
> restart:

> with(OreModules):

> with(OreMorphisms);

> with(linalg):

We consider the approximation of the steady two dimensional rotational isentropic flow studied in page 436
of R. Courant, D. Hilbert, Methods of Mathematical Physics, Wiley Classics Library, Wiley, 1989,
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where u denotes the constant velocity parallel to the x-axis, ρ the constant density and c the speed
of sound. Let us introduce the ring A = Q(u, ρ, c)[dx, dy] of differential operators in dx and dy with
coefficients in the field Q(u, ρ, c)

> A:=DefineOreAlgebra(diff=[d[x],x],diff=[d[y],y],polynom=[x,y],
> comm=[u,rho,c]):

and the system matrix R ∈ A3×3 of (1) defined by:

> R:=matrix(3,3,[[u*rho*d[x],c^2*d[x],0],[0,c^2*d[y],u*rho*d[x]],
> [rho*d[x],u*d[x],rho*d[y]]]);

R :=


u ρ dx c2dx 0

0 c2dy u ρ dx

ρ dx u dx ρ dy


We denote by M = A1×3/(A1×3R) the A-module finitely presented by the matrix R. Let us study the
endomorphism ring E = endA(M) of M :

> Endo:=MorphismsConstCoeff(R,R,A): Endo[1];

[


1 0 0

0 1 0

0 0 1

 ,


0 c2 0

0 −u ρ 0

0 0 −u ρ

 ,


0 0 c2u ρ

0 0 −u2ρ2

0 −c2
(
−c2 + u2

)
0

]

Hence, we obtain that E is finitely generated by three endomorphisms f1 = idM , f2 and f3 defined by
fi(π(λ)) = π(λPi), where π : A1×3 −→M denotes the projection onto M , λ ∈ A1×3 and Pi is one of the
three previous matrices. The generators fi’s of E satisfy the relations Endo[2] (f1 f2 f3)T = 0, where
Endo[2] is the following matrix:

> Endo[2]; 
−uc2 ρ dx + u3 dx ρ 0 −dy

0 c2dy dx

0 −c2 dx + u2 dx dy


Let us study the idempotents of the endomorphism ring E defined by means of constant matrices, i.e.,
matrices defined by with zero-order differential operators:

> Idem:=IdempotentsConstCoeff(R,Endo[1],A,0,alpha);
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Idem := [[

 0 −1/2 c2

u ρ α1c

0 1/2 −u ρ α1
c

0 −α1 c (−c2+u2)
u ρ 1/2

 ,
 1 0 0

0 1 0
0 0 1

 ,
 1 c2

u ρ 0
0 0 0
0 0 0

 ,
 0 − c2

u ρ 0
0 1 0
0 0 1

 ,
 0 0 0

0 0 0
0 0 0

 ,
 1 1/2 c2

u ρ α1c

0 1/2 −u ρ α1
c

0 −α1 c (−c2+u2)
u ρ 1/2

]

[Ore algebra, [“diff ′′, “diff ′′], [x, y], [dx, dy], [x, y], [u, ρ, c, α1], 0, [],

[−1− 4α2
1 c

2 + 4α2
1 u

2], [x, y], [], [], [diff = [dx, x], diff = [dy, y]]]]

We obtain the two trivial idempotents 0 and idM of E respectively defined by the matrices 0 or I3, two non-
trivial idempotents respectively defined by the matrices Idem[1, 3] and Idem[1, 4] whose entries belong to
A and two non-trivial idempotents of endB(B⊗AM), where B = Q(u, ρ, c)[α1]/(4 (u2−c2)α2

1−1)[dx, dy],
respectively defined by the matrices Idem[1, 1] and Idem[1, 6]. Let us consider the matrix P1 = Idem[1, 3]
and Q1 satisfying RP1 = Q1R:

> P[1]:=Idem[1,3]; Q[1]:=Factorize(Mult(R,P,A),R,A);

P1 :=


1 c2

u ρ 0

0 0 0

0 0 0

 Q1 :=


1 0 0

0 0 0

u−1 0 0


We can check that we have P 2

1 = P1 and Q2
1 = Q1:

> VERIF1:=simplify(evalm(Mult(P[1],P[1],A)-P[1]));
> VERIF2:=simplify(evalm(Mult(Q[1],Q[1],A)-Q[1]));

