restart:
with(OreModules) :
with(OreMorphisms) ;
with(linalg):

vV V. V V

Let us consider the Cauchy-Riemann equations defined by the following matrix of differential operators
in d, and dy, (see, e.g., R. Courant, D. Hilbert, Methods of Mathematical Physics, Wiley Classics Library,
Wiley, 1989):

> A:=DefinelreAlgebra(diff=[d[x],x],diff=[d[y],y],polynom=[x,y]):

> R:=matrix(2,2,[d[x],-d[y]l,d[ly]l,d[x]1]);

no |4 b
d, d,

Let us introduce the A = Q[d,, d,]-module M = A'*2/(A'*2 R) finitely presented by the matrix R. The
endomorphism ring F = end 4 (M) of M is then defined by:

> Endo:=MorphismsConstCoeff (R,R,A,mult_table);

1,1 0 -1
0 1 10 —d, d, 1,20 1 0
Endo := || , l; ) ]
1 0 0 1 dy d, 2,1 1 0
2,2 0 1

The A-module F is finitely generated by the endomorphisms f;’s defined by f;(w(\)) = w(\ P;), where
7 A2 — M denotes the projection onto M, A € A2 and P; is one of the two matrices defined in
Endo[1], i.e., fi(r(A\1 A2)) = m((=A2 A1) and fo = idps. If we now denote by F' = (f1  f2)T, then
the generators f;’s of E satisfy the relations Endo[2] FT = 0, where Endo[2] denotes the second entry of
Endo. The previous data completely characterize the A-module structure of E' and shows that £ = M.
The ring structure of the endomorphism ring F is defined by the multiplication table of the generators f;’s
of E, namely, the knowledge of the expressions of the products f;o f; on the family of generators { f1,ids}
of E. More precisely, if we denote by ® the Kronecker product, namely, FQF = ((fioF)T  (idpo F)T)T,
then the multiplication table T is defined by F @ F = T F, where T denotes the matrix Endo[3] without
the first column which corresponds to the indices (7, j) of the product f; o f;. We obtain:

fiofi=—idy, froidy =idyo f1 = f1, idyoidy =idpy. (1)

We now study the idempotents of the ring F. As every endomorphism f of F has the form f =
ai f1 + agidys, where a; and as € A, using the multiplication table (1), we obtain that f? = f is
equivalent to (2a; az — ay) f1 + (a3 — a? — az)idy = 0. If we only consider idempotent endomorphisms
defined by constant matrices (i.e., matrices formed by zero-order differential operators), i.e., a; and asg
are constants, using the fact that f; and idj; do not satisfy zero-order differential relation, then we have

< (al’ a2) € {(070)’ (Oa 1)7 (i/2’ 1/2)’ (_7;/27 1/2)}7

—a? +a3 —ay =0,
2(110,2—&1:0,

ie, eg =0, ex =idps, es = (i f1 +idpr)/2 and ey = (—i f1 +1idas)/2. Let us check this result:

> Idem:=IdempotentsConstCoeff(R,Endo[1],A,0,alpha);
1/2 1/2 4 0 0 1 0
Idem = || , , |, [Ore_algebra, [“diff ", “diff "], [z, y],
—-1/23 1/2 0 0 0 1
[dw’ dy]7 [JZ, y]’ [0‘1}707 []7 [012 + 1]v [x,y], Hv []7 [dsz = [di’v 33], diff = [dyv y]m



We obtain that there only exist the two trivial idempotents 0 and idy; of E defined by constant matrices
over A but one non-trivial idempotent e defined over the ring B = Q[as]/(z? + 1)[d,, d,] (i.e., B =
Q(1)[dg,dy]), ie., e € F = endp(B ®4 M) is defined by

VYXe B2 e((idg®7)(N) = (idp ® m) (A P),
where the matrix P € B?*? is given by:
> B:=Idem[2]: P:=Idem[1,1]; Q:=Factorize(Mult(R,P,B),R,B);

/2 1/2m o2 124
~1/2a;  1/2 ] Q= [ ~1/2a;  1/2

P =

The matrix Q € B?*? satisfying RP = Q R is equal to P. We can check that P2 = P:
> VERIF_IDEMPOTENT:=subs(alphal[1]~2=-1,simplify(evalm(Mult(P,P,B)-P)));
0 0
0 0 ]
As the entries of P belong to the field Q(i) = Q[a1]/(a? + 1), using linear algebraic techniques, we can

easily find bases of the free Q(i)-modules kerg;)(.P) and img;) (.P) = kerg(;)(.(I2 — P)), and thus, bases
of the free B-modules kerg(.P) and impg(.P):

