> restart:

- > with(OreModules):
- > with(OreMorphisms);

```
> with(linalg):
```

Let us consider the acoustic equations for a compressible perfect gas (see, e.g., L. Landau, L. Lifschitz, *Physique théorique, Tome 6: Mécanique des fluides*, 2nd edition, MIR, 1989, p. 356). The corresponding system matrix is defined by:

- > R:=matrix(4,4,[rho[0]*d[1],rho[0]*d[2],rho[0]*d[3],d[t]/c²,rho[0]*d[t],
- > 0,0,d[1],0,rho[0]*d[t],0,d[2],0,0,rho[0]*d[t],d[3]]);

	$\int \rho_0 d_1$	$\rho_0 d_2$	$ ho_0 d_3$	$\frac{d_t}{c^2}$
R :=	$ ho_0 d_t$	0	0	d_1
	0	$\rho_0 d_t$	0	d_2
	0	0	$\rho_0 d_t$	d_3

Let us introduce the ring $A = \mathbb{Q}(\rho_0, c)[d_t, d_1, d_2, d_3]$ of differential operators in d_t , d_1 , d_2 and d_3 with coefficients in $\mathbb{Q}(\rho_0, c)$:

- > A:=DefineOreAlgebra(diff=[d[1],x[1]],diff=[d[2],x[2]],diff=[d[3],x[3]],
- > diff=[d[t],t],polynom=[x[1],x[2],x[3],t],comm=[rho[0],c]):

Let us denote by $M = A^{1 \times 4}/(A^{1 \times 4} R)$ the A-module finitely presented by the matrix R. We can now compute the endomorphism ring $E = \text{end}_A(M)$.

> Endo:=MorphismsConstCoeff(R,R,A):

The A-module structure of E can be generated by means of

> nops(Endo[1]);

generators satisfying

> rowdim(Endo[2]);

14

10

A-linear relations. Let us consider the following matrix $P \in A^{4 \times 4}$ of Endo[1]

> P:=Endo[1,5];

 $P := \begin{bmatrix} 0 & d_3 & -d_2 & 0 \\ -d_3 & 0 & d_1 & 0 \\ d_2 & -d_1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

which defines the endomorphism f of M by $f(\pi(\lambda)) = \pi(\lambda P)$, where $\pi : A^{1\times 4} \longrightarrow M$ denotes the projection onto M and λ is an arbitrary element of $A^{1\times 4}$. In particular, we know that there exists a matrix $Q \in A^{4\times 4}$ satisfying the relation RP = QR defined by:

> Q:=Factorize(Mult(R,P,A),R,A);

$$Q := \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & d_3 & -d_2 \\ 0 & -d_3 & 0 & d_1 \\ 0 & d_2 & -d_1 & 0 \end{bmatrix}$$

Let us compute a factorization of the system matrix R. In order to do that, we first compute a matrix defining a finite presentation of the A-module ker f:

> T:=KerMorphism(R,R,P,Q,A)[2,1];

	d_1	$\rho_0 d_t$	$-d_2$	d_3	0
	0	$ ho_0$	0	0	$\frac{d_t}{c^2}$
T :=	-1	0	0	0	d_1
	0	0	1	0	d_2
	0	0	0	-1	d_3

Hence, we obtain that ker $f \cong A^{1\times 5}/(A^{1\times 5}T)$ and we can easily check that ker $f \neq 0$ which shows that the matrix R admits a non-trivial factorization which can be computed as follows:

	$\rho_0 d_t$	0	0	0	0	0	$-d_3$	d_2
	d_1	d_2	d_3	0	0	0	0	0
ST :=	0	$-\rho_0 d_t$	0	0	0	$-d_3$	0	d_1
	0	0	$\rho_0 d_t$	0	0	$-d_2$	d_1	0
	0	0	0	1	0	0	0	0

Then, we obtain the factorization R = LS, where the matrix S is defined by

> S:=submatrix(ST,1..rowdim(ST),1..rowdim(P));

	$\rho_0 d_t$	0	0	0
	d_1	d_2	d_3	0
S :=	0	$-\rho_0 d_t$	0	0
	0	0	$\rho_0 d_t$	0
	0	0	0	1

and the matrix L by:

> L:=Factorize(R,S,A);

$$L := \begin{bmatrix} 0 & \rho_0 & 0 & 0 & \frac{d_t}{c^2} \\ 1 & 0 & 0 & 0 & d_1 \\ 0 & 0 & -1 & 0 & d_2 \\ 0 & 0 & 0 & 1 & d_3 \end{bmatrix}$$

We can check that we have R = L S:

> VERIF:=simplify(evalm(Mult(L,S,A)-R));

Up to signs, the matrix S can be directly obtained by means of the command *CoimMorphism*:

> CoimMorphism(R,R,P,Q,A)[1];

$$\begin{bmatrix} -\rho_0 d_t & 0 & 0 & 0 \\ d_1 & d_2 & d_3 & 0 \\ 0 & \rho_0 d_t & 0 & 0 \\ 0 & 0 & -\rho_0 d_t & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$