```
> restart:
> with(OreModules):
> with(OreMorphisms);
> with(linalg):
```

Let us consider the acoustic equations for a compressible perfect gas (see, e.g., L. Landau, L. Lifschitz, Physique théorique, Tome 6: Mécanique des fluides, $2^{\text {nd }}$ edition, MIR, 1989, p. 356). The corresponding system matrix is defined by:

$$
\begin{aligned}
& >\mathrm{R}:=\operatorname{matrix}\left(4,4,\left[\mathrm{rho}[0] * \mathrm{~d}[1], \mathrm{rho}[0] * \mathrm{~d}[2], \mathrm{rho}[0] * \mathrm{~d}[3], \mathrm{d}[\mathrm{t}] / \mathrm{c}^{\wedge} 2, \mathrm{rho}[0] * \mathrm{~d}[\mathrm{t}],\right.\right. \\
& >0,0, \mathrm{~d}[1], 0, \mathrm{rho}[0] * \mathrm{~d}[\mathrm{t}], 0, \mathrm{~d}[2], 0,0, \mathrm{rho}[0] * \mathrm{~d}[\mathrm{t}], \mathrm{d}[3]]) ; \\
& \qquad R:=\left[\begin{array}{cccc}
\rho_{0} d_{1} & \rho_{0} d_{2} & \rho_{0} d_{3} & \frac{d_{t}}{c^{2}} \\
\rho_{0} d_{t} & 0 & 0 & d_{1} \\
0 & \rho_{0} d_{t} & 0 & d_{2} \\
0 & 0 & \rho_{0} d_{t} & d_{3}
\end{array}\right]
\end{aligned}
$$

Let us introduce the ring $A=\mathbb{Q}\left(\rho_{0}, c\right)\left[d_{t}, d_{1}, d_{2}, d_{3}\right]$ of differential operators in d_{t}, d_{1}, d_{2} and d_{3} with coefficients in $\mathbb{Q}\left(\rho_{0}, c\right)$:

```
> A:=DefineOreAlgebra(diff=[d[1],x[1]],diff=[d[2],x[2]],diff=[d[3],x[3]],
> diff=[d[t],t], polynom=[x[1],x[2],x[3],t], comm=[rho[0],c]):
```

Let us denote by $M=A^{1 \times 4} /\left(A^{1 \times 4} R\right)$ the A-module finitely presented by the matrix R. We can now compute the endomorphism ring $E=\operatorname{end}_{A}(M)$.

```
> Endo:=MorphismsConstCoeff(R,R,A):
```

The A-module structure of E can be generated by means of

```
> nops(Endo[1]);
```

generators satisfying

```
> rowdim(Endo[2]);
```

A-linear relations. Let us consider the following matrix $P \in A^{4 \times 4}$ of Endo[1]

```
> P:=Endo[1,5];
```

$$
P:=\left[\begin{array}{cccc}
0 & d_{3} & -d_{2} & 0 \\
-d_{3} & 0 & d_{1} & 0 \\
d_{2} & -d_{1} & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

which defines the endomorphism f of M by $f(\pi(\lambda))=\pi(\lambda P)$, where $\pi: A^{1 \times 4} \longrightarrow M$ denotes the projection onto M and λ is an arbitrary element of $A^{1 \times 4}$. In particular, we know that there exists a matrix $Q \in A^{4 \times 4}$ satisfying the relation $R P=Q R$ defined by:

```
> Q:=Factorize(Mult(R,P,A),R,A);
```

$$
Q:=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & d_{3} & -d_{2} \\
0 & -d_{3} & 0 & d_{1} \\
0 & d_{2} & -d_{1} & 0
\end{array}\right]
$$

Let us compute a factorization of the system matrix R. In order to do that, we first compute a matrix defining a finite presentation of the A-module ker f :
$>$ T:=KerMorphism(R,R,P, Q, A) [2, 1];

$$
T:=\left[\begin{array}{ccccc}
d_{1} & \rho_{0} d_{t} & -d_{2} & d_{3} & 0 \\
0 & \rho_{0} & 0 & 0 & \frac{d_{t}}{c^{2}} \\
-1 & 0 & 0 & 0 & d_{1} \\
0 & 0 & 1 & 0 & d_{2} \\
0 & 0 & 0 & -1 & d_{3}
\end{array}\right]
$$

Hence, we obtain that ker $f \cong A^{1 \times 5} /\left(A^{1 \times 5} T\right)$ and we can easily check that ker $f \neq 0$ which shows that the matrix R admits a non-trivial factorization which can be computed as follows:
> PR:=stackmatrix(P,R): ST:=SyzygyModule(PR,A);

$$
S T:=\left[\begin{array}{cccccccc}
\rho_{0} d_{t} & 0 & 0 & 0 & 0 & 0 & -d_{3} & d_{2} \\
d_{1} & d_{2} & d_{3} & 0 & 0 & 0 & 0 & 0 \\
0 & -\rho_{0} d_{t} & 0 & 0 & 0 & -d_{3} & 0 & d_{1} \\
0 & 0 & \rho_{0} d_{t} & 0 & 0 & -d_{2} & d_{1} & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Then, we obtain the factorization $R=L S$, where the matrix S is defined by
> S:=submatrix(ST,1...rowdim(ST),1..rowdim(P));

$$
S:=\left[\begin{array}{cccc}
\rho_{0} d_{t} & 0 & 0 & 0 \\
d_{1} & d_{2} & d_{3} & 0 \\
0 & -\rho_{0} d_{t} & 0 & 0 \\
0 & 0 & \rho_{0} d_{t} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

and the matrix L by:

```
> L:=Factorize(R,S,A);
```

$$
L:=\left[\begin{array}{ccccc}
0 & \rho_{0} & 0 & 0 & \frac{d_{t}}{c^{2}} \\
1 & 0 & 0 & 0 & d_{1} \\
0 & 0 & -1 & 0 & d_{2} \\
0 & 0 & 0 & 1 & d_{3}
\end{array}\right]
$$

We can check that we have $R=L S$:

```
> VERIF:=simplify(evalm(Mult(L,S,A)-R));
```

$$
\text { VERIF }:=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Up to signs, the matrix S can be directly obtained by means of the command CoimMorphism:

```
> CoimMorphism(R,R,P,Q,A)[1];
```

$$
\left[\begin{array}{cccc}
-\rho_{0} d_{t} & 0 & 0 & 0 \\
d_{1} & d_{2} & d_{3} & 0 \\
0 & \rho_{0} d_{t} & 0 & 0 \\
0 & 0 & -\rho_{0} d_{t} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

