A);

$$P := \begin{bmatrix} 1/2 & 0 & -1/2 & 0 \\ 0 & 1/2 & 0 & -1/2 \\ -1/2 & 0 & 1/2 & 0 \\ 0 & -1/2 & 0 & 1/2 \end{bmatrix} \quad Q := \begin{bmatrix} 1/2 & 0 & 1/2 & 0 \\ 0 & 1/2 & 0 & 1/2 \\ 1/2 & 0 & 1/2 & 0 \\ 0 & 1/2 & 0 & 1/2 \end{bmatrix}$$

As the entries of the matrices P and Q belong to the field \mathbb{Q} and $P^2 = P$ and $Q^2 = Q$, using linear algebraic techniques, we can easily compute bases of the free \mathbb{Q} -modules $\ker_{\mathbb{Q}}(.P)$, $\operatorname{im}_{\mathbb{Q}}(.P) = \ker_{\mathbb{Q}}(.(I_4 - P))$, $\ker_{\mathbb{Q}}(.Q)$ and $\operatorname{im}_{\mathbb{Q}}(.Q) = \ker_{\mathbb{Q}}(.(I_4 - Q))$ as follows:

- > U1:=SyzygyModule(P,A): U2:=SyzygyModule(evalm(1-P),A):
- > U:=stackmatrix(U1,U2);
- > V1:=SyzygyModule(Q,A): V2:=SyzygyModule(evalm(1-Q),A):
- > V:=stackmatrix(V1,V2);

$$U := \begin{bmatrix} -1 & 0 & -1 & 0 \\ 0 & -1 & 0 & -1 \\ 1 & 0 & -1 & 0 \\ 0 & -1 & 0 & 1 \end{bmatrix} \quad V := \begin{bmatrix} -1 & 0 & 1 & 0 \\ 0 & 1 & 0 & -1 \\ 1 & 0 & 1 & 0 \\ 0 & -1 & 0 & -1 \end{bmatrix}$$

In particular, the previous matrices define bases of the free A-modules $\ker_A(.P)$, $\operatorname{im}_A(.P)$, $\ker_A(.Q)$ and $\operatorname{im}_A(.Q)$. Hence, the unimodular matrices U and V, i.e., $U \in \operatorname{GL}_4(A)$ and $V \in \operatorname{GL}_4(A)$, are such that the matrices $U P U^{-1}$ and $V Q V^{-1}$ are block-diagonal formed by the diagonal matrices 0_2 and 0_2 :

- > VERIF1:=Mult(U,P,LeftInverse(U,A),A);
- > VERIF2:=Mult(V,Q,LeftInverse(V,A),A);

Then, the matrix R is equivalent to the block-diagonal matrix $S = V R U^{-1}$ defined by:

> S:=Mult(V,R,LeftInverse(U,A),A);

$$S := \begin{bmatrix} -i d_3 + d_4 & -i d_1 - d_2 & 0 & 0 \\ i d_1 - d_2 & -d_4 - i d_3 & 0 & 0 \\ 0 & 0 & d_4 + i d_3 & -i d_1 - d_2 \\ 0 & 0 & -i d_1 + d_2 & -i d_3 + d_4 \end{bmatrix}$$

This result can be directly obtained by using the command Heuristic Decomposition:

> HeuristicDecomposition(R,P,A)[1];

$$\begin{bmatrix}
-i d_3 + d_4 & -i d_1 - d_2 & 0 & 0 \\
-i d_1 + d_2 & d_4 + i d_3 & 0 & 0 \\
0 & 0 & d_4 + i d_3 & i d_1 + d_2 \\
0 & 0 & -i d_1 + d_2 & -d_4 + i d_3
\end{bmatrix}$$

As we have $\operatorname{coim}_A(.P) \cong \operatorname{im}_A(.P)$ and $\operatorname{coim}_A(.Q) \cong \operatorname{im}_A(.Q)$, we obtain that the A-modules $\operatorname{coim}_A(.P)$ and $\operatorname{coim}_A(.Q)$ are free. Hence, by Theorem 4.2 of T. Cluzeau, A. Quadrat, "Factoring and decomposing a class of linear functional systems", *Linear Algebra and Its Applications*, 428 (2008), 324-381, we obtain that R is equivalent to a block-triangular matrix. It can be obtained by computing bases of the free A-modules $\ker_A(.P)$, $\operatorname{coim}_A(.P)$, $\ker_A(.Q)$ and $\operatorname{coim}_A(.Q)$ as follows:

- > Y2:=LeftInverse(Exti(Involution(Y1,A),A,1)[3],A): Y:=stackmatrix(U1,Y2);
- > Z2:=LeftInverse(Exti(Involution(Z1,A),A,1)[3],A): Z:=stackmatrix(V1,Z2);

$$Y := \left[egin{array}{ccccc} -1 & 0 & -1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{array}
ight] \quad Z := \left[egin{array}{ccccc} -1 & 0 & 1 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{array}
ight]$$

The matrices $Y \in GL_4(A)$ and $Z \in GL_4(A)$, respectively formed by the bases of $\ker_A(.P)$ and $\operatorname{coim}_A(.P)$ and by the bases of $\ker_A(.Q)$ and $\operatorname{coim}_A(.Q)$, are such that $T = Z R Y^{-1}$ is a block-triangular matrix defined by:

> T:=Mult(Z,R,LeftInverse(Y,A),A);

$$T := \begin{bmatrix} d_4 - i \, d_3 & i \, d_1 + d_2 & 0 & 0 \\ i \, d_1 - d_2 & d_4 + i \, d_3 & 0 & 0 \\ i \, d_3 & -i \, d_1 - d_2 & d_4 + i \, d_3 & -i \, d_1 - d_2 \\ -i \, d_1 + d_2 & -i \, d_3 & -i \, d_1 + d_2 & d_4 - i \, d_3 \end{bmatrix}$$

This last result can be directly obtained as follows

> HeuristicReduction(R,P,A)[1];

$$\begin{bmatrix} d_4 - i d_3 & i d_1 + d_2 & 0 & 0 \\ i d_1 - d_2 & d_4 + i d_3 & 0 & 0 \\ i d_3 & -i d_1 - d_2 & d_4 + i d_3 & -i d_1 - d_2 \\ -i d_1 + d_2 & -i d_3 & -i d_1 + d_2 & d_4 - i d_3 \end{bmatrix}$$