
> restart:

> with(OreModules):

> with(OreMorphisms);

> with(linalg):

Let us consider the Cauchy-Riemann equations defined by the following matrix of differential operators
in dx and dy (see, e.g., R. Courant, D. Hilbert, Methods of Mathematical Physics, Wiley Classics Library,
Wiley, 1989):

> A:=DefineOreAlgebra(diff=[d[x],x],diff=[d[y],y],polynom=[x,y]):

> R:=matrix(2,2,[d[x],-d[y],d[y],d[x]]);

R :=

[
dx −dy

dy dx

]
Let us introduce the A = Q[dx, dy]-module M = A1×2/(A1×2 R) finitely presented by the matrix R. The
endomorphism ring E = endA(M) of M is then defined by:

> Endo:=MorphismsConstCoeff(R,R,A,mult_table);

Endo := [[

[
0 1

−1 0

]
,

[
1 0

0 1

]
],

[
−dy dx

dx dy

]
,


[1, 1] 0 −1

[1, 2] 1 0

[2, 1] 1 0

[2, 2] 0 1

]

The A-module E is finitely generated by the endomorphisms fi’s defined by fi(π(λ)) = π(λ Pi), where
π : A1×2 −→ M denotes the projection onto M , λ ∈ A1×2 and Pi is one of the two matrices defined in
Endo[1], i.e., f1(π(λ1 λ2)) = π((−λ2 λ1)) and f2 = idM . If we now denote by F = (f1 f2)T , then
the generators fi’s of E satisfy the relations Endo[2]FT = 0, where Endo[2] denotes the second entry of
Endo. The previous data completely characterize the A-module structure of E and shows that E ∼= M .
The ring structure of the endomorphism ring E is defined by the multiplication table of the generators fi’s
of E, namely, the knowledge of the expressions of the products fi◦fj on the family of generators {f1, idM}
of E. More precisely, if we denote by ⊗ the Kronecker product, namely, F⊗F = ((f1◦F )T (idM ◦F )T )T ,
then the multiplication table T is defined by F ⊗F = T F , where T denotes the matrix Endo[3] without
the first column which corresponds to the indices (i, j) of the product fi ◦ fj . We obtain:

f1 ◦ f1 = −idM , f1 ◦ idM = idM ◦ f1 = f1, idM ◦ idM = idM . (1)

We now study the idempotents of the ring E. As every endomorphism f of E has the form f =
a1 f1 + a2 idM , where a1 and a2 ∈ A, using the multiplication table (1), we obtain that f2 = f is
equivalent to (2 a1 a2 − a1) f1 + (a2

2 − a2
1 − a2) idM = 0. If we only consider idempotent endomorphisms

defined by constant matrices (i.e., matrices formed by zero-order differential operators), i.e., a1 and a2

are constants, using the fact that f1 and idM do not satisfy zero-order differential relation, then we have{
−a2

1 + a2
2 − a2 = 0,

2 a1 a2 − a1 = 0,
⇔ (a1, a2) ∈ {(0, 0), (0, 1), (i/2, 1/2), (−i/2, 1/2)},

i.e., e1 = 0, e2 = idM , e3 = (i f1 + idM )/2 and e4 = (−i f1 + idM )/2. Let us check this result:

> Idem:=IdempotentsConstCoeff(R,Endo[1],A,0,alpha);

Idem := [[

[
1/2 1/2 α1

−1/2 α1 1/2

]
,

[
0 0

0 0

]
,

[
1 0

0 1

]
], [Ore algebra, [“diff ′′, “diff ′′], [x, y],

[dx, dy], [x, y], [α1], 0, [], [α1
2 + 1], [x, y], [], [], [diff = [dx, x], diff = [dy, y]]]]
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We obtain that there only exist the two trivial idempotents 0 and idM of E defined by constant matrices
over A but one non-trivial idempotent e defined over the ring B = Q[α1]/(x2

1 + 1)[dx, dy] (i.e., B =
Q(i)[dx, dy]), i.e., e ∈ F = endB(B ⊗A M) is defined by

∀ λ ∈ B1×2, e((idB ⊗ π)(λ)) = (idB ⊗ π)(λ P ),

where the matrix P ∈ B2×2 is given by:

> B:=Idem[2]: P:=Idem[1,1]; Q:=Factorize(Mult(R,P,B),R,B);

P :=

[
1/2 1/2 α1

−1/2 α1 1/2

]
Q :=

[
1/2 1/2 α1

−1/2 α1 1/2

]
The matrix Q ∈ B2×2 satisfying R P = QR is equal to P . We can check that P 2 = P :

> VERIF_IDEMPOTENT:=subs(alpha[1]^2=-1,simplify(evalm(Mult(P,P,B)-P)));