VERIF1 :=


0 0 0

0 0 0

0 0 0

 VERIF2 :=


0 0 0

0 0 0

0 0 0


Using the fact that matrices P1 and Q1 are idempotents of A1×3, we obtain that the A-modules kerA(.P1),
imA(.P1) = kerA(.(I3−P1)), kerA(.Q1) and imA(.Q1) = kerA(.(I3−Q1)) are projective, and thus, free by
the Quillen-Suslin theorem. As the entries of P1 and Q1 only belong to the field Q(u, ρ, c), using linear
algebraic techniques, we can easily compute bases of the corresponding Q(u, ρ, c)-vector spaces, and thus,
bases over the ring A:

> U1:=SyzygyModule(P[1],A): U2:=SyzygyModule(evalm(1-P[1]),A):
> U:=stackmatrix(U1,U2);
> V1:=SyzygyModule(Q[1],A): V2:=SyzygyModule(evalm(1-Q[1]),A):
> V:=stackmatrix(V1,V2);

U :=


0 1 0

0 0 1

u ρ c2 0

 V :=


1 0 −u

0 1 0

1 0 0


The matrices U ∈ GL3(A) and V ∈ GL3(A) are such that the matrices U P1 U

−1 and V Q1 V
−1 are two

block-diagonal matrices formed by the diagonal matrices 02 and 1:

> VERIF1:=Mult(U,P[1],LeftInverse(U,A),A);
> VERIF2:=Mult(V,Q[1],LeftInverse(V,A),A);

VERIF1 :=


0 0 0

0 0 0

0 0 1

 VERIF2 :=


0 0 0

0 0 0

0 0 1
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Then, the matrix R is equivalent to the block-diagonal matrix V RU−1 defined by:

> R_dec:=Mult(V,R,LeftInverse(U,A),A);

R dec :=


−dx

(
−c2 + u2

)
−u ρ dy 0

c2 dy u ρ dx 0

0 0 dx


This last result can be obtained using the command HeuristicDecomposition:

> HeuristicDecomposition(R,P[1],A)[1];
−dx

(
−c2 + u2

)
−u ρ dy 0

c2 dy u ρ dx 0

0 0 dx


Let us now consider the first 2× 2 block-diagonal matrix S of R dec defined by:

> S:=submatrix(R_dec,1..2,1..2);

S :=

[
−dx

(
−c2 + u2

)
−u ρ dy

c2 dy u ρ dx

]
Let us try check whether or not the matrix S is equivalent to a block-diagonal matrix. To do that,
we introduce the A-module L = A1×2/(A1×2 S) finitely presented by the matrix S and compute the
endomorphism ring F = endA(L) of L:

> Endo1:=MorphismsConstCoeff(S,S,A): Endo1[1]; Endo1[2];

[

[
0 u2 ρ2

c2
(
−c2 + u2

)
0

]
,

[
1 0

0 1

]
]

[
dy −u c2 ρ dx + u3 dx ρ

dx u ρ c2 dy

]
Let us check whether or not we can find idempotents of F defined by means of constant matrices:

> Idem1:=IdempotentsConstCoeff(S,Endo1[1],A,0,alpha);

Idem1 := [[

 1/2 u ρ α1
c

α1 c (−c2+u2)
u ρ 1/2

 ,[ 0 0

0 0

]
,

[
1 0

0 1

]
],

[Ore algebra, [“diff ′′, “diff ′′], [x, y], [dx, dy], [x, y], [u, ρ, c, α1], 0, [], [−1− 4α1
2 c2 + 4α1

2 u2],

[x, y], [], [], [diff = [dx, x], diff = [dy, y]]]]

We obtain the two trivial idempotents 0 and idF of F and an idempotent of endB(B ⊗A L), where
B = Q(u, ρ, c)[α1]/(4 (u2 − c2)α2

1 − 1)[dx, dy], defined by the following matrix:

> B:=Idem1[2]: P[2]:=Idem1[1,1]; Q[2]:=Factorize(Mult(S,P[2],B),S,B);

P2 :=

 1/2 u ρ α1
c

α1 c (−c2+u2)
u ρ 1/2

 Q2 :=

[
1/2 α1 c2−α1 u2

c

−α1 c 1/2

]

We can check that the matrices P2 and Q2 satisfy P 2
2 = P2 and Q2

2 = Q2:

