```
> restart:
> with(OreModules):
> with(OreMorphisms);
> with(linalg):
```

Let us consider the Cauchy-Riemann equations defined by the following matrix of differential operators in d_{x} and d_{y} (see, e.g., R. Courant, D. Hilbert, Methods of Mathematical Physics, Wiley Classics Library, Wiley, 1989):

```
> A:=DefineOreAlgebra(diff=[d[x],x], diff=[d[y],y],polynom=[x,y]):
> R:=matrix(2,2,[d[x],-d[y],d[y],d[x]]);
    R:=[\begin{array}{cc}{\mp@subsup{d}{x}{}}&{-\mp@subsup{d}{y}{}}\\{\mp@subsup{d}{y}{}}&{\mp@subsup{d}{x}{}}\end{array}]
```

Let us introduce the $A=\mathbb{Q}\left[d_{x}, d_{y}\right]$-module $M=A^{1 \times 2} /\left(A^{1 \times 2} R\right)$ finitely presented by the matrix R. The endomorphism ring $E=\operatorname{end}_{A}(M)$ of M is then defined by:
> Endo:=MorphismsConstCoeff(R,R,A,mult_table);

$$
\text { Endo }:=\left[\left[\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{cc}
-d_{y} & d_{x} \\
d_{x} & d_{y}
\end{array}\right],\left[\begin{array}{ccc}
{[1,1]} & 0 & -1 \\
{[1,2]} & 1 & 0 \\
{[2,1]} & 1 & 0 \\
{[2,2]} & 0 & 1
\end{array}\right]\right]\right.
$$

The A-module E is finitely generated by the endomorphisms f_{i} 's defined by $f_{i}(\pi(\lambda))=\pi\left(\lambda P_{i}\right)$, where $\pi: A^{1 \times 2} \longrightarrow M$ denotes the projection onto $M, \lambda \in A^{1 \times 2}$ and P_{i} is one of the two matrices defined in Endo[1], i.e., $\left.f_{1}\left(\begin{array}{ll}\pi & \lambda_{2}\end{array}\right)\right)=\pi\left(\left(\begin{array}{ll}-\lambda_{2} & \lambda_{1}\end{array}\right)\right)$ and $f_{2}=\mathrm{id}_{M}$. If we now denote by $F=\left(\begin{array}{ll}f_{1} & f_{2}\end{array}\right)^{T}$, then the generators f_{i} 's of E satisfy the relations $E n d o[2] F^{T}=0$, where $E n d o[2]$ denotes the second entry of Endo. The previous data completely characterize the A-module structure of E and shows that $E \cong M$. The ring structure of the endomorphism ring E is defined by the multiplication table of the generators f_{i} 's of E, namely, the knowledge of the expressions of the products $f_{i} \circ f_{j}$ on the family of generators $\left\{f_{1}, \mathrm{id}_{M}\right\}$ of E. More precisely, if we denote by \otimes the Kronecker product, namely, $F \otimes F=\left(\left(f_{1} \circ F\right)^{T} \quad\left(\mathrm{id}_{M} \circ F\right)^{T}\right)^{T}$, then the multiplication table T is defined by $F \otimes F=T F$, where T denotes the matrix Endo[3] without the first column which corresponds to the indices (i, j) of the product $f_{i} \circ f_{j}$. We obtain:

$$
\begin{equation*}
f_{1} \circ f_{1}=-\operatorname{id}_{M}, \quad f_{1} \circ \operatorname{id}_{M}=\operatorname{id}_{M} \circ f_{1}=f_{1}, \quad \operatorname{id}_{M} \circ \operatorname{id}_{M}=\operatorname{id}_{M} \tag{1}
\end{equation*}
$$

We now study the idempotents of the ring E. As every endomorphism f of E has the form $f=$ $a_{1} f_{1}+a_{2} \operatorname{id}_{M}$, where a_{1} and $a_{2} \in A$, using the multiplication table (1), we obtain that $f^{2}=f$ is equivalent to ($\left.2 a_{1} a_{2}-a_{1}\right) f_{1}+\left(a_{2}^{2}-a_{1}^{2}-a_{2}\right) \operatorname{id}_{M}=0$. If we only consider idempotent endomorphisms defined by constant matrices (i.e., matrices formed by zero-order differential operators), i.e., a_{1} and a_{2} are constants, using the fact that f_{1} and id_{M} do not satisfy zero-order differential relation, then we have