VERIF_IDEMPOTENT =

> Ul:=SyzygyModule(P,B): U2:=SyzygyModule (evalm(1-P),B):
> U:=stackmatrix(U1,U02);

(6751 1

(&3] -1

We can check that the matrix U P U~ is the block-diagonal matrix diag(0,1):

U .=

> VERIF:=subs(alpha[1] “2=-1,Mult(U,P,LeftInverse(U,B),B));

1

Then, we know that the matrix is equivalent to the block-diagonal matrix U RU~! defined by:

VERIF =

> R_dec:=subs(alpha[1] “2=-1,map(collect,Mult(U,R,LeftInverse(U,B),B),d[y]l));
dy
L 4 d, 0
R_dec == | ™ J
0 o tds
The last result can be directly obtained by means of the command HeuristicDecomposition:
> S:=subs(alphal[1] "2=-1,map(collect,HeuristicDecomposition(R,P,B) [1],d[y]));
dy
£ 4+ d, 0
S = o
I
a1 €z
If we substitute ai; = ¢ into the previous block-diagonal matrix, we then obtain
> subs(alpha[1]=I,evalm(S));
—idy + dy 0
0 idy + dy
ie., S = diag(d,d), with the standard notations d = d, +id, and d = d,, — i d,.

Similarly, we can consider the following matrix of differential operators in d; and d,



> A:=DefineOreAlgebra(diff=[d[t],t],diff=[d[x],x],polynom=[t,x],comm=[a,b]):
> R:=matrix(2,2, [d[x],a*d[t],d[t],b*d[x]]);

dw adt
dy bd

R =

where a and b denote two real parameters. Let us introduce the A = Q(a,b)[ds,d;]-module M =
AYX2 /(AX2 R). If we consider an A-module F (e.g., F = C°°(R?)), then the linear system of differential
equations kerz(R.) = hom 4 (M, F) corresponds, for instance, to an acoustic wave (a = 1/p, b = pc?) or
a LC transmission line (a = L, b = 1/C).

Let us compute the endomorphism ring F = end 4 (M) of M:

> Endo:=MorphismsConstCoeff (R,R,A,mult_table);

1,1 1 0

10 0 ab bd, d 1,20 0 1
IR

0 1 10 ady dy 2,1 0 1

[2,2] ab O

We now compute idempotents of E defined by constant idempotent matrices:

> Idem:=IdempotentsMatConstCoeff (R,Endo[1],A,0,alpha);

Lo 0 0 10 1/2 ajabd Ore_aloebra. [“giff. “gifet [s
em .—[lo 0],[0 11,[ o 1)2 ]],[ re_algebra, [“diff ", “diff "], [t, =],
[dt’dﬂc}v [t,l‘], [CL, b70‘1}707 Ha [_1 +40412(1b], [t,ﬁC],[], H,[dZﬁ = [dhﬂ?diﬁ = [dx,JC]H]

We obtain the two trivial idempotents of 0 and idy; of E. However, if we consider the ring B =
Q(a,b)[a1]/(4aba? —1)[dy,d,], then a non-trivial idempotent of end g (B® 4 M) is defined by the following
matrix:

> B:=Idem[2]: P:=Idem[1,1];

1/2 ajabd
P fr—

a7 1/2

Then, R is equivalent to the block-diagonal matrix R_.dec = V RU ! € B?*2 defined by:

> S:=HeuristicDecomposition(R,P,B):
> R_dec:=subs(alphal[1] "2=1/(4*axb) ,map(collect,S[1],d[t]));

bd, — 5 0
R_dec =
0 —bd, — ;%

201

where the unimodular U and V are defined by:

> U:=simplify(subs(alpha[1]~2=1/(4*axb),evalm(S[2])));
> V:=simplify(subs(alpha[1]~2=1/(4*ax*b),evalm(S[3])));

—20(1 1 —2b0¢1 1
20&1 1 2bOél 1

U = V=

If we substitute a; = 1/(2+/ab) into the previous block-diagonal matrix R_dec, we then obtain
> subs(alphal[1]=1/(2*sqrt(a*b)),evalm(R_dec));
bd, — Vabd, 0
l 0 bd, +Vabd, ]



ie., R.dec = diag(bd, — Vabd;,bd, +vabd;). The previous computations constitute an algebraic proof
of the classical D’Alembert theorem (see, e.g., R. Courant, D. Hilbert, Methods of Mathematical Physics,
Wiley Classics Library, Wiley, 1989).