VERIF IDEMPOTENT :=

[
0 0

0 0

]
As the entries of P belong to the field Q(i) = Q[α1]/(α2

1 + 1), using linear algebraic techniques, we can
easily find bases of the free Q(i)-modules kerQ(i)(.P ) and imQ(i)(.P ) = kerQ(i)(.(I2−P )), and thus, bases
of the free B-modules kerB(.P ) and imB(.P ):

> U1:=SyzygyModule(P,B): U2:=SyzygyModule(evalm(1-P),B):
> U:=stackmatrix(U1,U2);

U :=

[
α1 1

α1 −1

]
We can check that the matrix U P U−1 is the block-diagonal matrix diag(0, 1):

> VERIF:=subs(alpha[1]^2=-1,Mult(U,P,LeftInverse(U,B),B));

VERIF :=

[
0 0

0 1

]
Then, we know that the matrix is equivalent to the block-diagonal matrix U R U−1 defined by:

> R_dec:=subs(alpha[1]^2=-1,map(collect,Mult(U,R,LeftInverse(U,B),B),d[y]));

R dec :=

 dy

α1
+ dx 0

0 − dy

α1
+ dx


The last result can be directly obtained by means of the command HeuristicDecomposition:

> S:=subs(alpha[1]^2=-1,map(collect,HeuristicDecomposition(R,P,B)[1],d[y]));

S :=

 dy

α1
+ dx 0

0 − dy

α1
+ dx


If we substitute α1 = i into the previous block-diagonal matrix, we then obtain

> subs(alpha[1]=I,evalm(S));[
−i dy + dx 0

0 i dy + dx

]
i.e., S = diag(∂, ∂), with the standard notations ∂ = dx + i dy and ∂ = dx − i dy.

Similarly, we can consider the following matrix of differential operators in dt and dx
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> A:=DefineOreAlgebra(diff=[d[t],t],diff=[d[x],x],polynom=[t,x],comm=[a,b]):

> R:=matrix(2,2,[d[x],a*d[t],d[t],b*d[x]]);

R :=

[
dx a dt

dt b dx

]
where a and b denote two real parameters. Let us introduce the A = Q(a, b)[dt, dx]-module M =
A1×2/(A1×2 R). If we consider an A-module F (e.g., F = C∞(R2)), then the linear system of differential
equations kerF (R.) ∼= homA(M,F) corresponds, for instance, to an acoustic wave (a = 1/ρ, b = ρ c2) or
a LC transmission line (a = L, b = 1/C).

Let us compute the endomorphism ring E = endA(M) of M :

> Endo:=MorphismsConstCoeff(R,R,A,mult_table);

Endo := [[

[
1 0

0 1

]
,

[
0 a b

1 0

]
],

[
b dx dt

a dt dx

]
,


[1, 1] 1 0

[1, 2] 0 1

[2, 1] 0 1

[2, 2] a b 0

]

We now compute idempotents of E defined by constant idempotent matrices:

> Idem:=IdempotentsMatConstCoeff(R,Endo[1],A,0,alpha);

Idem := [

[
0 0

0 0

]
,

[
1 0

0 1

]
, [

[
1/2 α1 a b

α1 1/2

]
], [Ore algebra, [“diff ′′, “diff ′′], [t, x],

[dt, dx], [t, x], [a, b, α1], 0, [], [−1 + 4 α1
2 a b], [t, x], [], [], [diff = [dt, t], diff = [dx, x]]]]

We obtain the two trivial idempotents of 0 and idM of E. However, if we consider the ring B =
Q(a, b)[α1]/(4 a b α2

1−1)[dt, dx], then a non-trivial idempotent of endB(B⊗AM) is defined by the following
matrix:

> B:=Idem[2]: P:=Idem[1,1];

P :=

[
1/2 α1 a b

α1 1/2

]
Then, R is equivalent to the block-diagonal matrix R dec = V R U−1 ∈ B2×2 defined by:

> S:=HeuristicDecomposition(R,P,B):
> R_dec:=subs(alpha[1]^2=1/(4*a*b),map(collect,S[1],d[t]));

R dec :=

[
b dx − dt

2 α1
0

0 −b dx − dt

2 α1

]
where the unimodular U and V are defined by:

> U:=simplify(subs(alpha[1]^2=1/(4*a*b),evalm(S[2])));
> V:=simplify(subs(alpha[1]^2=1/(4*a*b),evalm(S[3])));

U :=

[
−2 α1 1

2 α1 1

]
V :=

[
−2 b α1 1

2 b α1 1

]
If we substitute α1 = 1/(2

√
a b) into the previous block-diagonal matrix R dec, we then obtain

> subs(alpha[1]=1/(2*sqrt(a*b)),evalm(R_dec));[
b dx −

√
a b dt 0

0 b dx +
√

a b dt

]
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i.e., R dec = diag(b dx−
√

a b dt, b dx +
√

a b dt). The previous computations constitute an algebraic proof
of the classical D’Alembert theorem (see, e.g., R. Courant, D. Hilbert, Methods of Mathematical Physics,
Wiley Classics Library, Wiley, 1989).
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