$$
\left\{\begin{array}{l}
-a_{1}^{2}+a_{2}^{2}-a_{2}=0, \\
2 a_{1} a_{2}-a_{1}=0,
\end{array} \Leftrightarrow\left(a_{1}, a_{2}\right) \in\{(0,0),(0,1),(i / 2,1 / 2),(-i / 2,1 / 2)\}\right.
$$

i.e., $e_{1}=0, e_{2}=\operatorname{id}_{M}, e_{3}=\left(i f_{1}+\mathrm{id}_{M}\right) / 2$ and $e_{4}=\left(-i f_{1}+\mathrm{id}_{M}\right) / 2$. Let us check this result:

$$
\begin{aligned}
&> \text { Idem }:= \\
& \text { IdempotentsConstCoeff }(\mathrm{R}, \text { Endo }[1], \mathrm{A}, 0, \text { alpha }) ; \\
& \text { Idem }:= {\left[\left[\begin{array}{cc}
1 / 2 & 1 / 2 \alpha_{1} \\
-1 / 2 \alpha_{1} & 1 / 2
\end{array}\right],\left[\begin{array}{cc}
0 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right],[\text { Ore_algebra, }[" \text { diff", "diff" }],[x, y],} \\
& {\left.\left.\left.\left[d_{x}, d_{y}\right],[x, y],\left[\alpha_{1}\right], 0,[],\left[\alpha_{1}^{2}+1\right],[x, y],[],[],\left[\text { diff }=\left[d_{x}, x\right], \text { diff }=\left[d_{y}, y\right]\right]\right]\right]\right] }
\end{aligned}
$$

We obtain that there only exist the two trivial idempotents 0 and id_{M} of E defined by constant matrices over A but one non-trivial idempotent e defined over the ring $B=\mathbb{Q}\left[\alpha_{1}\right] /\left(x_{1}^{2}+1\right)\left[d_{x}, d_{y}\right]$ (i.e., $B=$ $\left.\mathbb{Q}(i)\left[d_{x}, d_{y}\right]\right)$, i.e., $e \in F=\operatorname{end}_{B}\left(B \otimes_{A} M\right)$ is defined by

$$
\forall \lambda \in B^{1 \times 2}, \quad e\left(\left(\operatorname{id}_{B} \otimes \pi\right)(\lambda)\right)=\left(\operatorname{id}_{B} \otimes \pi\right)(\lambda P),
$$

where the matrix $P \in B^{2 \times 2}$ is given by:
$>B:=\operatorname{Idem}[2]: P:=\operatorname{Idem}[1,1] ; Q:=F a c t o r i z e(M u l t(R, P, B), R, B) ;$

$$
P:=\left[\begin{array}{cc}
1 / 2 & 1 / 2 \alpha_{1} \\
-1 / 2 \alpha_{1} & 1 / 2
\end{array}\right] \quad Q:=\left[\begin{array}{cc}
1 / 2 & 1 / 2 \alpha_{1} \\
-1 / 2 \alpha_{1} & 1 / 2
\end{array}\right]
$$

The matrix $Q \in B^{2 \times 2}$ satisfying $R P=Q R$ is equal to P. We can check that $P^{2}=P$:

```
> VERIF_IDEMPOTENT:=subs(alpha[1]^2=-1,simplify(evalm(Mult(P,P,B)-P)));
    VERIF_IDEMPOTENT :=[ l}\begin{array}{ll}{0}&{0}\\{0}&{0}\end{array}
```

As the entries of P belong to the field $\mathbb{Q}(i)=\mathbb{Q}\left[\alpha_{1}\right] /\left(\alpha_{1}^{2}+1\right)$, using linear algebraic techniques, we can easily find bases of the free $\mathbb{Q}(i)$-modules $\operatorname{ker}_{\mathbb{Q}(i)}(. P)$ and $\operatorname{im}_{\mathbb{Q}(i)}(. P)=\operatorname{ker}_{\mathbb{Q}(i)}\left(.\left(I_{2}-P\right)\right)$, and thus, bases of the free B-modules $\operatorname{ker}_{B}(. P)$ and $\operatorname{im}_{B}(. P)$:

```
> U1:=SyzygyModule(P,B): U2:=SyzygyModule(evalm(1-P),B):
```

> U:=stackmatrix(U1,U2);

$$
U:=\left[\begin{array}{cc}
\alpha_{1} & 1 \\
\alpha_{1} & -1
\end{array}\right]
$$