> VERIF1:=simplify(subs(alpha[1]^2=1/4/(u^2-c^2),alpha[1]^4=1/16/(u^2-c^2)^2,
> simplify(evalm(Mult(P[2],P[2],B)-P[2]))));
> VERIF2:=simplify(subs(alpha[1]^2=1/4/(u^2-c^2),alpha[1]^4=1/16/(u^2-c^2)^2,
> simplify(evalm(Mult(Q[2],Q[2],B)-Q[2]))));

VERIF1 :=

[
0 0

0 0

]
VERIF2 :=

[
0 0

0 0

]
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As the matrices P2 and Q2 are idempotents of B2×2, we know that the B-modules kerB(.P2), imB(.P2) =
kerB(.(I2 − P2)), kerB(.Q2) and imB(.Q2) = kerB(.(I2 − Q2)) are projective, and thus, free by the
Quillen-Suslin theorem. Let us compute bases of those free B-modules:

> X1:=SyzygyModule(P[2],B):X2:=SyzygyModule(evalm(1-P[2]),B):
> X:=stackmatrix(X1,X2);
> Y1:=SyzygyModule(Q[2],B): Y2:=SyzygyModule(evalm(1-Q[2]),B):
> Y:=stackmatrix(Y1,Y2);

X :=

[
−2α1 c u

2 + 2α1 c
3 u ρ

−2α1 c
3 + 2α1 c u

2 u ρ

]
Y :=

[
−2α1 c −1

−2α1 c 1

]
We can easily check that X P2X

−1 and Y Q2 Y
−1 are the block-diagonal matrices diag(0, 1):

> VERIF1:=simplify(subs(alpha[1]^2=1/4/(u^2-c^2),Mult(X,P[2],
> LeftInverse(X,B),B)));
> VERIF2:=simplify(subs(alpha[1]^2=1/4/(u^2-c^2),Mult(Y,Q[2],
> LeftInverse(Y,B),B)));

VERIF1 :=

[
0 0

0 1

]
VERIF2 :=

[
0 0

0 1

]
Then, the matrix S is equivalent to the block-diagonal matrix Y S X−1 defined by:

> S_dec:=simplify(subs(alpha[1]^2=1/4/(u^2-c^2),Mult(Y,S,LeftInverse(X,B),B)));

S dec :=

 c dy+2 dx α1 c2−2 dx α1 u2

2 α1(u2−c2) 0

0 c dy−2 dx α1 c2+2 dx α1 u2

2 α1(u2−c2)


This last result can be directly obtained as follows:

> simplify(subs(alpha[1]^2=1/4/(u^2-c^2),HeuristicDecomposition(S,P[2],B)
> [1]));  c dy+2 dx α1c2−2 dx α1 u2

2 α1(u2−c2) 0

0 c dy−2 dx α1 c2+2 dx α1 u2

2 α1(u2−c2)


If we denote by

> G:=diag(X,1): H:=diag(Y,1): Z:=Mult(G,U,B); T:=Mult(H,V,B);

Z :=


0 −2α1 c u

2 + 2α1 c
3 u ρ

0 −2α1 c
3 + 2α1 c u

2 u ρ

u ρ c2 0

 T :=


−2α1 c −1 2α1 c u

−2α1 c 1 2α1 c u

1 0 0


then the matrix R is equivalent to the simple block-diagonal matrix T RZ−1 defined by:

> simplify(subs(alpha[1]^2=1/4/(u^2-c^2),simplify(Mult(T,R,LeftInverse(Z,B),
> B)))); 

c dy+2 dx α1 c2−2 dx α1 u2

2 α1(u2−c2) 0 0

0 c dy−2 dx α1 c2+2 dx α1 u2

2 α1(u2−c2) 0

0 0 dx
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If F denotes an A-module (e.g., F = C∞(R2)), using the relation 2α1 (c2 − u2) = −1/(2α1), we then
obtain that the linear system kerF (R.) is equivalent to the following one

(dx − 2 c α1 dy) ζ1 = 0,
(dx + 2 c α1 dy) ζ2 = 0,
dx ζ3 = 0,

⇔


ζ1 = φ(y + 2 c α1 x),
ζ2 = ψ(y − 2 c α1 x),
ζ3 = C,

where φ and ψ are two arbitrary functions of F and C an arbitrary constant.
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