We can check that the matrix $U P U^{-1}$ is the block-diagonal matrix $\operatorname{diag}(0,1)$:

```
> VERIF:=subs(alpha[1]^2=-1,Mult(U,P,LeftInverse(U,B),B));
```

$$
V E R I F:=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

Then, we know that the matrix is equivalent to the block-diagonal matrix $U R U^{-1}$ defined by:

$$
\begin{aligned}
& >R_{-} \text {dec }:=\operatorname{subs}(\operatorname{alpha}[1] \wedge 2=-1, \operatorname{map}(\operatorname{collect}, \operatorname{Mult}(\mathrm{U}, \mathrm{R}, \operatorname{LeftInverse}(\mathrm{U}, \mathrm{~B}), \mathrm{B}), \mathrm{d}[\mathrm{y}])) ; \\
& \qquad R_{-} d e c:=\left[\begin{array}{cc}
\frac{d_{y}}{\alpha_{1}}+d_{x} & 0 \\
0 & -\frac{d_{y}}{\alpha_{1}}+d_{x}
\end{array}\right]
\end{aligned}
$$

The last result can be directly obtained by means of the command HeuristicDecomposition:

$$
\begin{aligned}
& >S:=\operatorname{subs}(\operatorname{alpha}[1] \sim 2=-1, \text { map }(\text { collect, HeuristicDecomposition }(\mathrm{R}, \mathrm{P}, \mathrm{~B})[1], \mathrm{d}[\mathrm{y}])) ; \\
& \qquad S:=\left[\begin{array}{cc}
\frac{d_{y}}{\alpha_{1}}+d_{x} & 0 \\
0 & -\frac{d_{y}}{\alpha_{1}}+d_{x}
\end{array}\right]
\end{aligned}
$$

If we substitute $\alpha_{1}=i$ into the previous block-diagonal matrix, we then obtain

```
> subs(alpha[1]=I,evalm(S));
```

$$
\left[\begin{array}{cc}
-i d_{y}+d_{x} & 0 \\
0 & i d_{y}+d_{x}
\end{array}\right]
$$

i.e., $S=\operatorname{diag}(\bar{\partial}, \partial)$, with the standard notations $\partial=d_{x}+i d_{y}$ and $\bar{\partial}=d_{x}-i d_{y}$.

Similarly, we can consider the following matrix of differential operators in d_{t} and d_{x}

$$
\begin{aligned}
& >\mathrm{A}:=\operatorname{DefineOreAlgebra}(\operatorname{diff}=[\mathrm{d}[\mathrm{t}], \mathrm{t}], \operatorname{diff}=[\mathrm{d}[\mathrm{x}], \mathrm{x}], \text { polynom }=[\mathrm{t}, \mathrm{x}], \operatorname{comm}=[\mathrm{a}, \mathrm{~b}]): \\
& >\mathrm{R}:=\text { matrix }(2,2,[\mathrm{~d}[\mathrm{x}], \mathrm{a} * \mathrm{~d}[\mathrm{t}], \mathrm{d}[\mathrm{t}], \mathrm{b} * \mathrm{~d}[\mathrm{x}]]) ; \\
& \qquad R:=\left[\begin{array}{ll}
d_{x} & a d_{t} \\
d_{t} & b d_{x}
\end{array}\right]
\end{aligned}
$$

where a and b denote two real parameters. Let us introduce the $A=\mathbb{Q}(a, b)\left[d_{t}, d_{x}\right]$-module $M=$ $A^{1 \times 2} /\left(A^{1 \times 2} R\right)$. If we consider an A-module $\mathcal{F}\left(\right.$ e.g., $\left.\mathcal{F}=C^{\infty}\left(\mathbb{R}^{2}\right)\right)$, then the linear system of differential equations $\operatorname{ker}_{\mathcal{F}}(R.) \cong \operatorname{hom}_{A}(M, \mathcal{F})$ corresponds, for instance, to an acoustic wave ($a=1 / \rho, b=\rho c^{2}$) or a LC transmission line $(a=L, b=1 / C)$.
Let us compute the endomorphism ring $E=\operatorname{end}_{A}(M)$ of M :
> Endo:=MorphismsConstCoeff(R,R,A,mult_table);

$$
\text { Endo } \left.:=\left[\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{cc}
0 & a b \\
1 & 0
\end{array}\right]\right],\left[\begin{array}{cc}
b d_{x} & d_{t} \\
a d_{t} & d_{x}
\end{array}\right],\left[\begin{array}{ccc}
{[1,1]} & 1 & 0 \\
{[1,2]} & 0 & 1 \\
{[2,1]} & 0 & 1 \\
{[2,2]} & a b & 0
\end{array}\right]\right]
$$

We now compute idempotents of E defined by constant idempotent matrices:
> Idem:=IdempotentsMatConstCoeff(R,Endo[1], A, 0, alpha);

$$
\begin{gathered}
\text { Idem }:=\left[\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{cc}
1 / 2 & \alpha_{1} a b \\
\alpha_{1} & 1 / 2
\end{array}\right]\right],[\text { Ore_algebra, ["diff", "diff" }],[t, x], \\
\left.\left.\left[d_{t}, d_{x}\right],[t, x],\left[a, b, \alpha_{1}\right], 0,[],\left[-1+4 \alpha_{1}^{2} a b\right],[t, x],[],[],\left[\text { diff }=\left[d_{t}, t\right], \text { diff }=\left[d_{x}, x\right]\right]\right]\right]
\end{gathered}
$$

We obtain the two trivial idempotents of 0 and id_{M} of E. However, if we consider the ring $B=$ $\mathbb{Q}(a, b)\left[\alpha_{1}\right] /\left(4 a b \alpha_{1}^{2}-1\right)\left[d_{t}, d_{x}\right]$, then a non-trivial idempotent of $\operatorname{end}_{B}\left(B \otimes_{A} M\right)$ is defined by the following matrix:

```
> B:=Idem[2]: P:=Idem[1,1];
```

$$
P:=\left[\begin{array}{cc}
1 / 2 & \alpha_{1} a b \\
\alpha_{1} & 1 / 2
\end{array}\right]
$$

Then, R is equivalent to the block-diagonal matrix $R_{-} d e c=V R U^{-1} \in B^{2 \times 2}$ defined by:

$$
\begin{aligned}
& >\mathrm{S}:=\text { HeuristicDecomposition }(\mathrm{R}, \mathrm{P}, \mathrm{~B}): \\
& >\mathrm{R} \text { dec: }=\text { subs (alpha[1] } 2=1 /(4 * \mathrm{a} * \mathrm{~b}) \text {, map }(\operatorname{collect}, \mathrm{S}[1], \mathrm{d}[\mathrm{t}])) ; \\
& \qquad R_{-} d e c:=\left[\begin{array}{cc}
b d_{x}-\frac{d_{t}}{2 \alpha_{1}} & 0 \\
0 & -b d_{x}-\frac{d_{t}}{2 \alpha_{1}}
\end{array}\right]
\end{aligned}
$$

where the unimodular U and V are defined by:

$$
\begin{aligned}
& >\quad \mathrm{U}:=\operatorname{simplify}(\operatorname{subs}(\operatorname{alpha}[1] \sim 2=1 /(4 * \mathrm{a} * \mathrm{~b}), \operatorname{evalm}(\mathrm{S}[2]))) ; \\
& >\mathrm{V}:=\operatorname{simplify}(\operatorname{subs}(\operatorname{alpha}[1] \sim 2=1 /(4 * \mathrm{a} * \mathrm{~b}), \operatorname{evalm}(\mathrm{S}[3]))) ; \\
& \qquad U:=\left[\begin{array}{cc}
-2 \alpha_{1} & 1 \\
2 \alpha_{1} & 1
\end{array}\right] \quad V:=\left[\begin{array}{cc}
-2 b \alpha_{1} & 1 \\
2 b \alpha_{1} & 1
\end{array}\right]
\end{aligned}
$$

If we substitute $\alpha_{1}=1 /(2 \sqrt{a b})$ into the previous block-diagonal matrix R_{-}dec, we then obtain

$$
\begin{aligned}
& >\operatorname{subs}\left(\operatorname{alpha}[1]=1 /(2 * \operatorname{sqrt}(\mathrm{a} * \mathrm{~b})), \text { evalm}\left(\mathrm{R} _\mathrm{dec}\right)\right) ; \\
& \qquad\left[\begin{array}{cc}
b d_{x}-\sqrt{a b} d_{t} & 0 \\
0 & b d_{x}+\sqrt{a b} d_{t}
\end{array}\right]
\end{aligned}
$$

i.e., $R_{-} d e c=\operatorname{diag}\left(b d_{x}-\sqrt{a b} d_{t}, b d_{x}+\sqrt{a b} d_{t}\right)$. The previous computations constitute an algebraic proof of the classical D'Alembert theorem (see, e.g., R. Courant, D. Hilbert, Methods of Mathematical Physics, Wiley Classics Library, Wiley, 1989).

